Making statistic claims

Corpus Linguistics
Kron

Outline of the session

- Lecture
- Raw and normalised frequency
- Descriptive statistics (mean, mode, media, measure of dispersion)
- Inferential statistics (chi squared, LL, Fisher's Exact tests)
- Collocation statistics

Quantitative analysis

- Corpus analysis is both qualitative and quantitative
- One of the advantages of corpora is that they can readily provide quantitative data which intuitions cannot provide reliably
- "The use of quantification in corpus linguistics typically goes well beyond simple counting" (McEnery and Wilson 2001: 81)
- What can we do with those numbers and counts?

Raw frequency

- The arithmetic count of the number of linguistic feature (a word, a structure etc)
- The most direct quantitative data provided by a corpus
- Frequency itself does NOT tell you much in terms of the validity of a hypothesis
- There are 250 instances of the $f^{* *} k$ swearword in the spoken BNC, so what?
- Does this mean that people swear frequently - or infrequently - when they speak?

Normalized frequency

- ...in relation to what?
- Corpus analysis is inherently comparative
- There are 250 instances of the swearword in the spoken BNC and 500 instances in the written BNC
- Do people swear twice as often in writing as in speech?
- Remember the written BNC is 9 times as large as the spoken BNC
- When comparing corpora of different sizes, we need to normalize the frequencies to a common base (e.g. per million tokens)
- Normalised freq = raw freq / token number * common base
- The swearword is 4 times as frequent in speech as in writing
- Swearword in spoken BNC = $250 / 10$ * $1=25$ per million tokens
- Swearword in written BNC = 500 / 90 * $1=6$ per million tokens
- ...but is this difference statistically significant?

Normalized frequency

- The size of a sample may affect the level of statistical significance
- Tips for normalizing frequency data
- The common base for normalization must be comparable to the sizes of the corpora
- Normalizing the spoken vs. written BNC to a common base of 1000 tokens?
- Warning
- Results obtained on an irrationally enlarged or reduced common base are distorted

Descriptive statistics

- Frequencies are a type of descriptive statistics
- Descriptive statistics are used to describe a dataset
- A group of ten students took a test and their scores are as follows
- 4, 5, 6, 6, 7, 7, 7, 9, 9, 10
- How will you report the measure of central tendency of this group of test results using a single score?

The mean

- The mean is the arithmetic average
- The most common measure of central tendency
- Can be calculated by adding all of the scores together and then dividing the sum by the number of scores (i.e. 7)

$$
-4+5+6+6+7+7+7+9+9+10=70 / 10=7
$$

- While the mean is a useful measure, unless we also knows how dispersed (i.e. spread out) the scores in a dataset are, the mean can be an uncertain guide

The mode and the median

- The mode is the most common score in a set of scores
- The mode in our testing example is 7, because this score occurs more frequently than any other score - 4, 5, 6, 6, 7, 7, 7, 9, 9, 10
- The median is the middle score of a set of scores ordered from the lowest to the highest
- For an odd number of scores, the median is the central score in an ordered list
- For an even number of scores, the median is the average of the two central scores
- In the above example the median is 7 (i.e. $(7+7) / 2$)

Measure of dispersion: range

- The range is a simple way to measure the dispersion of a set of data
- The difference between the highest and lowest frequencies / scores
- In our testing example the range is 6 (i.e. highest 10 - lowest 4)
- Only a poor measure of dispersion
- An unusually high or low score in a dataset may make the range unreasonably large, thus giving a distorted picture of the dataset

Measure of dispersion: variance

- The variance measures the distance of each score in the dataset from the mean
- In our test results, the variance of the score 4 is 3 (i.e. $7-4$); and the variance of the score 9 is $2(9-7)$
- For the whole dataset, the sum of these differences is always zero
- Some scores will be above the mean while some will be below the mean
- Meaningless to use variance to measure the dispersion of a whole dataset

Measure of dispersion: std dev

- Standard deviation is equal to the square root of the quantity of the sum of the deviation scores squared divided by the number of scores in a dataset

$$
\sigma=\sqrt{\frac{\sum(F-\mu)^{2}}{N}}
$$

$-F$ is a score in a dataset (i.e. any of the ten scores)
$-\mu$ is the mean score (i.e. 7)

- N is the number of scores under consideration (i.e. 10)
- Std dev in our example of test results is 1.687

Measure of dispersion: std dev

- For a normally distributed dataset (i.e. where most of the items are clustered towards the centre rather than the lower or higher end of the scale)
- 68% of the scores lie within one standard deviation of the mean
- 95\% lie within two standard deviations of the mean
- 99.7% lie within three standard deviations of the mean
- The standard deviation is the most reasonable measure of the dispersion of a dataset

Normal distribution (bell-shaped curve)

Computing std dev with SPSS

SPSS Menu - Analyze Descriptive statistics - Descriptives

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Score	10	4	10	6.80	1.687
Valid N (listwise)	10				

