MU20001 Mathematical Analysis I

Mathematical Institute in Opava
Winter 2020
Extent and Intensity
3/4/0. 7 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Michal Málek, Ph.D. (lecturer)
Mgr. Pavel Holba (seminar tutor)
Guaranteed by
doc. RNDr. Michal Málek, Ph.D.
Mathematical Institute in Opava
Timetable
Wed 9:45–12:10 R1
  • Timetable of Seminar Groups:
MU20001/01: Thu 14:45–16:20 R1, Thu 16:25–18:00 R1, P. Holba
Prerequisites (in Czech)
TYP_STUDIA(B)
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
This is the first part of the basic course of mathematical analysis. The aim of this subject is to acquaint students with basic concepts, results and principles of differential calculus of functions of one real variable.
Syllabus
  • 1. Real numbers
    2. Functions
    3. Real sequences
    4. Limits of functions and continuity
    5. Derivatives
    6. Course of a function
    7. Approximation
Literature
    required literature
  • Z. Došlá, J. Kuben. Diferenciální počet funkcí jedné proměnné. Brno, 2004. info
    recommended literature
  • L. Zajíček. Vybrané úlohy z matematické analýzy. Matfyzpress, Praha, 2000. info
  • A. P. Mattuck. Introduction to Analysis. Prentice Hall, New Jersey, 1999. info
  • M. Krupka. Pomocné učebny texty. MÚ SU, Opava, 1999. info
  • REKTORYS, K. a kol. Přehled užité matematiky I, II. Praha. SNTL, 1995. ISBN 80-85849-92-5. info
  • K. Polák. Přehled středoškolské matematiky. SPN, 1991. info
  • V. Novák. Diferenciální počet v R. MU, Brno, 1989. info
  • F. Jirásek, E. Kriegelstein, Z. Tichý. Sbírka příkladů z matematiky. SNTL, Praha, 1989. info
  • R. A. Adams. Single Variable Calculus. Addison-Weseley Publischers Limited, 1983. info
  • L. Leithold. The Calculus with Analytic Geometry. Harper & Row, 1981. info
  • S. I. Grossman. Calculus. Academic Press, 1977. info
  • V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
Teacher's information
Requirements for pre-exam credits are set out by the tutorial lecturer.
The examination consists of a written and of an oral part.
The course is also listed under the following terms Winter 2021, Winter 2022, Winter 2023, Winter 2024.
  • Enrolment Statistics (Winter 2020, recent)
  • Permalink: https://is.slu.cz/course/sumu/winter2020/MU20001