g :

3.1 Standard derivation of the Lorentz
transformations

We start this chapter by deriving again the Lorentz transformations, but
this time by using a more standard approach. We shall' work in non-
relativistic units in which the speed of light is denoted by c¢. We restrict
attention to two inertial observers § and S’ in standard configuration, As
before, we shall show that the Lorentz transformations follow from the two
postulates, namely, the principle of special relativity and the constancy of the
velocity of light. '

Now, by the first postulate, if the observer S sees a free particle, that is, a
particle with no forces acting on it, travelling in a straight line with constant
velocity, then so will §'. Thus, using vector notation, it follows that under a
transformation connecting the two frames

r=rotut < r=ry+ut.

Since straight lines get mapped into straight lines, it suggests that the
transformation between the frames is linear and so we shall assume that the
transformation from S to S’ can be written in matrix form

!

!

=L : 3.1)

~

t t
X X
y Y
z z
where L is a 4 x 4 matrix of quantities which can only depend on the speed of
separation v. Using exactly the same argument as we used at the end of
§2.12, the assumption that space is isotropic leads to the transformations of y
and z being

y=y and Zz' =z (3.2)

We next use the second postulate. Let us assume that, when the origins of S
and S’ are coincident, they zero their clocks, i.e. t = t' = 0, and emit a flash of
light. Then, according to S, the light flash moves out radially from the origin
with speed c¢. The wave front of light will constitute a sphere. If we
define the quantity I by

I(t,x, y,2) = x2 + y2 4 22 — %2,

then the events comprising this sphere must satisfy I = 0. By the second
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T Ty

0 — X

Fig. 3.1 A rotation in (x, T)-space.

postulate, §' must also see the light move out in a spherical wave front with
speed ¢ and satisfy

I'=x24+y%2 472 _c2'2=0.
Thus it follows that, under a transformation connecting § and §’,
I=0 = I'=0, : (3.3)
and since the transformation is linear by (3.1), we may conclude
I=nl, (34

where n is a quantity which can only depend on v. Using the same argument
as we did in §2.12, we can reverse the role of S and S’ and so by the relativity
principle we must also have

I'=nli. (3.9
Combining the last two equations we find
n=1 = n=+1.

In the limit as v — 0, the two frames coincide and I’ - I, from which we
conciude that we must take n = 1.
Substituting n = 1 in (3.4), this becomes

X242 422 =22 = x2 4y 422 — 212,
and, using (3.2), this reduces to
#2 = Pt = = g3, (3.6)

We next introduce imaginary time coordinates T and T’ defined by

T = ict, (3.7

T =ict, (39)
in which case equation (3.6) becomes

x24+ T?=x"2+T7

In a two-dimensional (x, T)-space, the quantity x? + T represents the
distance of a point P from the origin. This will only remain invariant under a
rotation in (x, T')-space (Fig. 3.1). If we denote the angle of rotation by 8, then
a rotation is given by

x" = xcos8 + Tsin b, (39

T'= —xsinf + Tcos§. (3.10)

Now, the origin of S’ (x’ = 0), as seen by S, moves along the positive x-axis of
S with speed v and so must satisfy x = vt. Thus, we require

X=0 < x=uv < x=vl/ic,
using (3.7). Substituting this into (3.9) gives
tan 8 = iv/c, : (3.11)

from which we see that the angle 6 is imaginary as well. We can obtain an
expression for cos 6, using

1 1 1
secl (1 +tan20)F (1 —v2/c?)F"

cosf =
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If we use the conventional symbol f for this last expression, i.e.

where the symbol = here means ‘is defined to be’, then (3.9) gives
x" = cosB(x + TtanB) = B[x + ict(iv/c)] = B(x — vt).
Similarly, (3.10) gives
T =ict’ = cosf(—xtan + T) = B[ —x(iv/c) + ict],

from which we find
t' = B(t — vx/c?).

Thus, collecting the results together, we have rederived the special Lorentz
transformation or boost (in non-relativistic units):

If we put ¢ = 1, this takes the same form as we found in §2.13.

