UFTFA04 Statistical Physics and Kinetics

Faculty of Philosophy and Science in Opava
Summer 2019
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Martin Blaschke, Ph.D. (lecturer)
RNDr. Martin Blaschke, Ph.D. (seminar tutor)
Guaranteed by
prof. Ing. Peter Lichard, DrSc.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava
Prerequisites (in Czech)
Mikrokanonický, kanonický, grandkanonický soubor a jejich statistické sumy, stavová rovnice ideálního plynu, ekvipartiční teorém, bozony a fermiony a jejich vlastnosti; entropie, volná energie, Gibbsův potenciál (viz Termodynamika a statistická fyzika); přechod mezi souřadnicovou a impulsovou reprezentací, druhé kvantování (viz Kvantová fyzika II).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Introduction to nonequilibrium statistical physics including phase transitions, methods of theoretical physics and their application to solve the problems.
Syllabus
  • Phase transitions. Classification of phase transitions and the Ehrenfest equations, partition sum, state equation, Ursell-Mayer expansion and the Mayer theorem van der Waals equations and condensation, surface tension and the Laplace pressure, mechanism of creation of a new phase, Ising model of ferromagnetism, Landau theory of phase transitions.
    Fluctuations, stochastic processes and kinetic equations. Fluctuations of thermodynamical quantities, thermodynamically nonequilibrium systems, stochastic sources, Fokker-Planck equation, fundamental kinetic equation, Boltzmann kinetic equation, transport equations, the law of increasing Boltzmann entropy, spontaneous transition of a system into equilibrium state, irreversible processes, locally equilibrium systems, linear thermodynamics, Onsager relations.
    Nonequilibrium systems. Statistical operator, linear response, plasma and plasma effects, zero sound in a fermion system, fluctuation-dissipation theorem, Green functions.
    Prerequisities:
    Microcanonical, canonicak and grandcanonical ensembels and their statistical sums, state equation of ideal gas, equipartition theorem, bosons and fermions and their properties, entropy, free energy, Gibbs potential (see Thermodynamics and statistical physics) relation between the coordinate and the momentum representations, second quantization (see Quantum physics II).
Literature
    recommended literature
  • Kvasnica, J. Statistická fyzika. Academia, Praha, 1998. ISBN 80-200-0676-1. info
  • Čulík F., Noga M. Úvod do štatistickej fyziky a termodynamiky. Alfa, Bratislava, 1993. ISBN 80-05-01158-X. info
  • Reif F. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 1965. info
    not specified
  • Atkins, P., de Paula, L. Fyzikální chemie. Praha, 2013. ISBN 978-80-7080-830-6. info
Teaching methods
Lectures, tutorial sessions, regularly assigned and evaluated home tasks.
Assessment methods
Credit
Active participation on tutorial sessions and the timely completion of home tasks is required. Detailed criteria will be announced by the tutorial lecturer. The exam consists of the main written part and a supplemental oral part.
Language of instruction
English
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Teacher's information
The attending of lectures is recommended, that of tutorial sessions is
compulsory. If a student was absent for serious reasons, the teacher may
prescribe him/her an alternative way of fulfilling the duties.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2022.
  • Enrolment Statistics (Summer 2019, recent)
  • Permalink: https://is.slu.cz/course/fpf/summer2019/UFTFA04