UIN3058 Alternative Computing Media

Faculty of Philosophy and Science in Opava
Summer 2010
Extent and Intensity
2/0/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. Ing. Petr Sosík, Dr. (lecturer)
Guaranteed by
doc. Ing. Petr Sosík, Dr.
Institute of Computer Science – Faculty of Philosophy and Science in Opava
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The listener is provided with knowledge about the most recent trends in research and construction of computers and automata based on non-electric principles. Their common feature is the possibility of massive paralelization while keeping slight dimension of computing elements. These features promise eventually to solve computationally intractable problems. The topics of DNA computing and quantum computing are stressed. 1. Abstract computing classes, Turing Machine with oracle and advice, the problem P versus NP, possible strategies of solution of computationally intractable problems. 2. Why do we need new computing media? Problems of the recent technologies concepts of computing. 3. Quantum computing, bits and qubits, reversibility of computing. Quantum gates and networks, quantum algorithms, quantum parallelism. 4. Deutsch problem XOR, Shore factorization algorithm. The problem of decoherency. The performance of quantum algorithms. 5. DNA computing, elementary properties of DNA. The PCR reaction, denaturation and hybridization, cutting and pasting, separation of molecules with the use of gel electrophoresis. 6. Computing based on recombination and on cutting/pasting. Two- and three-dimensional DNA structures. Possible applications in medicine and nanotechnologies. 7. Further biologically and chemically inspired computing models. Abstract chemical machine, membrane computing. 8. Evolutionary computing, interactive finite automata and interactive Turing machine. Evolutionary lineages of cognitive automata and their performance.
Syllabus
  • 1. Abstract computing classes, Turing Machine with oracle and advice, the problem P versus NP, possible strategies of solution of computationally intractable problems.
    2. Why do we need new computing media? Problems of the recent technologies concepts of computing.
    3. Quantum computing, bits and qubits, reversibility of computing. Quantum gates and networks, quantum algorithms, quantum parallelism.
    4. Deutsch problem XOR, Shore factorization algorithm. The problem of decoherency. The performance of quantum algorithms.
    5. DNA computing, elementary properties of DNA. The PCR reaction, denaturation and hybridization, cutting and pasting, separation of molecules with the use of gel electrophoresis.
    6. Computing based on recombination and on cutting/pasting. Two- and three-dimensional DNA structures. Possible applications in medicine and nanotechnologies.
    7. Further biologically and chemically inspired computing models. Abstract chemical machine, membrane computing.
    8. Evolutionary computing, interactive finite automata and interactive Turing machine. Evolutionary lineages of cognitive automata and their performance.
Literature
    recommended literature
  • AMOS, M. Theoretical and Experimental DNA Computation. Springer-Verlag, Berlin, 2005. info
  • Păun, G. Membrane Computing. Springer-Verlag, Berlin, 2002. info
  • WIEDERMANN, J. Superturingovský výpočetní potenciál kognitivních a evolučních systémů, technická zpráva 832. Ústav informatiky ČSAV, Praha, 2001. info
  • GRUSKA, J. Quantum Computing. McGraw-Hill, New York, 1999. info
Assessment methods
Test
Language of instruction
English
Further Comments
The course can also be completed outside the examination period.
The course is also listed under the following terms Summer 1994, Summer 1995, Summer 1996, Summer 1997, Summer 1998, Summer 1999, Summer 2000, Summer 2001, Summer 2002, Summer 2003, Summer 2004, Summer 2005, Summer 2006, Summer 2007, Summer 2008, Summer 2009, Summer 2011, Summer 2012, Summer 2013, Summer 2014, Summer 2015, Summer 2016, Summer 2017, Summer 2018, Summer 2019, Summer 2020, Summer 2021, Summer 2022, Summer 2023.
  • Enrolment Statistics (Summer 2010, recent)
  • Permalink: https://is.slu.cz/course/fpf/summer2010/UIN3058