INMBPOAN Operační analýza pro ekonomy

Obchodně podnikatelská fakulta v Karviné
zima 2020
Rozsah
2/1/0. 4 kr. Ukončení: zk.
Vyučující
prof. RNDr. Jaroslav Ramík, CSc. (přednášející)
prof. RNDr. Jaroslav Ramík, CSc. (cvičící)
Garance
prof. RNDr. Jaroslav Ramík, CSc.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D.
Rozvrh
Po 10:35–12:10 A412
  • Rozvrh seminárních/paralelních skupin:
INMBPOAN/01: Po 12:15–13:00 A412, J. Ramík
Předpoklady
FAKULTA(OPF) && TYP_STUDIA(B) && FORMA(P)
K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisle na jiných předmětech.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.

Předmět si smí zapsat nejvýše 15 stud.
Momentální stav registrace a zápisu: zapsáno: 0/15, pouze zareg.: 0/15
Mateřské obory/plány
Cíle předmětu
Poskytnout základní matematické metody k modelování ekonomických situací. Zvládnout teoretický základ vybraných metod a modelů a naučit se používat Excel, Solver a program QSB k řešení úloh operačního výzkumu.
Osnova
  • 1. Operační analýza - přehled, vývoj a základní pojmy.
    2. Úvod do lineárního programování.
    3. Obecný problém úlohy lineárního programování, bázové řešení.
    4. Řešení úloh lineárního programování.
    5. Dualita v úlohách lineárního programování.
    6. Celočíselné lineární programování.
    7. Dopravní problém.
    8. Aplikace lineárního programování.
    9. Základní pojmy z teorie grafů.
    10. Hledání nejkratší cesty a maximálního toku v síti.
    11. Řízení projektů 1: Časová analýza.
    12. Řízení projektů 2: PERT.
    13. Řízení projektů 3: Náklady a zdroje.
    1. Operační analýza - přehled, vývoj a základní pojmy.
    Podstata operační analýzy, vznik a vývoj operační analýzy, jednotlivé fáze aplikace operační analýzy, klasifikace disciplín operační analýzy.
    2. Úvod do lineárního programování.
    Ekonomický a matematický model, ekonomická podstata jednotlivých částí matematického modelu, základní pojmy lineárního programování , grafické znázornění množiny přípustných řešení úlohy lineárního programování o dvou proměnných a řešení úlohy.
    3. Obecný problém úlohy lineárního programování, bázové řešení.
    Obecný problém úlohy lineárního programování, převod omezujících podmínek lineárního programování do tvaru rovnic, bázové řešení úlohy lineárního programování.
    4. Řešení úloh lineárního programování.
    Princip simplexové metody, jednostupňová simplexová metoda, stanovení počtu optimálních řešení úlohy lineárního programování, řešení úlohy lineárního programování s využitím nástroje Řešitel tabulkového procesoru MS Excel.
    5. Dualita v úlohách lineárního programování.
    Dualita jako vztah mezi dvěma úlohami LP, vytvoření úlohy duální, vztahy mezi primární a duální úlohou, ekonomická interpretace optimálních řešení duálně sdružených úloh, princip analýzy citlivosti (postoptimalizační analýza), analýza citlivosti úlohy lineárního programování s využitím nástroje Řešitel tabulkového procesoru MS Excel.
    6. Celočíselné lineární programování
    Význam podmínek celočíselnosti a bivalentnosti, hlavní principy řešení úloh celočíselného programování, metoda větvení a mezí, řešení úloh celočíselného programování malých rozměrů pomocí nástroje Řešitel tabulkového procesoru MS Excel.
    7. Dopravní problém.
    Ekonomický model dopravního problému, matematický model dopravního problému, počáteční řešení dopravního problému, aplikace dopravního problému na úlohy rozvrhování výroby, řešení dopravního problému pomocí nástroje Řešitel tabulkového procesoru MS Excel.
    8. Aplikace lineárního programování.
    Sestavení matematického modelu úloh těchto typů: úloha o dělení materiálu, model optimalizace portfolia, nutriční problém, rozvrhování výroby v rámci více období, přiřazovací problém, řešení modelů pomocí programu MS Excel, interpretace výsledků.
    9. Základní pojmy z teorie grafů.
    Základní pojmy z teorie grafů, nalezení minimální kostry grafu, nalezení Eulerova tahu v grafu.
    10. Hledání nejkratší cesty a maximálního toku v síti.
    Dantzigův algoritmus pro nalezení nejkratší cesty v síti, algoritmus "nejsevernější cesty" k nalezení maximálního toku v jednoduché síti.
    11. Řízení projektů 1: Časová analýza.
    Síťový graf projektu, analýza projektu metodou kritické cesty ("critical path method") - CPM tabulkovým způsobem.
    12. Řízení projektů 2: PERT.
    Analýza projektu metodou PERT, základní charakteristiky analýzy projektu, a to střední hodnota trvání činnosti, směrodatná odchylka trvání činnosti, střední hodn
Literatura
    povinná literatura
  • RAMÍK, J., ČEMERKOVÁ, Š., MIELCOVÁ, E. Operační analýza pro ekonomy. Karviná, OPF SU, 2004. ISBN 80-7248-199-3. info
    doporučená literatura
  • JANOVÁ, J., KOLMAN, P,. Vybrané kapitoly z operačního výzkumu. Brno : Mendelova univerzita, 2011. ISBN 978-80-7375-488-4. info
  • FIALA, P. a kol. Operační výzkum: nové trendy. Praha : Professional Publishing, 2010. ISBN 978-80-7431-036-2. info
  • HILLER, F. S., LIEBERMEN, G. J. Introduction to operation research. McGraw-Hill, 2005. ISBN 0-07-252744-7. info
  • JABLONSKÝ, J. Operační výzkum: kvantitativní modely pro ekonomické rozhodování. Praha : Professional Publishing, 2002. ISBN 80-86419-23-1. info
  • ALEVRAS, D., PADBERG, M. W. Linear Optimization and Extensions Problems and Solutions. Berlin: Springer, 2001. ISBN 3-540-41744-3. info
  • SYDSAETER, K. STORM, A., BERCK, P. Economists' Mathematical Manual. Berlin: Springer, 2000. ISBN 3-540-65447-X. info
  • RAIS, K. Základy optimalizace a rozhodování. Brno : PC-DIR, 2000. ISBN 80-214-1691-2. info
  • WILLIAMS, H. P. Model Building Mathematical Programming. Chichester: John Wiley & Sons, 1993. ISBN 0-471-94111-5. info
  • TAHA, H. A. Operations Research An Introduction. Englewood Cliffs: Prentice Hall, 1992. ISBN 0-13-187659-7. info
Výukové metody
Demonstrace dovedností
Seminární výuka
Metody hodnocení
Písemná zkouška
Informace učitele
seminární práce, 70% účast na seminářích, forma zkoušky: písemná
AktivityNáročnost [h]
Ostatní studijní zátěž41
Přednáška26
Seminář13
Zkouška40
Celkem120
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2014, zima 2015, zima 2016, zima 2017, zima 2018, zima 2019, zima 2023, zima 2024.