INMNPRAM Decision Analysis for Managers

School of Business Administration in Karvina
Summer 2015
Extent and Intensity
2/1/0. 4 credit(s). Type of Completion: z (credit).
Teacher(s)
prof. RNDr. Jaroslav Ramík, CSc. (lecturer)
Ing. Radomír Perzina, Ph.D. (seminar tutor)
Ing. Filip Tošenovský, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jaroslav Ramík, CSc.
Department of Informatics and Mathematics – School of Business Administration in Karvina
Contact Person: Mgr. Radmila Krkošková, Ph.D.
Prerequisites (in Czech)
K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisle na jiných předmětech.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Based on the knowledge of basic management courses and mathematical statistics provide basic and advanced mathematical methods of multi-criteria decision making. It also aims to practically handle case studies using Excel and Expert Choice.
Syllabus
  • 1. Multicriteria - an essential feature of decision-making and evaluation
    Introduction to multi-criteria decision making. Decision-making process. The information in decision-making. Theoretical and real decision-maker. The basic elements of a multi-criteria decision making. Criteria - setting goals and criteria, weighting of the criteria, methods of determining variants and consequences of variations.
    2. Methods of modeling of preferences between alternatives and criteria
    Relations. Scales. "Optimal" solution - undominated solution. Properties of compromise variants. Classification of multi-criteria decision making tasks.
    3. Methods of nominal and ordinal information on the criteria
    Classification of methods according to the information on the criteria. Methods of nominal information on the criteria. The method of equal importance. Method of aspiration levels. Methods of ordinal information on the criteria. Lexicographical method. Methods using scalarization of ordinal information on the criteria. Ranking and scoring method. Methods of paired comparison. Fuller triangle method.
    4. Methods of cardinal information on the criteria
    Introduction to the methods of cardinal information on the criteria. Standardization and normalization. Methods based on the utility function. Methods based on pairwise comparison of alternatives. Methods based on distance. Saaty method of pairwise comparisons. The method of least squares for calculation of weights. The method of logarithmic least squares determination of weights.
    5. Analytical Hierarchy Process (AHP)
    Hierarchy. A formal approach to the hierarchy. Priorities. Basic scale. Weights calculation based on pairwise comparisons matrix. Eigenvalues and eigenvectors of reciprocal matrices. Consistency matrix of pairwise comparisons. Synthesis.
    6. Using AHP in decision-making - Case Study 1
    Choosing a car, choosing a vacuum cleaner, a selection of prospective business.
    7. Using multi-criteria decision making in decision-making - Case Study 2
    Application of multi-criteria decision making methods to the practical problems of optimal decision making.
    8. Methods based on thresholds of sensitivity
    Introduction - relations and thresholds. Method AGREPREF. ELECTRE type methods. Methods of type PROMETHEE.
    9. Multi-criteria decision making under risk
    The decision-making task in terms of risk. Objective and subjective probability. Utility function under risk. Variants assessment methods under risk with a single criterion. Methods of evaluation of variants under risk with more criteria. AHP in multicriteria evaluation of variants under risk.
    10. Multi-criteria decision making under uncertainty
    Multicritaria decision making in conditions of risk, uncertainty and vagueness. Methods for evaluation of alternatives under uncertainty with a single criterion. Methods for evaluation of alternatives under uncertainty when multiple criteria.
    11. Multi-criteria decision making under vagueness
    Definition of a fuzzy set. Fuzzy intervals and fuzzy numbers. Arithmetic operations on fuzzy intervals. Ordering of fuzzy intervals. Fuzzy criteria. Multi-criteria decision making with fuzzy criteria.
    12. Group decision making
    Introduction to group decision making. Aggregation of partial evaluation.
    13. Methods of social choice
    Methods of conflict situations.
Literature
    required literature
  • RAMÍK, J., PERZINA, R. Moderní metody hodnocení a rozhodování. Karviná : SU v Opavě, OPF v Karviné, 2008. ISBN 978-80-7248-497-3. info
    recommended literature
  • FIALA, P. a kol. Operační výzkum: nové trendy. Praha : Professional Publishing, 2010. ISBN 978-80-7431-036-2. info
  • RAMÍK, J. Rozhodovací analýza pro manažéry. Karviná: OPF SU, 2007. URL info
  • FOTR, J., DĚDINA, J., HRŮZOVÁ, H. Manažerské rozhodování. Praha: Ekopress, 2003. ISBN 80-86119-69-6. info
  • BROŽOVÁ, H., HOUŠKA, M., ŠUBRT, T. Modely pro vícekriteriální rozhodování. Praha : Credit, 2003. ISBN 80-213-1019-7. info
  • SAATY, T., VARGAS, G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. New York: Kluwer Academic, 2001. ISBN 0-7923-7267-0. info
  • RAMÍK, J. Analytický hierarchický proces (AHP) a jeho využití v malém a středním podnikání. OPF SU, Karviná, 2000. ISBN 80-7248-088-X. info
  • TRIANTAPHYLLOU, E. Multi-criteria decision making methods. Springer, 2000. ISBN 0-7923-6607-7. info
Teaching methods
Skills demonstration
Seminar classes
Assessment methods
Credit
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Teacher's information
Seminar work, 70% attendance at seminars, test
ActivityDifficulty [h]
Ostatní studijní zátěž46
Přednáška26
Seminář13
Zápočet30
Summary115
The course is also listed under the following terms Summer 2016, Summer 2017, Summer 2018, Summer 2019, Summer 2020, Summer 2021, Summer 2022, Summer 2023, summer 2024.
  • Enrolment Statistics (Summer 2015, recent)
  • Permalink: https://is.slu.cz/course/opf/summer2015/INMNPRAM