4.1 Newtonian theory

Before discussing relativistic mechanics, we shall review some basic ideas of
Newtonian theory. We have met Newton’s first law in § 2.4, and it states that
a body not acted upon by a force moves in a straight line with uniform
velocity. The second law describes what happens if an object changes its
velocity. In this case, something is causing it to change its velocity and this
something is called a force. For the moment, let us think of a force as
something tangible like a push or a pull. Now, we know from experience that
it is more difficult to push a more massive body and get it moving than it is to
push a less massive body. This resistance of a body to motion, or rather
change in motion, is called its inertia. To every body, we can ascribe, at least
at one particular time, a number measuring its inertia, which (again for the
moment) we shall call its mass m. If a body is moving with velocity », we
define its linear momentum p to be the product of its mass and velocity. Then
Newton’s second law (N2) states that the force acting on a body is equal to
the rate of change of linear momentum. The third law (N3) is less general and
talks about a restricted class of forces called internal forces, namely, forces
acting on a body due to the influence of other bodies in a system, The third
law states that the force acting on a body due to the influence of the other
bodies, the so-called action, is equal and opposite to the force acting on these
other bodies due to the influence of the first body, the so-called reaction. We
state the two laws below.

Then, for a body of mass m with a force F acting on it, Newton’s second law
states




If, in particular, the mass is a constant, then

do
F=m T ma 4.2)
where q is the acceleration.

Now, strictly speaking, in Newtonian theory, all observable quantities
should be defined in terms of their measurement. We have seen how an
observer equipped with a frame of reference, ruler, and clock can map the
events of the universe, and hence measure such quantities as position,
velocity, and acceleration. However, Newton’s laws introduce the new con-
cepts of force and mass, and so we should give a prescription for their
measurement. Unfortunately, any experiment designed to measure these
quantities involves Newton’s laws themselves in its interpretation. Thus,
Newtonian mechanics has the rather unexpected property that the opera-
tional definitions of force and mass which are required to make the laws
physically significant are actually contained in the laws themselves.

To make this more precise, let us discuss how we might use the laws to
measure the mass of a body. We consider two bodies isolated from all other
influences other than the force acting on one due to the influence of the other
and vice versa (Fig. 4.1). Since the masses are assumed to be constant, we
have, by Newton’s second law in the form (4.2),

[

F1 =m1a1 and Fz =m2a2-

In addition, by Newton’s third law, F, = —F,. Hence, we have

Therefore, if we take one standard body and define it to have unit mass, then
we can find the mass of the other body, by using (4.3). We can keep doing this
with any other body and in this way we can calibrate masses. In fact, this
method is commonly used for comparing the masses of elementary particles.
Of course, in practice, we cannot remove all other influences, but it may be
possible to keep them almost constant and so neglect them.

We have described how to use Newton’s laws to measure mass. How do we
measure force? One approach is simply to use Newton’s second law, work
out ma for a body and then read off from the law the force acting on m. This is
consistent, although rather circular, especially since a force has independent
properties of its own. For example, Newton has provided us with a way for
working out the force in the case of gravitation in his universal law of
gravitation (UG).

If we denote the constant of proportionality by G (with value 6.67 x 10~ in
m.k.s. units), the so-called Newtonian constant, then the law is (see Fig. 4.2)
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Fig. 4.1 Measuring mass by mutually
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Fig. 4.2 Newton’s universal law of
gravitation.
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where a hat denotes a unit vector. There are other force laws which can be
stated separately. Again, another independent property which holds for
certain forces is contained in Newton’s third law. The standard approach to
defining force is to consider it as being fundamental, in which case force laws
can be stated separately or they can be worked out from other considerations.
We postpone a more detailed critique of Newton’s laws until Part C of the
book.

Special relativity is concerned with the behaviour of material bodies and
light rays in the absence of gravitation. So we shall also postpone a detailed
consideration of gravitation until we discuss general relativity in Part C of the
book. However, since we have stated Newton’s universal laws of gravitation
in (4.4), we should, for completeness, include a statement of Newtonjan
gravitation for a distribution of matter. A distribution of matter of mass
density p = p(x, y, z, t) gives rise to a gravitational potential ¢ which satisfies
Poisson’s equation !

at points inside the distribution, where the Laplacian operator V2 is given in
Cartesian coordinates by
i 02 02

2 _
V= T2t oz

At points external to the distribution, this reduces to Laplace’s equation

We assume that the reader is familiar with this background to Newtonian
theory.