3.2 Mathematical properties of
Lorentz transformations

From the results of the last section, we find the following properties of a
special Lorentz transformation or boost.

1. Using the imaginary time coordinate T, a boost along the x-axis of
speed v is equivalent to an imaginary rotation in (x, T')-space through an
angle 6 given by tan 8 = iv/c.

2. If we consider v to be very small compared with c, for which we use the .
notation v < ¢, and neglect terms of order v?/c?, then we regain a Galilean
transformation

7

t'=t, x'=x—t, y =y z' =2z
We can obtain this result formally by taking the limit ¢ - oo in (3.12).
3. If we solve (3.12) for the unprimed coordinates, we get
t=B({t +vx'/c?), x=Bx+0vt), y=y, z=<2.

This can be obtained formally from (3.12) by interchanging primed and
unprimed coordinates and replacing v by —v. This we should expect from
physical reasons, since, if S’ moves along the positive x-axis of S with speed v,
then S moves along the negative x’-axis of S’ with speed v, or, equivalently, S
moves along the positive x’-axis of S’ with speed —u.

4. Special Lorentz transformations form a group:
(@) The identity element is given by v = 0.
(b) The inverse element is given by —v (as in 3 above).
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Fig. 3.2 A rod moving with velocity v
relative to S.

(c) The product of two boosts with velocities v and v’ is another boost with
velocity v”. Since v and v’ correspond to rotations in (x, T')-space of § and
6, where

tanf =iv/c and tan@ =iv'/c,

then their resultant is a rotation of 8” = 6 + 8', where

| tan6 + tan 8’
iw'fc=tan 8" = tan(e + 0,) = lziltazeil:n 6’

from which we find
G v+ v
1+ov'/c?

Compare this with equation (2.6) in relativistic units.
(d) Associativity is left as an exercise.

5. The square of the infinitesimal interval between infinitesimally separ-
ated events (see (2.13)),

is invariant under a Lorentz transformation.

We now turn to the key physical attributes of Lorentz transformations.
Throughout the remaining sections, we shall assume that S and §” are in
standard configuration with non-zero relative velocity v.

3.3 Length contraction

Consider a rod fixed in S’ with endpoints x’, and x}, as shown in Fig. 3.2. In
S, the ends have coordinates x, and x; (which, of course, vary in time) given
by the Lorentz transformations

Xq=Pxqa—vty),  xp=PBlxpg— vtp). (3.14)

In order to measure the lengths of the rod acéording to S, we have to find the
x-coordinates of the end points at the same time according to S. If we denote
the rest length, namely, the length in S’, by

lo=x'y — x5
and the length in S at time t = t, =tz by

l=xB_xA’




then, subtracting the formulaé in (3.14), we find the result

Since
lvl<c <= f>1 <« I<l,

the result shows that the length of a body in the direction of its motion with
uniform velocity v is reduced by a factor (1 — v%/c2)%. This phenomenon is
called length contraction. Clearly, the body will have greatest length in its
rest frame, in which case it is called the rest length or proper length. Note also
that the length approaches zero as the velocity approaches the velocity of
light.

In an attempt to explain the null result of the Michelson-Morley experi-
ment, Fitzgerald had suggested the apparent shortening of a body in motion
relative to the ether. This is rather different from the length contraction of
special relativity, which is not to be regarded as illusory but is a very real
effect. It is closely connected with the relativity of simultaneity and indeed can
be deduced as a direct consequence of it. Unlike the Fitzgerald contraction,
the effect is relative, i.e. a rod fixed in S appears contracted in S’. Note also
that there are no contraction effects in directions transverse to the direction of
motion.

3.4 Time dilation

Let a clock fixed at x' = x’; in §' record two successive events separated by an
interval of time T, (Fig. 3.3). The successive events in S’ are (x/,, t;) and
(x4, t1 + Ty), say. Using the Lorentz transformation, we have in §

t; = Bty +vxly/c?),  t, = P(ty + Tp + vxy/c?).

On subtracting, we find the time interval in S defined by

is given by

Thus, moving clocks go slow by a factor (1 — v2/¢?)~%. This phenomenon is
called time dilation. The fastest rate of a clock is in its rest frame and is called
its proper rate. Again, the effect has a reciprocal nature.