Inferential statistics

- Descriptive statistics are useful in summarizing a dataset
- Inferential statistics are typically used to formulate or test a hypothesis
- Using statistical measures to test whether or not any differences observed are statistically significant
- Tests of statistical significance
- chi-square test
- log-likelihood (LL) test
- Fisher's Exact test
- Collocation statistics
- Mutual information (MI)
- z score

Statistical significance

- In testing a linguistic hypothesis, it would be nice to be 100% sure that the hypothesis can be accepted
- However, one can never be 100% sure in real life cases
- There is always the possibility that the differences observed between two corpora have been due to chance
- In our swearword example, it is 4 times as frequent in speech as in writing
- We need to use a statistical test to help us to decide whether this difference is statistically significant
- The level of statistical significance $=$ the level of our confidence in accepting a given hypothesis
- The closer the likelihood is to 100%, the more confident we can be
- One must be more than 95% confident that the observed differences have not arisen by chance

Commonly used statistical tests

- Chi square test
- ...compares the difference between the observed values (e.g. the actual frequencies extracted from corpora) and the expected values (e.g. the frequencies that one would expect if no factor other than chance was affecting the frequencies)
- Log likelihood test (LL)
- Similar, but more reliable as LL does not assume that data is normally distributed
- The preferred test for statistic significance

Commonly used statistical tests

- Interpreting results
- The greater the difference (absolute value) between the observed values and the expected values, the less likely it is that the difference is due to chance; conversely, the closer the observed values are to the expected values, the more likely it is that the difference has arisen by chance
- A probability value p close to 0 indicates that a difference is highly significant statistically; a value close to 1 indicates that a difference is almost certainly due to chance
- By convention, the general practice is that a hypothesis can be accepted only when the level of significance is less than 0.05 (i.e. $p<0.05$, or more than 95% confident)

Online LL calculator

- http://ucrel.lancs.ac.uk/llwizard.html

Corpus 1	Corpus 2	
Frequency of word	250	500
Corpus size	10000000	90000000

Item	01	81	02	82	LL
Word	250	0.00	500	$0.00+$	301.88

How to find the probability value p for an LL score of 301.88 ?

Contingency table

	right-handed	left-handed	TOTAL
male	43	9	52
female	44	4	48
TOTAL	87	13	100

degree of freedom (d.f.) $=(\text { No. of row }-1)^{*}($ No. of column -1$)$ $=(2-1) *(2-1)=1 * 1=1$

Critical values

d.f.
0.10
0.05
0.025
0.01
0.001
1
2
3
4
5
6
7
8
9
10
2.706
4.605
6.251
7.779
9.236
10.645
12.017
13.362
14.684
15.987
3.841
5.991
7.815
9.488
11.070
12.592
14.067
15.507
16.919
18.307
5.024
6.635
10.828
7.378
9.210
13.816
9.348
11.345
16.266
11.143
13.277
18.467
$12.833 \quad 15.086$
20.515

14
16.812
22.458
12.017
16.013
24.322
14.684
17.535
18.475
20.090
26.125

10
15.987
18.307
20.483
21.666
27.877

The chi square test or LL test score must be greater than 3.84 (1 d.f.) for a difference to be statistically significant.
Oakes, M (1998) Statistics for Corpus Linguistics, EUP, p. 266
In the example of swearword in spoken/written BNC, LL 301.88 for 1 d.f. More than 99.99% confident that the difference is statistically significant

Excel LL calculator by Xu

1	Log-Fkefhood Rato calculator						
2							
3	Step 1. Enter the corpus sizes in A and B . Step 2. Enter the frequency counts in columns B and C. The white cells are data cells; the gray ones are result cells.						
4							
5							
6			52191	Corpus Size 2			
7	Corpus Size 1				52877		
8							
9	Word	Freq. in Corpus 1		Freq. in Corpus 2	Log-likelihood		
10			Sig.				
11	will	224	138	21.77	$0.000{ }^{* * *}$	+	
12	can	198	192	0.19	0.665	+	
13	would	169	125	7.20	$0.007{ }^{* *}$	+	
14	could	72	66	0.35	0.557	+	
15	must	67	30	14.96	$0.000{ }^{* * *}$	+	
16	have to	132	41	51.56	$0.000{ }^{* * *}$	+	
17	should	130	55	32.29	$0.000{ }^{* * *}$	+	
18	may	51	35	3.21	0.073	+	
19	might	67	8	53.82	$0.000^{* * *}$	+	
20	ought to	10	3	4.07	$0.044{ }^{*}$	+	
21	shall	5	2	1.37	0.242	+	

www.corpus4u.org/attachment.php?attachmentid=560\&d=1240826440

SPSS: Left- vs. right-handed

Define variables				
H Untitled1 [DataSet0] - SPSS Data Editor				
File Edit View Data Transform Analyze Graphs Uutilities winu 				
	Name	Type	Width	Decimals
1	gender	String	8	0
2	tendency	String	8	0
3	number	Numeric	...] 8	0

weight case (Data - Weight cases)