4.2 Isolated systems of particles in
Newtonian mechanics

In this section, we shall, for completeness, derive the conservation of linear
momentum in Newtonian mechanics for a system of n particles. Let the ith
particle have constant mass m; and position vector r; relative to some
arbitrary origin. Then the ith particle possesses linear momentum p, defined
by p, = m;r;, where the dot denotes differentiation with respect to time ¢. If F;
is the total force on m;, then, by Newton’s second law, we have

F,=p;=mp,. 4.7)

The total force F, on the ith particle can be divided into an external force F{*
due to any external fields present and to the resultant of the internal forces.
We write

Fi = Fien + jZl Fij’

where F; is the force or the ith particle due to the jth particle and where, for



convenience, we define F;; = 0. If we sum over i in (4.7), we find
dpi n n
Fext F“.

dtiz pi= y dt 12'1 : +i,jz=1 Y
Using Newton’s third law, namely, F,; = —F;, then the last term is zero and
we obtain P = F**', where P = Y. i—, P is termed the total linear momentum
of the system and F*** =} 7_ F{* is the total external force on the system.
If, in particular, the system of particles is isolated, then

F*"=0 = P=c¢

where ¢ is a constant vector. This leads to the law of the conservation of
linear momentum of the system, namely,

4.3 Relativistic mass

The transition from Newtonian to relativistic mechanics is not, in fact,
completely straightforward, because it involves at some point or another
the introduction of ad hoc assumptions about the behaviour of particles in
relativistic situations. We shall adopt the approach of trying to keep as close
to the non-relativistic definition of energy and momentum as we can. This
leads to results which in the end must be confronted with experiment. The
ultimate justification of the formulae we shall derive resides in the fact that
they have been repeatedly confirmed in numerous laboratory experiments in
particle physics. We shall only derive them in a simple case and state that the
arguments can be extended to a more general situation.

It would seem plausible that, since length and time measurements are
dependent on the observer, then mass should also be an observer-dependent
quantity. We thus assume that a particle which is moving with a velocity
relative to an inertial observer has a mass, which we shall term its relativistic
mass, which is some function of #, that is,

m = m(u), 4.9)

where the problem is to find the explicit dependence of m on u. We restrict
attention to motion along a straight line and consider the special case of two
equal particles colliding inelastically (in which case they stick together), and
look at the collision from the point of view of two inertial observers S and S’
(see Fig. 4.3). Let one of the particles be at rest in the frame S and the other
possess a velocity u before they collide. We then assume that they coalesce
and that the combined object moves with velocity U. The masses of the two
particles are respectively m(0) and m(u) by (4.9). We denote m(0) by m, and
term it the rest mass of the particle. In addition, we denote the mass of the
combined object by M (U). If we take S’ to be the centre-of-mass frame, then
it should be clear that, relative to S’, the two equal particles collide with equal
and opposite speeds, leaving the combined object with mass M, at rest. It
follows that S’ must have velocity U relative to S.

4.3 Relativistic mass | 45



46 | The elements of relativistic mechanics

Fig. 4.3 The inelastic collision in the
frames Sand S'.
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We shall assume both conservation of relativistic mass and conservation of
linear momentum and see what this leads to. In the frame §, we obtain

m(u) + mg = M(U), m(u)u+0=M(U)U,

from which we get, eliminating M(U),

m(u) = mo( ij ) ‘ (4.10)

u

The left-hand particle has a velocity U relative to S’, which in turn has a
velocity U relative to S. Hence, using the composition of velocities law, we
can compose these two velocities and the resultant velocity must be identical
with the velocity u of the left-hand particle in S. Thus, by (2.6) in non-
relativistic units,

2U

TR ENE

Solving for U in terms of u, we obtain the quadratic

22
Uz—(%)U+cz=0,

which has roots

2 2N\2 4 2 2\ %
o[ (5)-e]-<o(-2)
u u u c

In the limit u — 0, this must produée a finite result, so we must take the
negative sign (check), and, substituting in (4.10), we find finally

where

This is the basic result which relates the relativistic mass of a moving particle
to its rest mass. Note that this is the same in structure as the time dilation
formula (3.16), i.e. T = fT,, where f = (1 —v?/c?)~%, except that time



dilation involves the factor § which depends on the velocity v of the frame S’
relative to S, whereas y depends on the velocity u of the particle relative to S.
If we plot m against u, we see that relativistic mass increases without bound as
u approaches c (Fig. 4.4).