Let us now consider an accelerated clock. We define an ideal clock to be
one unaffected by its acceleration; in other words, its instantaneous rate
depends only on its instantaneous speed v, in accordance with the above
phenomenon of time dilation. This is often referred to as the clock hypoth-
esis. The time recorded by an ideal clock is called the proper time z (Fig. 3.4).
Thus, the proper time of an ideal clock between t, and ¢, is given by
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S Ny
World-line
of clock

Fig. 3.3 Successive events recorded by a
clock fixed in S’

World-line

f of clock

Fig. 3.4 Proper time recorded by an
accelerated clock.
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The general question of what constitutes a clock or an ideal clock is a non-
trivial one. However, an experiment has been performed where an atomic
clock was flown round the world and then compared with an identical clock
left back on the ground. The travelling clock was found on return to be
running slow by precisely the amount predicted by time dilation. Another
instance occurs in the study of cosmic rays. Certain mesons reaching us from
the top of the Earth’s atmosphere are so short-lived that, even had they been
travelling at the speed of light, their travel time in the absence of time dilation
would exceed their known proper lifetimes by factors of the order of 10.
However, these particles are in fact detected at the Earth’s surface because
their very high velocities keep them young, as it were. Of course, whether or
not time dilation affects the human clock, that is, biological ageing, is still an
open question. But the fact that we are ultimately made up of atoms, which
do appear to suffer time dilation, would suggest that there is no reason by
which we should be an exception.

3.5 Transformation of velocities
Consider a particle in motion (Fig. 3.5) with its Cartesian components of
velocity being

dx dy dz) -

(ula U, u3) = (53 a’ a
and

sy fdx dy dZ'y L
(ulau2au3)_ (dt,s dt,’ dtl) lIlS.

Taking differentials of a Lorentz transformation

t' =Bt —vx/c?), X =Bx—-vt), Y=y =z

we get
dt’ = p(dt — vdx/c?), dx'=fdx—wvdt), dy'=dy, dz'=dz
and hence
. _dx' fdx —vdt) dt U= (.18)
17 dr Bt —vdx/c?) il ( dx) 1 —uyvfc?’ '
1-— —5 vV—
c dt
dy
wy= Y 9 & Y (19

ar = Bdi —odx?) ﬁ[ 1 ( d—)} B -yl

dt
A/"
!
|

—>
S s Path of particle

______________________ _.-——.--—»
Fig. 3.5 Particle in motion relative to S /
and §' -
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%
, _dz dz _ dt _ Uy
Uy = at_f - ﬁ(dt _ de/CZ) - ﬁ[l _ L(U(E)] - B(l _ ulv/cz)- (320)
c2\ ' dt

Notice that the velocity components u, and u, transverse to the direction of
motion of the frame S’ are affected by the transformation. This is due to the
time difference in the two frames. To obtain the inverse transformations,
simply interchange primes and unprimes and replace v by —v.

3.6 Relationship between space-time
diagrams of inertial observers

We now show how to relate the space-time diagrams of S and S’ (see Fig. 3.6).
We start by taking ct and x as the coordinate axes of §, so that a light ray has
slope 1 (as in relativistic units). Then, to draw the ct’- and x’-axes of ', we
note from the Lorentz transformation equations (3.12)

ct'=0 < ct=(/c)x,

that is, the x’-axis, ct’ = 0, is the straight line ¢t = (v/c)x with slope v/c < 1.
Similarly, ‘
x=0 < ct=(/v)x,

that is, the ct’-axis, x" = 0, is the straight line ct = (c/v)x with slope c/v > 1.
The lines parallel to O(ct’) are the world-lines of fixed points in §’. The lines
parallel to Ox’ are the lines connecting points at a fixed time according to S’
and are called lines of simultaneity in S’. The coordinates of a general event
P are (ct, x) = (OR, 0Q) relative to S and (ct’, x') = (OV, OU) relative to §’.
However, the diagram is somewhat misleading because the length scales
along the axes are not the same. To relate them, we draw in the hyperbolae

x2 _ CZtZ - le _ CZtJZ =+ 1,

as shown in Fig. 3.7. Then, if we first consider the positive sign, setting ct’ = 0,
we get x' = + 1. It follows that 04 is a unit distance on Ox’. Similarly, taking
the negative sign and setting x’ = 0 we get c¢t’ = +1 and so OB is the unit
measure on Oct’. Then the coordinates of P in the frame S’ are given by

(Ct’x’)— .Q_IJ_Q_K
>/ 7\ 04’ OB/’

Note the following properties from Fig. 3.7.

