170 6 Relativistic Dynamics
6.3 The Relationship Between Momentum and Energy
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From the relation y = we have 92 — >y = 1. Multiplying throughout by

m3c*, it follows that
Pmict — Bryimict = mdct. (6.28)
Because it is E = ymyc? and p = Bymoc, the last equation may also be written as
E? —p*c? = mic. (6.29)

The magnitude m(z)c4 is an invariant, because, evaluated in any inertial frame of
reference, takes the same value. It follows that the quantity E?> — p?c? is also
invariant.

The relation
E* = mic* +p*c? (6.30)

connects the magnitudes of the rest mass, the momentum and the energy of a body.
Geometrically, it may be considered as an application of the Pythagorean theorem
on a four-dimensional' ‘right-angled triangle’ with sides Ey = moc?, pxc, pyc and
p.c. The triangle of Fig. 6.5 may serve as a memory aid for relation (6.30).

The energy E may also be expressed as

E = \/m3c* + p2c?. (6.31)

In addition, since it is E = mc” and p = mv, it follows that

E
p=5v. (6.32)

6.3.1 Units of Energy, Mass and Momentum

In Atomic Physics, Nuclear Physics and the Physics of Elementary Particles, we use
as the unit of energy the electron-volt (eV), defined as the change in the kinetic

'In fact, the quantity nmoc? is the modulus of the four-vector of energy-momentum, which has as
components the quantities E, p,c, pyc and p,c. The norm of this four-vector is, according to the
definition, equal to mgc* = E* — pic® — pie® — p2¢® = E* — p*c® and is invariant. The differ-
ence between the magnitude of this and the magnitude of a vector in a four-dimensional
Euclidean space is in the negative signs which appear. For more on four-vectors, see Chap. 8.



6.3 The Relationship Between Momentum and Energy 171

(a) (b)

2
m ¢ m mc

invariant

Fig. 6.5 Geometrical memory aid for the relationship E? = m}c* + p?c?. Pythagoras’ theorem,
applied to the right-angle triangle of figure (a), with sides equal to myc> and pc and the total energy
E as its hypotenuse, gives the relationship. In figure (b), a system of units is used in which ¢ = 1.
Figure (¢) shows the variation of the body’s total energy with its momentum. Figure (d) also shows
the relationships E = mc* = myc® + K, where K is the body’s kinetic energy

energy of a particle with a charge equal to that of the proton, |e|, on moving
between two points among which there exists a potential difference of one volt. It is
1 eV =le|]AV = (1.602 x 107" C) x (1 V) = 1.602 x 10~ J. Multiples of this
unit which are used are the keV (10* eV), the MeV (10° eV), the GeV (10° eV) or
even the TeV (10'2 eV).

Given that the magnitude moc? has the dimensions of energy and, for relativistic
particles, is measured in MeV or GeV, it is customary to use MeV/c? and GeV/c? as
units of mass. So, if we find, for example, the numerical result mc? = X MeV, we
express the mass as m = X MeV/c?.

Similarly, for momentum, if we evaluate the quantity pc, which has the
dimensions of energy, and we find the numerical result pc = X MeV, we express
the momentum as p = X MeV/c.

Inversely, a body with mass m = X MeV/c? has mc?> = X MeV. A body with
momentum p = X MeV/c has pc = X MeV.

The advantage in the use of these units is that we have simple numbers for the
energy, the mass and the momentum of relativistic particles and the numerical values
of these quantities for a certain particle are of the same order of magnitude. For
example, for a very energetic particle, which moves with a speed very close to c, if its
energy is mc®> = X MeV, its momentum will be p = mv ~ mc = X MeV/c. The
particle’s mass expressed in MeV/c? has the same numerical value as its energy
expressed in MeV. For a high-energy particle, its momentum, expressed in MeV/c,
will almost have the same numerical value as well. A proton with a total energy of 10
GeV, has a relativistic mass of 10 GeV/c?, a Lorentz factor of about 10, which
corresponds to a reduced speed of f = 0.995, and a momentum p for which it is
pc = muc = mPc* = 0.995mc? = 9.95 GeV. It is, therefore, p = 9.95 GeV/c ~
10 GeV/e.
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In the Theory of Relativity, especially the General, a system of units is fre-
quently used which takes the speed of light in vacuum as equal to unity, ¢ = 1. This
makes the symbol ¢ ‘disappear’ from all equations, leading (according to some) to a
simplification. This system will not be used in this book.