It is possible to extend the above argument to establish (4.11) in more
general situations. However, we emphasize that it is not possible to derive the
result a priori, but only with the help of extra assumptions. However it is
produced, the only real test of the validity of the result is in the experimental
arena and here it has been extensively confirmed.

4.4 Relativistic energy
Let us expand the expression for the relativistic mass, namely,
m(u) = ymg = mo(1 — u?/c?) 7%,

in the case when the velocity u is small compared with the speed of light c.
Then we get

1 7 4
m(u) = mqy + ?(%mouz) + 0(1(:_4)’ (4.13)

where the final term stands for all terms of order (u/c)* and higher. If we
multiply both sides by ¢2, then, apart from the constant mqc?, the right-hand
side is to first approximation the classical kinetic energy (k.e.), that is,

mc? = moc? + Imou® + .-+ ~ constant + kee. (4.14)

We have seen that relativistic mass contains within it the expression for
classical kinetic energy. In fact, it can be shown that the conservation of
relativistic mass leads to the conservation of kinetic energy in the Newtonian
approximation. As a simple example, consider the collision of two particles
with rest mass m, and m,, initial velocities v, and ©,, and final velocities v,
and v,, respectively (Fig. 4.5). Conservation of relativistic mass gives

mo(l — v3/c)™* + tig(1 — 93/c*)™ = mo(1 — v3/c*)7*

+ig(L — 52/c?)" %, (4.15) |

If we now assume that v,, v,, 0,, and 7, are all small compared with ¢, then
we find (exercise) that the leading terms in the expansion of (4.15) give

1 2 1.= =2 1 2 1= =2
IMoV] + 3MoV] = 3MoV3 + 3Mo 03, (4.16)

which is the usual conservation of energy equation. Thus, in this sense,
conservation of relativistic mass includes within it conservation of energy.
Now, since energy is only defined up to the addition of a constant, the result
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Fig. 4.4 Relativistic mass as a function of
velocity.

Fig. 4.5 Two colliding particles.
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(4.14) suggest that we regard the energy E of a particle as given-by

This is one of the most famous equations in physics. However, it is not just a
mathematical relationship between two different quantities, namely energy
and mass, but rather states that energy and mass are equivalent concepts.
Because of the arbitrariness in the actual value of E, a better way of stating
the relationship is to say that a change in energy is equal to a change in
relativistic mass, namely,

AE = Amc?

Using conventional units, c? is a large number and indicates that a small
change in mass is equivalent to an enormous change in energy. As is well
known, this relationship and the deep implications it carries with it for peace
and war, have been amply verified. For obvious reasons, the term myc? is
termed the rest energy of the particle. Finally, we point out that conservation
of linear momentum, using relativistic mass, leads to the usual conservation
law in the Newtonian approximation. For example (exercise), the collision
problem considered above leads to the usual conservation of linear
momentum equation for slow-moving particles:

My, + n_’loﬁl = MoV, + n_'loﬁz- (4.18)

Extending these ideas to three spatial dimensions, then a particle moving
with velocity # relative to an inertial frame S has relativistic mass m, energy E,
and linear momentum p given by

Some straightforward algebra (exercise) reveals that
(E/c)* — pz — p3y — p.= (mqc)?, (4.20)

where mgc is an invariant, since it is the same for all inertial observers. If we
compare this with the invariant (3.13), ie.