1. A boost can be thought of as a rotation through an imaginary angle in the
(x, T)-plane, where T is imaginary time. We have seen that this is equival-
ent, in the real (x, ct)-plane, to a skewing of the coordinate axes inwards
through the same angle. (This was not appreciated by some past oppo-
nents of special relativity, who gave some erroneous counter-
arguments based on the mistaken idea that a boost could be represented
by a real rotation in the (x, ct)-plane.)

2. The hyperbolae are the same for all frames and so we can draw in any
number of frames in the same diagram and use the hyperbolae to calibrate
them,

o) UQ

Fig. 3.6 The world-lines in S of the fixed
points and simultaneity lines of §'.

Light ray

ct=1

x=1

Fig. 3.7 Length scales in Sand S".
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3. The length contraction and time dilation effects can be read off directly
from the diagram. For example, the world-lines of the endpoints of a unit
rod 04 in §’, namely x’ = 0 and x’ = 1, cut Ox in less than unit distance.
Similarly world-lines x = 0 and x = 1 in S cut Ox’ inside OE, from which
the reciprocal nature of length contraction is evident.

4. Even A has coordinates (ct’, x') = (0, 1) relative to S’, and hence by a
Lorentz transformation coordinates (ct, x) = (fv/c, B) relative to S. The
quantity OA defined by

04 = (c?t? + x2)* = B(1 + v¥/c?)*

is a measure of the calibration factor
1 + v2/c?\*
1—v%/c?)’
3.7 Acceleration in special relativity

We start with the inverse transformation of (3.18), namely,
= uy +v
T+ /e’

from which we find the differential

du), uy +v v
_ _ L
iy 1 + uyv/c? ((1 + u) v/cz)z)c2 “1

1 duy
B (L + ety
Similarly, from the inverse Lorentz transformation

t =Bt + x'v/c?),
we find the differential

dt = B(dt’ + dx'v/_c,f}_} = B(l + uyv/c?)dr.

Combining these results, we find that the x-component of the acceleration
transforms according to

du, 1 du

At B+ woc?) dr (3:21)
Similarly, we find
du, _ 1 duy vu, duj (3.22)
dt ~ B0 +uw/c?)? At 2PE(1 + wyv/c?)® dr )
du, 1 du; vy ilfll (3.23)

dt B2l + uyv/c?)® dt'  c2B3(1 + ufv/c?)® dt
The inverse transformations can be found in the usual way.

It follows from the transformation formulae that acceleration is not an
invariant in special relativity. However, it is clear from the formulae that
acceleration is an absolute quantity, that is, all observers agree whether a
body is accelerating or not. Put another way, if the acceleration is zero in one
frame, then it is necessarily zero in any other frame. We shall see that this is



Table 3.1

Theory Position Velocity Time Acceleration

Newtonian Relative Relative Absolute Absolute

Spema! . Relative Relative Relative Absolute
relativity

Ge"e”‘?' , Relative Relative Relative Relative
relativity

no longer the case in general relativity. We summarize the situation in
Table 3.1, which indicates why the subject matter of the book is ‘relativity’
theory.

