MU:MU01907 Geometry - Exercises - Course Information
MU01907 Geometry - Exercises
Mathematical Institute in OpavaSummer 2011
- Extent and Intensity
- 0/1/0. 1 credit(s). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Adam Hlaváč, Ph.D. (seminar tutor)
- Guaranteed by
- doc. RNDr. Michal Marvan, CSc.
Mathematical Institute in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Applied Mathematics in Risk Management (programme MU, B1102)
- Geometry (programme MU, M1101)
- Mathematical Analysis (programme MU, M1101)
- Mathematical Methods in Economics (programme MU, B1101)
- Mathematics (programme MU, B1101)
- Theoretical Physics (programme FPF, M1701 Fyz)
- Theoretical Physics (programme FPF, N1701 Fyz)
- Secondary School Teacher Traning in Physics and Mathematics (programme FPF, M1701 Fyz)
- Secondary School Teacher Training in Mathematics (programme FPF, M7504)
- Secondary school teacher training in general subjects with specialization in Mathematics (programme FPF, M7504)
- Course objectives
- Exercises to Geometry.
- Syllabus
- Affine and Euclidean spaces and subspaces, affine maps and isometries, affine and Cartesian coordinates.
Distance and inclination of subspaces in Euclidean space, the volume of a parallelepiped.
Applications in planimetry, stereometry, and coding theory.
Curves in Euclidean space, parameterization; Frenet frame, curvatures, Frenet--Serret equations; evolutes and involutes.
Subvartieties in Euclidean space, regular parameterization, tangent space, directional derivative, the first fundamental form, vector field, Lie bracket.
Hypersurfaces in Euclidean space, normal vector, covariant derivative, the second fundamental form, Gauss--Weingarten equations; parallel displacement, geodesics; principal curvatures.
Applications in cartography and physics.
- Affine and Euclidean spaces and subspaces, affine maps and isometries, affine and Cartesian coordinates.
- Literature
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- Written examination.
- Enrolment Statistics (Summer 2011, recent)
- Permalink: https://is.slu.cz/course/sumu/summer2011/MU01907