OPF:INMBKKME Quantitative Methods in Econ. - Course Information
INMBKKME Quantitative Methods in Economic Practice
School of Business Administration in KarvinaWinter 2020
- Extent and Intensity
- 16/0/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Radmila Krkošková, Ph.D. (lecturer)
- Guaranteed by
- Department of Informatics and Mathematics – School of Business Administration in Karvina
Contact Person: Mgr. Radmila Krkošková, Ph.D. - Timetable
- Sat 24. 10. 8:05–9:40 VS, 11:25–13:00 VS, Sat 12. 12. 8:05–9:40 VS
- Prerequisites (in Czech)
- FAKULTA(OPF) && TYP_STUDIA(B) && FORMA(K)
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
The capacity limit for the course is 200 student(s).
Current registration and enrolment status: enrolled: 7/200, only registered: 0/200 - fields of study / plans the course is directly associated with
- Finance and Accounting (programme OPF, B_FU)
- Management v sociálních službách (programme OPF, B_MSS)
- Marketing (programme OPF, B_MAR)
- Syllabus (in Czech)
- 1. Maticový počet a determinanty
Základní pojmy, součet matic a násobení matic konstantou, lineární prostor matic. Úprava na trojúhelníkový tvar, hodnost matice. Jednotková matice, regulární a singulární matice. Součin matic a jeho vlastnosti. Inverzní matice. Řešení maticových rovnic. Výpočet determinantu. Determinant regulární a singulární matice. Cramerovo pravidlo. Výpočet inverzní matice.
2. Posloupnost a limita posloupnosti
Aritmetická a geometrická posloupnost. Konečná a nekonečná posloupnost. Omezená a neomezená posloupnost. Monotónní posloupnost. Konvergentní a divergentní posloupnost. Výpočet limity posloupnosti, vlastnosti limit posloupností.
3. Funkce jedné reálné proměnné a její limita
Reálné funkce jedné reálné proměnné. Supremum a infimum, funkce omezená, monotónní, konvexní a konkávní. Prostá funkce a inverzní funkce. Elementární funkce. Definiční obor elementární funkce, jejich vlastnosti a grafy. Spojitost funkce jedné reálné proměnné a její vlastnosti. Věta Bolzanova a Weierstrassova. Limita funkce. Asymptoty funkce. Věty o limitách funkce.
4. Diferenciální počet funkce jedné reálné proměnné
Derivace funkce dané explicitně, geometrický význam derivace, vztah spojitosti a vlastní derivace. Věta o derivaci aritmetických operací, o derivaci složené funkce. Diferenciál, derivace vyšších řádů. Vyšetřování průběhu funkce.
5. Popisná statistika - kvalitativní a kvantitativní znaky
Statistická jednotka a statistický soubor. Rozdělení četnosti kvalitativních znaků. Rozdělení četnosti kvantitativních znaků. Charakteristiky polohy (modus, medián, kvantily, průměry). Charakteristiky variability (rozptyl, směrodatná odchylka, rozpětí). Variační koeficient.
6. Diskrétní a spojité pravděpodobnostní modely
Stejnoměrné rozdělení. Binomické rozdělení. Poissonovo rozdělení. Normální rozdělení. Exponenciální rozdělení. Rozdělení chi-kvadrát. Studentovo rozdělení.
7. Testování hypotéz - parametrické a neparametrické testy
Základní pojmy z testování hypotéz. Postup při testování hypotéz. Hladina významnosti a p-hodnota testu. Dvouvýběrové testy. Test dobré shody (Chi-kvadrát test). Testování nezávislosti kvalitativních znaků.
8. Jednoduchá regresní analýza
Statistická závislost mezi dvěma kvantitativními znaky. Jednoduchá lineární regrese. Metoda nejmenších čtverců. Klasický lineární model. Koeficient determinace.
- 1. Maticový počet a determinanty
- Literature
- required literature
- STOKLASOVÁ, R. Kvantitativní metody. Karviná: SU OPF, 2013. ISBN 978-80-7248-848-3. info
- RAMÍK, J. a Š. ČEMERKOVÁ. Kvantitativní metody B - Statistika. Karviná: SU OPF, 2003. ISBN 80-7248-198-3. info
- recommended literature
- HINDLS, R., S. HRONOVÁ, J. SEGER, a J. FISCHER. Statistika pro ekonomy. 8. vyd. 978-80-8694-643-6, 2016. ISBN 978-80-8694-643-6. info
- SEDLAČÍK, M., J. NEUBAUER a O. KŘÍŽ. Základy statistiky. 2. vyd. Praha: Grada, 2016. ISBN 978-80-247-5786-5. info
- MOUČKA, J. a P. RÁDL. Matematika pro studenty ekonomie. 2. vyd. Praha: Grada, 2015. ISBN 978-80-247-5406-2. info
- ARLTOVÁ, M. a kol. Základy statistiky v příkladech. Tribun EU s.r.o., 2014. ISBN 978-80-2630-756-3. info
- ANDĚL, J. Základy matematické statistiky. Praha : Matfyzpress, 2011. ISBN 978-80-7378-162-0. info
- KAŇKA, M. Sbírka řešených příkladů z matematiky pro studenty vysokých škol. Praha: Ekopress, 2009. ISBN 978-80-86929-53-8. info
- KLŮFA, J. a J. COUFAL. Matematika 1. Praha: Ekopress, 2003. ISBN 8086119769. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: Přednáška 16 HOD/SEM.
- Enrolment Statistics (Winter 2020, recent)
- Permalink: https://is.slu.cz/course/opf/winter2020/INMBKKME