3.8 Uniform acceleration

The Newtonian definition of a particle moving under uniform acceleration is

2 tant
g, — constant.
This turns out to be inappropriate in special relativity since it would imply
that u —- oo as t — oo, which we know is impossible. We therefore adopt a
different definition. Acceleration is said to be uniform in special relativity if it
has the same value in any co-moving frame, that is, at each instant, the
acceleration in an inertial frame travelling with the same velocity as the
particle has the same value. This is analogous to the idea in Newtonian
theory of motion under a constant force. For example, a spaceship whose
motor is set at a constant emission rate would be uniformly accelerated in this
sense. Taking the velocity of the particle to be u = u(t) relative to an inertial
frame S, then at any instant in a co-moving frame §’, it follows that » = u, the
velocity relative to S’ is zero, i.e. u’' = 0, and the acceleration is a constant, a
say, i.e. du'/dt’ = a. Using (3.21), we find

du 1 _{4 ﬁg
dt_ﬁ3a_ -=) e

We can solve this differential equation by separating the variables
d
(1 —u?fc?)y
and integrating both sides. Assuming that the particle starts from rest at
t=t,, we find
Y =a(t —ty)
(1 — u?/c?)t 9z

Solving for u, we get
dx _ a(t — tp)
dt [l + a?(t — ty)*/c?]?

Next, integrating with respect to t, and setting x = x, at t = ¢, produces

U=

Cr .2 2 294 c?
(X—xo)=a[c + a*(t — to)*] -

3.8 Uniform acceleration | 37
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horizons

Fig. 3.8 Hyperbolic motions.

Uniform deceleration
A
A— Uniform reversal

of direction

Uniform velocity

Uniform acceleration away from
the Earth

> X

Fig. 3.9 The twin paradox.

» X

Fig. 3.10 Simultaneity lines of A on the
outward and return journeys.

This can be rewritten in the form

(x — X0 + ¢2/a)?  (ct —cto)®

(c*/a)? (a7
which is a hyperbola in (x, ct)-space. If, in particular, we take xo — c*/a = t, =0,
then we obtain a family of hyperbolae for different values of a (Fig. 3.8). These
world-lines are known as hyperbolic motions and, as we shall see in
Chapter 23, they have significance in cosmology. It can be shown that the
radar distance between the world-lines is a constant. Moreover, consider the
regions I and II bounded by the light rays passing through O, and a system of
particles undergoing hyperbolic motions as shown in Fig 3.8 (in some
cosmological models, the particles would be galaxies). Then, remembering
that light rays emanating from any point in the diagram do so at 45°, no
particle in region I can communicate with another particle in region II, and
vice versa. The light rays are called event horizons and act as barriers beyond
which no knowledge can ever be gained. We shall see that event horizons will
play an important role later in this book.

(3.24)

3.9 The twin paradox

This is a form of the clock paradox which has caused the most controversy —
a controversy which raged on and off for over 50 years. The paradox concerns
two twins whom we shall call 4 and A. The twin A4 takes off in a spaceship for
a return trip to some distant star. The assumption is that A4 is uniformly
accelerated to some given velocity which is retained until the star is reached,
whereupon the motion is uniformly reversed, as shown in Fig. 3.9. According
to 4, A’s clock records slowly on the outward and return journeys and so, on
return, 4 will be younger than A. If the periods of acceleration are negligible
compared with the periods of uniform velocity, then could not A4 reverse the
argument and conclude that it is 4 who should appear to be the younger?
This is the basis of the paradox.

The resolution rests on the fact that the accelerations, however brief, have
immediate and finite effects on 4 but not on 4 who remains inertial
throughout. One striking way of seeing this effect is to draw in the simul-
taneity lines of A for the periods of uniform velocity, as in Fig. 3.10. Clearly,
the period of uniform reversal has a marked effect on the simultaneity lines.
Another way of looking at it is to see the effect that the periods of acceleration
have on shortening the length of the journey as viewed by A. Let us be
specific: we assume that the periods of acceleration are T, T, and T3, and
that, after the period T, 4 has attained a speed v = ,/3¢/2. Then, from A’s
viewpoint, during the period T,, 4 finds that more than half the outward
journey has been accomplished, in that 4 has transferred to a frame in which
the distance between the Earth and the star is more than halved by length
contraction. Thus, A accomplishes the outward trip in about half the time
which A ascribes to it, and the same applies to the return trip. In fact, we
could use the machinery of previous sections to calculate the time elapsed in
both the periods of uniform acceleration and uniform velocity, and we would
again reach the conclusion that on return 4 will be younger than 4. As we
have said before, this points out the fact that in special relativity time is a
route-dependent quantity. The fact that in Fig. 3.9 A’s world-line is longer



than A’s, and yet takes less time to travel, is connected with the Minkow-
skian metric
ds? = ¢2dt? — dx? — dy? — dz?

and the negative signs which appear in it compared with the positive signs
occurring in the usual three-dimensional Euclidean metric.