Data view

F Untitled1 [DataSet0] - SPSS Data Editor				
File Edit View Data Transform Analyze Graph				
1 : gender mal				
	gende	tendency	num	ber
1	male	right-h		43
2	male	left-h		9
3	female	right-h		44
4	female	left-h		4

\square Weight Cases	
	OD not weight cases © Weight cases by
	Frequency Variable:
	Current Status: Do not weight cases

SPSS: Left- vs. right-handed

Cross-tab

Crosstabs: Statistics

$($ Chi-square	\square Correlations	Continue
Nominal	Drdinal	Cancel
\square Contingency coefficient	\square Gamma	\square Help
\square Phi and Cramé's V	\square Somers'd	

Select variables

\square Display clustered bar charts
\square Suppress tables

SPSS: Left- vs. right-handed

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (Q-sided)	Exact Sig. (1-sided)
Fearon Chi-square Continuity Comeotion Fishers Exact Test N of Valid Cases	$\begin{aligned} & 1.777^{5} \\ & 1.072 \\ & 1.825 \\ & 100 \end{aligned}$	1 1 1	C	$.239$. 150

a. Computed only for a 2×2 table
b. 0 gells (0\%) have expected gount less than 5. The minimum expected count is 6 .

$$
24
$$

Any cells with an expected value less than 5 ?
Critical value ($\mathrm{X}^{2} / \mathrm{LL}$) for 1 d.f. at $\mathrm{p}<0.05$ (95\%): 3.84
Is there a relationship between gender and left- or righthandedness?

Fisher's Exact test

- The chi-square or log-likelihood test may not be reliable with very low frequencies
- When a cell in a contingency table has an expected value less than 5, Fisher's Exact test is more reliable
- In this case, SPSS computes Fisher's exact significance level automatically when the chisquare test is selected
- SPSS Releases 15 and 16 have removed the Fisher's Exact test module, which can be purchased separately

Fisher's Exact test

	men	women	TOTAL
dieting	1	8	9
no dieting	9	2	11
TOTAL	10	10	20

(5) Untitled1 [DataSet0] - SPSS Data Editor			
File Edit View Data Transform Analyze Graphs			
16			
	gender	tendency	number
1	male	dieting	1
2	male	no-diet	9
3	female	dieting	8
4	female	no-diet	2

Don't forget to weight cases!

Fisher's Exact test

Fisher's Exact test

gender * tendency Crosstabulation

a. Computed only for a 2×2 table
b. 2 eells (60.0\%) have expected count less than 5. The minimum expected count is ${ }^{2}$ 50.

Force an FE test

Practice

- Use both the UCREL/Xu's LL calculator / SPSS to determine if the difference in the frequencies of passives in the CLEC and LOCNESS corpora is statistically significant
- CLEC: 7,911 instances in 1,070,602 words
- LOCNESS: 5,465 instances in 324,304 words

Log-likelihood Ratio Calculator

```
Step 1. Enter the corpus sizes in A and B.
Step 2. Enter the frequency counts in columns B and C.
* The white cells are data cells; the gray ones are result cells.
```


Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$2290.475^{\text {b }}$	1	. 000		
Continuity Correctiona	2289.494	1	. 000		
Likelihood Ratio	2017.086	1	. 000		
Fisher's Exact Test				. 000	. 000
N of Valid Cases	1408282				

a. Computed only for a 2×2 table
b. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 3132.18 .

Collocation statistics

- Collocation: the habitual or characteristic co-occurrence patterns of words
- Can be identified using a statistical approach in CL, e.g.
- Mutual Information (MI), t test, z score
- Can be computed using tools like SPSS, Wordsmith, AntConc, Xaira
- Only a brief introduction here
- More discussions of collocation statistics to be followed

Mutual information

- Computed by dividing the observed frequency of the co-occurring word in the defined span for the search string (socalled node word), e.g. a 4:4 window, by the expected frequency of the co-occurring word in that span and then taking the logarithm to the base 2 of the result

Mutual information

- A measure of collocational strength
- The higher the MI score, the stronger the link between two items
- MI score of 3.0 or higher to be taken as evidence that two items are collocates
- The closer to 0 the Ml score gets, the more likely it is that the two items co-occur by chance
- A negative MI score indicates that the two items tend to shun each other

The t test

- Computed by subtracting the expected frequency from the observed frequency and then dividing the result by the standard deviation
- A t score of 2 or higher is normally considered to be statistically significant
- The specific probability level can be looked up in a table of t distribution

The z score

- The z score is the number of standard deviations from the mean frequency
- The z test compares the observed frequency with the frequency expected if only chance is affecting the distribution
- A higher z score indicates a greater degree of collocability of an item with the node word

