OPF:INMNPSTZ Statistical Data Processing - Course Information
INMNPSTZ Statistical Data Processing
School of Business Administration in KarvinaWinter 2019
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Radmila Krkošková, Ph.D. (lecturer)
prof. RNDr. Jaroslav Ramík, CSc. (lecturer)
Mgr. Radmila Krkošková, Ph.D. (seminar tutor)
doc. Mgr. Jiří Mazurek, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jaroslav Ramík, CSc.
Department of Informatics and Mathematics – School of Business Administration in Karvina
Contact Person: Mgr. Radmila Krkošková, Ph.D. - Timetable
- Mon 10:35–12:10 AULA
- Timetable of Seminar Groups:
INMNPSTZ/02: Mon 8:55–9:40 B208, R. Krkošková
INMNPSTZ/03: Mon 9:45–10:30 B208, R. Krkošková
INMNPSTZ/04: Wed 13:55–14:40 B308, R. Krkošková
INMNPSTZ/05: Wed 14:45–15:30 B308, R. Krkošková - Prerequisites (in Czech)
- FAKULTA(OPF) && TYP_STUDIA(N) && FORMA(P)
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Banking (programme OPF, N_HOSPOL)
- Banking, Finance, Insurance (programme OPF, N_BPP)
- Managerial Informatics (programme OPF, N_MI)
- Managerial Informatics (programme OPF, N_SYSINF)
- Business Economics and Management (programme OPF, N_EKOMAN, specialization Corporate Finance)
- Business Economics and Management (programme OPF, N_EKOMAN, specialization Marketing and Trade)
- Business Economics and Management (programme OPF, N_EKOMAN, specialization Business)
- Business Economics and Management (programme OPF, N_EKOMAN, specialization Accounting and Taxes)
- Public Economy and Administration (programme OPF, N_HOSPOL)
- Public Economy and Administration (programme OPF, N_VES)
- Course objectives
- Following the subject Statistics at bachelor's level to provide further explanation of mathematical statistics, the main findings of this theory and basic statistical methods. Present subject with regard to the application of the economic environment. Get computer skills and learn how to deal with the statistical data using SPSS and Excel on a computer.
- Syllabus
- 1. Analysis of variance (ANOVA) - One factor
2. Analysis of variance - Two and more factors, nonparametric ANOVA
3. Regression Analysis - One-dimensional, linear
4. Regression Analysis - One-dimensional, nonlinear
5. Regression Analysis - Multi-dimensional
6. Regression Analysis - Multidimensional: Multicolinearity, heteroscedasticity, autocorrelation
7. Basics of Time Series Analysis
8. Trend analysis of time series
9. Analysis of seasonal and random components of time series
10. Exponential smoothing models of time series
11. ARIMA models
12. SARIMA models
13. Forecasting of time series
1. Analysis of variance (ANOVA) - One factor
Independent and dependent factors, assumptions of analysis of variance with one factor. Procedure for the analysis of variance with one factor. The rate of dependence, determinative and correlation ratio.
2. Analysis of variance - Two and more factors, nonparametric ANOVA
Analysis of variance with two factors. Assumptions of ANOVA with two factors. Two-factor ANOVA without interaction and interaction. Kruskal-Wallis nonparametric ANOVA.
3. Regression Analysis - One-dimensional, linear
What is regression analysis (RA) - a simple, multiple, linear, nonlinear. The essence of simple linear RA - scatter diagram, regression, regression coefficients, adhesion, coefficient of determination, tests of hypotheses.
4. Regression Analysis - One-dimensional, nonlinear
Simple linear RA - basic types of nonlinearities, Törnquist curves and their applications in economics.
5. Regression Analysis - Multi-dimensional
Multiple linear RA - criterion, predictors, regression hyperplane, the coefficient of determination. Using the VRA for nominal predictors and correlation coefficients. Application examples of the economic area (marketing research).
6. Regression Analysis - Multidimensional: Multicolinearity, heteroscedasticity, autocorrelation
Population and sample regression function. Classical multivariate linear regression model. Multicollinearity and its causes. Heteroscedasticity, tests H-S (Park test, Bartley test) and its removal. Autocorrelation (sign test).
7. Basics of Time Series Analysis
Types of economic time series. Elemental characteristics of time series. Models of economic time series - decomposition, exponential smoothing, ARIMA.
8. Trend analysis of time series
Analytical methods for the determination of trends of time series: regression analysis (least squares method, maximum likelihood method). Synthetic methods: moving averages, exponential smoothing.
9. Analysis of seasonal and random components of time series
Analysis of seasonal component: models with constant seasonality with a step trend, with a linear trend. Models of proportional seasonality. Analysis of random component: statistical tests of random component using residues.
10. Exponential smoothing models of time series
Exponential smoothing models (simple, Holt, Winters model).
11. ARIMA models
Stochastic process and its stationarity. Fundamentals of ARIMA models: models AR, MA, I, ARIMA. Identification of ARIMA model using the autocorrelation function (ACF) and partial autocorrelation function (PACF). Calculation of ARIMA model, model verification, prediction of the ARIMA model.
12. SARIMA models
Identification of the SARIMA model using the autocorrelation function and partial autocorrelation function.
13. Forecasting of time series
The forecast ex-post and ex-ante, point and interval forecasts. Forecasting in linear regression models. Forecasting in ARIMA and SARIMA models.
- 1. Analysis of variance (ANOVA) - One factor
- Literature
- required literature
- RAMÍK, Jaroslav and Radmila KRKOŠKOVÁ. Statistické zpracování dat: Pro kombinovanou formu studia. Karviná: Slezská univerzita v Opavě, Obchodně podnikatelská fakulta v Karviné, 2013, 162 pp. ISBN 978-80-7248-842-1. Výsledek v databázi "Databáze výstupů projektů Operačního programu Vzdělávání pro konkurenceschopnost" info
- recommended literature
- RAMÍK, R. a Š. ČEMERKOVÁ. Statistika A. Karviná: SU OPF, 2000. ISBN 80-85879-43-3. info
- RAMÍK, R. a Š. ČEMERKOVÁ. Statistika B. Karviná: SU OPF, 2000. ISBN 80-7248-001-4. info
- CYHELSKÝ, L., J. KAHOUNOVÁ a R. HINDLS. Elementární statistická analýza. Praha: Management Press, 1996. ISBN 80-7261-003-1. info
- SEGER, J. a R. HINDLS. Statistické metody v tržním hospodářství. Praha: Victoria Publishing, 1995. ISBN 80-7187-058-7. info
- GURAJATI, D. Essentials of econometrics. New York: McGraw-Hill, 1992. ISBN 0-13-844143-X. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- written test, 70% attendance at seminars, final exam: written
- Enrolment Statistics (Winter 2019, recent)
- Permalink: https://is.slu.cz/course/opf/winter2019/INMNPSTZ