3.10 The Doppler effect

All kinds of waves appear lengthened when the source recedes from the
observer: sounds are deepened, light is reddened. Exactly the opposite occurs
when the source, instead, approaches the observer. We first of all calculate the
classical Doppler effect.

Consider a source of light emitting radiation whose wavelength in its rest
frame is A,. Consider an observer S relative to whose frame the source is in
motion with radial velocity ,. Then, if two successive pulses are emitted at
time differing by dt’ as measured by S’, the distance these pulses have to travel
will differ by an amount «,d¢’ (see Fig. 3.11). Since the puises travel with speed
¢, it follows that they arrive at S with a time difference

At =dt’ +u.dt'/c,
giving q
At/dt’ =1+ u /c.
Now, using the fundamental relationship between wavelength and velocity,

set
A=cAt and Ai,=cdt’

We then obtain the classical Doppler formula

Let us now consider the special relativistic formula. Because of time
dilation (see Fig. 3.3), the time interval between successive pulses according
to § 1s fdt’ (Fig. 3.12). Hence, by the same argument, the pulses arrive at S
with a time difference

At = Bdt’' + u Bdt'/c

L O —— Foa S S

O VNN BN
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Fig. 3.11 The Doppler effect:
(a) first pulse; (b) second pulse.
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S s

At v

Bdt d

Fig. 3.12 The special relativistic Doppler
shift,

KT

BT T

Fig. 3.13 The radial Doppler shift k.

and so this time we find that the special relativistic Doppler formula is

A 1+u/c

To 0= oHe 29

If the velocity of the source is purely radial, then u, = v and (3.26) reduces to

This is the radial Doppler shift, and, if we set ¢ = 1, we obtain (2.4), which is
the formula for the k-factor. Combining Figs. 2.7 and 3.12, the radial Doppler
shift is illustrated in Fig. 3.13, where dt’ is replaced by 7. From equa-
tion (3.26), we see that there is also a change in wavelength, even when the
radial velocity of the source is zero. For example, if the source is movingin a
circle about the origin of S with speed v (as measured by an instantaneous co-
moving frame), then the transverse Doppler shift is given by

This is a purely relativistic effect due to the time dilation of the moving
source. Experiments with revolving apparatus using the so-called ‘Md&ssbauer
effect’ have directly confirmed the transverse Doppler shift in full agreement
with the relativistic formula, thus providing another striking verification of
the phenomenon of time dilation.

Exercises

3.1(§3.1) Sand S’ are in standard configuration with v = ac
(0 <a < 1). If a rod at rest in S’ makes an angle of 45° with
Ox in § and 30° with O’x in §’, then find a.

3.2(§3.1) Note from the previous question that perpendicu-
lar lines in one frame need not be perpendicular in another
frame. This shows that there is no obvious meaning to the
phrase ‘two inertial frames are parallel’, unless their relative
velocity is along a common axis, because the axes of either
frame need not appear rectangular in the other. Verify that
the Lorentz transformation between frames in standard
configuration with relative velocity v = (r,0,0) may be
written in vector form

. v r , vr
F=r+ 2 (B—1)— pt])o, =4 t—c2 ,

where r = (x, y, z). The formulae are said to comprise the
‘Lorentz transformation without relative rotation’. Justify

this name by showing that the formulae remain valid when
the frames are not in standard configuration, but are parallel
in the sense that the same rotation must be applied to each
frame to bring the two into standard configuration (in which
case v is the velocity of S’ relative to S, but » = (v, 0, 0) no
longer applies).