6.4 Classical Approximations

The relativistic equations must reduce to the classical ones for ¢ — oo or, equiv-

alently, for f — 0 and y — 1. The first approximations to the relativistic cases are
2

found for y = \/l_lvﬁ ~ 1+ 5% In this way, the kinetic energy is approximately
equal to
2 107 1
K=—¢ moc? = moc*(y — 1) = —D—moc2 = —mpv?, (6.33)

2 c? 2

V1 —=v2/c?

the kinetic energy according to classical Mechanics. The total energy is, for a free
body,

10v? 1
E = mc? = ymoc® ~ (1 + Ez—2> moc® = moc® + Emovz, (6.34)
1.e. approximately equal to the rest energy of the body plus its classical kinetic
energy.
The momentum of a body is [Eq. (6.11)]

o mv 1v? -
P = mv = \/ﬁ ~ m()l)(l + Ec—2> or p = myv, (635)

to the approximation involving only powers lower than the second in the ratio v/c.
It must be stressed that it is wrong to use these relations as exact in relativistic
Mechanics!

Example 6.1 Speeds of Electrons and Protons From Modern Accelerators

The energy to which electrons are accelerated by modern synchrotrons has
exceeded the value of 25 GeV, while protons are accelerated to 7 TeV at CERN,
with the accelerator LHC. What are the speeds of the particles at these energies?

The rest energies of the electron and the proton are, respectively, mgoc> =
0.511 MeV and myc? = 938 MeV. At energies as high as the ones given, the
Lorentz factor is so large that the kinetic energy may be taken as equal to the total.
It is, therefore, K = moc?(y — 1) ~ ymoc? and thus y ~ K /moc?, from which we

have = /1 —1/32 ~ 1 —1/29% = 1 — (myc?)* /2K>.
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For an electron with K. = 25 GeV = 2.5 x 100 eV, it is

Yo ~ Ko /mepc® = 2.5 x 101°/0.511 x 10° = 49 000.

We see that the approximation we made is justified. The reduced speed of the
electron is

fem1—1/292=1-2.1x10"""=0.999 999 999 8.
For a proton with K, =7 TeV =7 x 10'? eV, it is
~ 2 12 9 __
p & Kp/mpoc™ =7 x 1077/0.938 x 10° = 7560.

We see that the approximation we made is, here, also justified. The reduced speed
of the proton is

By~ 1—1/2y =1—87x 107" =0.999 999 991 3.

Example 6.2 Kinetic Energy in One-Dimensional Motion

Show that the kinetic energy of a body moving on a straight line is given by

K = mc* — moc?.

It is
v 1] )] d 1)) d
K:/ F-ds:/ Fdx:/ —(mu)dx:/ d(mu)—x:
v=0 v=0 v=0 dt v=0 dt
= / (mdv + vdm)v = / (mvdv + v*dm)
v=0 v=0
From m = o it follows that m?c? — m?v? = moc?.

V1—=02/c?
Taking  differentials, we find  2mc?dm — m*2vdv — v*2mdm =0  or
mudv + v*dm = c>dm. Substituting in K,

K/ (muvdv + v*dm) = / ctdm = c¢*(m — my).
1

=0 m=my

Problems

6.1 What is the speed of an electron whose kinetic energy is 2 MeV? What is the
ratio of its relativistic mass to its rest mass? The rest mass of the electron is
my = 0.511 MeV/c?. Ans.: v = 0.98¢, m/my =5

6.2 The extremely rare event of the indirect observation, in cosmic radiation, of a
particle with an energy of the order of 10" eV (16 J!) occurred a few years ago [see
J. Linsey, Phys. Rev. Lett. 10, 146 (1963)]. Assuming the particle was a proton,
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which has a rest energy of 1 GeV, approximately, evaluate its speed relative to the

Earth. How much time would this proton need, in its own frame of reference, in

order to cross our galaxy, whose diameter is 10° light years? What is the diameter

of the Galaxy as seen by the proton? Ans.: v =0.999 999 999 999 999 999

99995 ¢ =c — 1.5 x 107 m/s, 32 s, 10'° m approx.