(ct)? — x2 — y? — 22 = 52,

then it suggests that the quantities (E/c, p,, p,, p,) transform under a Lorentz
transformation in the same way as the quantities (ct, x, y, z). We shall see in
Part C that the language of tensors provides a better framework for dis-
cussing transformation laws. For the moment, we shall assume that energy
and momentum transform in an identical manner and quote the results.
Thus, in a frame S’ moving in standard configuration with velocity v relative
to §, the transformation equations are (see (3.12))

The inverse transformations are obtained in the usual way, namely, by
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interchanging primes and unprimes and replacing v by —v, which gives

If, in particular, we take S’ to be the instantaneous rest frame of the
particie, then p’ = 0 and E’ = E, = myc?. Substituting in (4.22), we find

mocz

(1 —v?/c?)?
where m = mqo(1 — v?/c?)"*and p = (BvE’/c?,0,0) = (mv, 0, 0) = mv, which

are precisely the values of the energy, mass, and momentum arrived at in
(4.19) with u replaced by v.

2

E=fBE = =mc?,

4.5 Photons

At the end of the last century, there was considerable conflict between theory
and experiment in the investigation of radiation in enclosed volumes. In an
attempt to resolve the difficulties, Max Planck proposed that light and other
electromagnetic radiation consisted of individual ‘packets’ of energy, which
he called quanta. He suggested that the energy E of each quantum was to
depend on its frequency v, and proposed the simple law, called Planck’s
hypothesis,

where h is a universal constant known now as Planck’s constant. The idea of
the quantum was developed further by Einstein, especially in attempting to
explain the photoelectric effect. The effect is to do with the ejection of
electrons from a metal surface by incident light (especially ultraviolet) and is
strongly in support of Planck’s quantum hypothesis. Nowadays, the quan-
tum theory is well established and applications of it to explain properties of
molecules, atoms, and fundamental particles are at the heart of modern
physics. Theories of light now give it a dual wave—particle nature. Some
properties, such as diffraction and interference, are wavelike in nature, while
the photoelectric effect and other cases of the interaction of light and atoms
are best described on a particle basis.

The particle description of light consists in treating it as a stream of quanta
called photons. Using equation (4.19) and substituting in the speed of light,
u=c, we find

me=1y ‘m=(1-u*/c*)tm =0, (4.24)

that is, the rest mass of a photon must be zero! This is not so bizarre as it first

seems, since no inertial observer ever sees a photon at rest — its speed is

always ¢ — and so the rest mass of a photon is merely a notional quantity. If

we let 7 be a unit vector denoting the direction of travel of the photon, then
P = (Px; Py> Pz) = PR,

and equation (4.20) becomes

(E/c)? — p* = 0.
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Taking square roots (and remembering ¢ and p are positive), we find that the
energy E of a photon is related to the magnitude p of its momentum by
E=pc. (4.25)

Finally, using the energy-mass relationship E = mc?, we find that the rela-
tivistic mass of a photon is non-zero and is given by

m = p/c. (4.26)

Combining these results with Planck’s hypothesis, we obtain the following
formulae for the energy E, relativistic mass m, and linear momentum p of the
photon:

It is gratifying to discover that special relativity, which was born to reconcile
conflicts in the kinematical properties of light and matter, also includes their
mechanical properties in a single all-inclusive system.

We finish this section with an argument which shows that Planck’s
hypothesis can be derived directly within the framework of special relativity.
We have already seen in the last chapter that the radial Doppler effect for a
moving source is given by (3.27), namely

A (1+v/c %
i \l—v/c)’
where A, is the wavelength in the frame of the source and 4 is the wavelength

in the frame of the observer. We write this result, instead, in terms of
frequency, using the fundamental relationships ¢ = Av and ¢ = Agv,, to

obtain
vo _[1+v/c 3
. _(l—v/c) . (4.28)

Now, suppose that the source emits a light flash of total energy E,. Let us use
the equations (4.22) to find the energy received in the frame of the observer S.
Since, recalling Fig. 3.11, the light flash i$ travelling along the negative x-
direction of both frames, the relationship (4.25) leads to the result
p. = —E,/c, with the other primed components of momentum zero. Substi-
tuting in the first equation of (4.22), namely,