3.3 (§3.1) Prove that the first two equations of the special
Lorentz transformation can be written in the form
ct’' = — xsinh ¢ + ctcosh ¢, x" = xcosh ¢ — ctsinh ¢,

where the rapidity ¢ is defined by ¢ = tanh™(v/c).
Establish also the following version of these equations:

ct' + x" = e "?(ct + x),
ct’ — x' = e®(ct — x),
e?® = (1 + v/a)/(1 — v/e).
What relation does ¢ have to 8 in equation (3.11)?



3.4 (§3.1) Aberration refers to the fact that the direction of
travel of a light ray depends on the motion of the observer.
Hence, if a telescope observes a star at an inclination 8’ to
the horizontal, then show that classically the ‘true’ inclina-
tion @ of the star is related to 6’ by

sin 8

’

tanf = ——,
cos 9 + vfc

where v is the velocity of the telescope relative to the star.

Show that the corresponding relativistic formula is

12

sin 0
tan) = ———.
B(cos + v/c)
3.5 (§3.2) Show that special Lorentz transformations are
associative, that is, if O(v,) represents the transformation
from observer S to §’, then show that

(0(0,)0(v,))0(v3) = O(v,)(O(v,)O(v3)).

3.6 (§3.3) An athlete carrying a horizontal 20-ft-long pole
runs at a speed v such that (1 — v?/c?)”% = 2 into a 10-ft-
long room and closes the door. Explain, in the athlete’s
frame, in which the room is only 5ft long, how this is
possible. [ Hint: no effect travels faster than light.] Show that
the minimum length of the room for the performance of this
trick is 20/(,/3 + 2) ft. Draw a space-time diagram to indic-
ate what is going on in the rest frame of the athlete.

3.7 (§3.5) A particle has velocity # = (1, u,, u;) in S and
W =(uy, up, uy) in §'. Prove from the velocity trans-
formation formulae that

c(c? —u'?)(c? —v?)

(c? + uyv)?

o -

Deduce that, if the speed of a particle is less than ¢ in any one
inertial frame, then it is less than ¢ in every inertial frame.

3.8 (§3.7) Check the transformation formulae for the com-
ponents of acceleration (3.21)—(3.23). Deduce that acceler-
ation is an absolute quantity in special relativity.

3.9(§3.8) A particle moves from rest at the origin of a frame
S along the x-axis, with constant acceleration « (as measured
in an instantaneous rest frame). Show that the equation of
motion is

ax? + 2¢2x — ac?t? =0,
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and prove that the light signals emitted after time t = ¢/a at
the origin will never reach the receding particle. A standard
clock carried along with the particle is set to read zero at the
beginning of the motion and reads t at time ¢ in S. Using the
clock hypothesis, prove the following relationships:

u?\" at
(1 — —2) = cosh—,
¢ c

at . ot c? ot
— =sinh—, x=—|cosh— —1].
c ¢ a c

u oT
— = tanh —,
c ¢

Show that, if T2 < ¢?/a?, then, during an elapsed time T in
the inertial system, the particle clock will record approxim-
ately the time T(1 — «2T2/6¢2).

If « = 3g, find the difference in recorded times by the
spaceship clock and those of the inertial system

(a) after 1 hour;
(b) after 10 days.

3.10 (§3.9) A space traveller A travels through space with
uniform acceleration g (to ensure maximum comfort). Find
the distance covered in 22 years of A’s time. [Hint: using
years and light years as time and distance units, respectively,
then g = 1.03]. If on the other hand, A describes a straight
double path XYZYX, with acceleration g on XY and ZY,
and deceleration on YZ and YX, for 6 years each, then draw
a space-time diagram as seen from the Earth and find by
how much the Earth would have aged in 24 years of A’s
time.

3.11 (§3.10) Let the relative velocity between a source of
light and an observer be u, and establish the classical
Doppler formulae for the frequency shift:

Yo

source moving, observer at rest: V= _———o,
1+ u/c

observer moving, source at rest: v = (1 — u/c)v,,

where v, is the frequency in the rest frame of the source.
What are the corresponding relativistic results?

3.12 (§3.10) How fast would you need to drive towards a
red traffic light for the light to appear green? [Hint: 4,4, ~ 7
x 1075 em, Agreen & 5 x 107% cm.]