6.3 The kinetic energy and the momentum of a particle were measured and found

equal to 250 MeV and 368 MeV /c, respectively. Find the rest mass of the particle

in MeV /c?. Ans.: 270 MeV/c?

6.4 At what value of the speed of a particle is its kinetic energy equal to (a) its rest

energy and (b) 10 times its rest energy? Ans.: (a) 0.866¢, (b) 0.996¢

6.5 An electron with an energy of 100 MeV moves along a tube which is 5 m long.

What is the length of the tube in the frame of reference of the electron? The

rest energy of the electron is Ey = moc® = 0.511 MeV, where my is its rest mass.

Ans.: 26 mm

6.6 A beam of identical particles with the same speed is produced by an accelerator.

The particles of the beam travel, inside a tube, its full length of / = 2400 m in a

time Ar = 10 ps, as measured by an observer in the laboratory frame of reference.

(a) Find f and y for the particles and the duration A7 of the trip as measured in
their own frame of reference. Ans.: f =4/5,9y=5/3, A{ =6 us

(b) If the particles are unstable, with a mean lifetime of = 107° s, what pro-
portion of the particles is statistically expected to reach the end of the tube?
(Use: €* ~ 20). Ans.: 1/400

(c) If the rest energy of each particle is myc> = 3 GeV, find their kinetic energy.
Ans.: K =2 GeV

(d) Determine the quantity pc for a particle of the beam, where p is its momentum,
and express p in units of GeV/c. Ans.: p =4 GeV/c

6.7 Two particles, A and B, each having a rest mass of my = 1 GeV/c?, move, in

the frame of reference of an accelerator, on the x-axis and in opposite directions,

approaching each other. In this frame, particle A moves with a velocity of va, =

—0.6 ¢ and particle B with a velocity of vg, = 0.6 c. In the frame of reference of

particle A,

(a) what is the speed of particle B? Ans.: vy, = 0.88¢

(b) what is the energy (in GeV) and the momentum (in GeV/c) of particle B?
Ans.: Eg =2.11 GeV, p, = 1.86 GeV/c

6.8 A beam of ™ particles, each with an energy of 1 GeV, has a total flow rate of

10° particles/s at the start of a trip that has a length of 10 m in the laboratory frame

of reference. What is the flow rate of particles at the end of the trip? n™ has a

rest mass of m; = 140 MeV /c? and a mean lifetime 7, = 2.56 X 1078 s.

Ans.: 0.83 x 106" /s
6.9 Show that, for a body of rest mass mg, which moves with a speed v and has

. ... pv 1
momentum p and kinetic energy K, itis — =1+ ————.
P & K 1 + K /moc?
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6.5 Particles with Zero Rest Mass

There exist in nature particles with zero rest mass. The better known of these is the
photon, the carrier of the electromagnetic field. The graviton, the carrier of the
gravitational field also has zero rest mass. The neutrino possibly has zero rest mass,
although at present we can only set an upper limit to it, which is 0.3 eV/c?. Strictly
speaking, that is the situation with the other particles as well. The upper limit for the
rest mass of the photon is known today, from measurements of Luo [1] and his
co-workers, to be 1.2 x 107* kg or 7 x 1072 eV/c?.

If we put my = 0 in the relativistic energy relations, we have for the energy, from
Eq. (6.30)

E = pc. (6.36)
Inversely, the momentum of a particle with zero rest mass which has an energy E is

p=E/c. (6.37)

E
Since in general it is p = — v [Eq. (6.32)], substituting in Eq. (6.37), we find that
c

my C2

N
in which case it follows that v — ¢. This important result tells us that all particles
having zero rest mass move with the maximum possible speed, which is the speed of
light in vacuum, c.

Also valid for the photon are the relations between its energy, its frequency f and
its wavelength 4,

v = c. The same result is derived by letting my — 0 in the equation E =

E=hf =— (6.38)

where £ is Planck’s constant (h = 6.626 x 1073* J - s = 4.136 x 107 %eV -5). It
follows that the momentum of a photon is also given by

E W h

) 6.39
c c y) ( )

4

We have to be careful in the use of this expression, since, given that the energy of
the photon is always positive, Eq. (6.39) only gives the magnitude of the
momentum and not its algebraic value, which may, in some cases, be negative.