E = B(E’ + vpy),

we get
Eo(1 — v/c) 1 —v/c\?
E=B(E, — vEyjfc)= -2~ " = E :
B(Eo = vEo/c) A —v?/c) O\ 1+ v/c
or
E, 1+ v/c\*
— = ; 429
E (1 - v/c) (429)
Combining this with equation (4.28), we obtain
E _E
Vo N v

Since this relationship holds for any pair of inertial observers, it follows that
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the ratio must be a universal constant, which we call h. Thus, we have derived

Planck’s hypothesis E = hv. :

We leave our considerations of special relativity at this point and turn our
attention to the formalism of tensors. This will enable us to reformulate -
special relativity in a way which will aid our transition to general relativity,
that is, to a theory of gravitation consistent with special relativity.

Exercises

4.1 (§4.1) Discuss the possibility of using force rather than
mass as the basic quantity, taking, for example, a standard
weight at a given latitude as the unit of force. How should
one then define and measure the mass of a body?

4.2 (§4.3) Show that, in the inelastic collision considered in
§4.3, the rest mass of the combined object is greater than the
sum of the original rest masses. Where does this increase
derive from?

4.3 (§4.3) A particle of rest mass m, and speed u strikes a
stationary particle of rest mass m,. If the collision is perfectly
inelastic, then find the rest mass of the composite particle.

4.4 (§4.4) (i) Establish the transition from equation (4.15)
to (4.16).
(i) Establish the WNewtonian approximation
equation (4.18).

4.5 (§4.4) Show that (4.19) leads to (4.20). Deduce (4.21).

4.6 (54.4) Newton’s second law for a particle of relativistic
mass m is

-
—dt(mu.

Define the work done dE in moving the particle from r to
r+ dr. Show that the rate of doing work is given by

d_E _ d(mu) ‘n
dt dt
Use the definition of relativistic mass to obtain the result
dE m, du , du du
Ez(lT—z/cz)?’/_zu;i_t I:H1nt:u-a=ua—t].

Express this last result in terms of dm/d¢ and integrate to
obtain

E = mc? + constant.

4.7 (§4.4) Two particles whose rest masses are m; and m,
move along a straight line with velocities u, and u,, meas-
ured in the same direction. They collide inelastically to form
a new particle. Show that the rest mass and velocity of the

new particle are m, and u,, respectively, where

m3 =m}+ m3 +2mymyp,7,(1 — uyuy/c?),

_ Mt +myyU,

3
myy + Mmyy,

with

7= (1 —uj/c?)74, y2 =1 —uj/c?)"t.

4.8 (§4.4) A particle of rest mass m,, energy e,, and
momentum p, suffers a head on elastic collision (i.e. masses
of particles unaltered) with a stationary mass M. In the
collision, M is knocked straight forward, with energy E and
momentum P, leaving the first particle with energy e and p.
Prove that

2poM(ey + Mc?)
" 2Meg + M2c? + m3c?

and
po(mzcz _ Mzcz)

p= .
2Meg + M?c? + m2c?

What do these formulae become in the classical limit?

4.9 (§4.4) Assume that the formulae (4.19) hold for a ta-
chyon, which travels with speed v > ¢. Taking the energy to
be a measurable quantity, then deduce that the rest mass of
a tachyon is imaginary and define the real quantity u, by
my = iy,.

If the tachyon moves along the x-axis and if we assume
that the x-component of the momentum is a real positive
quantity, then deduce

v
m =-—— oliy,
vl
where a = (v2/c? — 1) %,
Plot E/myc? against v/c for both tachyons and sub-
luminal particles.

p=uoltle,  E=mc?,

4.10 (§4.5) Two light rays in the (x, y)-plane of an inertial
observer, making angles 6 and —#6, respectively, with the
positive x axis, collide at the origin. What is the velocity v of
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the inertial observer (travelling in standard configuration) e in the emission, prove that the frequency of the emitted
who sees the light rays collide head on? photon is given by

4.11 (§4.5) An atom of rest mass m, is at rest in a laborat- e R
ory and absorbs a photon of frequency v. Find the velocity v= E(l — e/2myc?).
and mass of the recoiling particle.

4.12 (§4.5) An atom at rest in a laboratory emits a photon
and recoils. If its initial mass is m, and it loses the rest energy