Problems

6.10 What is the mass mg which corresponds to the energy Ey of a photon of
wavelength 500 nm? Ans.: mg = 4.42 x 107%° kg

6.11 The wavelength of the photons from a laser is 633 nm. What is the momentum
of one such photon? Ans.: p = 1.96 eV/c
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6.6 The Conservation of Momentum and of Energy

Momentum was defined in such a manner so that, in an interaction of particles, both
the mass and the momentum are conserved. Given that the total energy of a free
body, not acted on by external forces, is equal to E = mc?, the fact that in an
interaction of n particles the conservation of relativistic mass applies,

n
Z m; = const. (6.40)
i=1
means that the energy is also conserved:
n
ZEi = const. (6.41)
i=1
This law is used, together with the law of conservation of momentum
n
Zpi = const. (6.42)
i=1

in the solution of problems in which particles interact in any way.
For n particles, the components of the total momentum and the energy are
defined as

n n n n
Ptot,x = Zpix Ptot,y = Zpiy Ptot,z = Zpiz Etot = ZEi (643)
i=1 i=1 i=1 i=1

for frame S, with similar expressions for frame S'.

If, in frame S, during the interaction of n particles, the momentum and the energy
are conserved, then, for the total values of the components of momentum and of
energy, the following relations are true:

(P tOt:x)initially: (P tOt»x)finally (P t0t7y>initially: (P tOtv)’)ﬁnally (P tot:Z)initiauy: (P tOth)ﬁnally

(Etot)initiany: (Etot)ﬁnauy
(6.44)

The conservation of these quantities is valid in general, in every physical process.
The subject will be further discussed in the next section.

Example 6.3 The Photon Rocket

The use of photons in the propulsion of rockets has been proposed. While for
chemical fuels there is a limit in the speed of ejection of mass of the order of 10
km/s, for photons this speed is 30 000 times greater. For this reason, the emission of
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photons by the rocket, with their high speed, was considered that it would give the
rocket a greater speed per unit mass ejected. Find the speed attained by such a
rocket, as a function of the fraction x of its mass that has been ejected as photons.

All photons Rocket

* momentum P,
energy £,
Let the initial rest mass of the rocket be M, and, at some time, a fraction x of this
has been emitted as photons. All the photons are considered to be emitted in the
same direction. The emitted photons carry, in total, an energy Ey and momentum
Py = Ey/c, as measured by an observer on the Earth. If at that moment the rocket is
moving with a speed equal to v and has a relativistic mass M(v) = (1 — k)Myy,

where y = 1 / \/1 —v?/c?, the laws of conservation give:
Conservation of energy: Eyo = Moc? = M(v)c® + Ey = (1 — k)Moc*y + Eq
Conservation of momentum: Py = 0 = M(v)v — Eg/c = (1 — k)Moyv — Ey /¢
Eliminating Ey, between these two relations, it follows that

1+p

Moc? = (1 = )Moc?y(1+ f)and (1 — w)p(1+ ) =1, (1 —x) -5 L,
1— 1—(1—x)?
Ll = (1 — x)*, from which we find f = (—K)z and
1+p 1+ (1 —k)
= ! 1 —xk+ !
73 1—x)
Some numerical values are:
0.5 0.9 0.95 0.99 0.995 0.999
1.16 2.94 3.20 7.09 10 224
0.42 0.77 0.84 0.93 0.95 0.98

We see that, in order to achieve a speed of 0.995¢, which corresponds to y = 10, a
proportion of 95 % of the rocket’s total mass must be emitted as photons. The
useful load is, therefore, only 5 % of the spaceship. Of course, if we wish to
decelerate the spaceship in order to stop it, then accelerate it towards its starting
point and finally decelerate it to a halt at its starting point, the useful load would be

only a fraction equal to (1 — K)4, which has a value smaller than 10~ for maximum
y equal to 10. This makes the photon rockets of doubtful usefulness, without the
situation being very much better for chemical fuels of course. The problem is
examined in greater detail in Sect. 7.6.1.



