Strong and Weak Acids and Bases

The most common strong acids and bases, and some examples of weak acids and bases, together with definition of strong and weak acids and bases.

Sponsored Links

A **strong acid** or a **strong base** completely ionizes (dissociates) in a solution. In water, one mole of a strong acid HA dissolves yielding one mole of H+ (as hydronium ion H_3O^+) and one mole of the conjugate base, A^- . Essentially, none of the non-ionized acid HA remains.

Strong acid: $HA + H_2O \rightarrow A^-(aq) + H_3O^+(aq)$

Strong base: $BOH + H_2O \rightarrow B^+(aq) + OH^-(aq)$

Examples of strong acids and bases are given in the table below. In aqueous solution, each of these *essentially ionizes 100%*.

A weak acid or a weak base only partially dissociates. At equilibrium, both the acid and the conjugate base are present in solution

Weak acid: AH + $H_2O \leftrightarrow A^-(aq) + H_3O^+(aq)$

Weak base: BOH + $H_2O \leftrightarrow B^+(aq) + OH^-(aq)$ or

 $B + H_2O \leftrightarrow BH^+(aq) + OH^-(aq)$

Examples of weak acids and bases are given in the table below.

Stronger acids have a larger acid dissociation constant (Ka) and a smaller logarithmic constant (pKa = $-\log$ Ka) than weaker acids. The stronger an acid is, the more easily it loses a proton, H+.

Two key factors that contribute to the ease of deprotonation are the polarity of the H—A bond and the size of atom A, which determines the strength of the H—A bond. Acid strengths also depend on the stability of the conjugate base.

Stong Acids		Strong Bases		
Hydrobromic acid	l HBr	Barium hydroxide		Ba(OH) ₂
Hydrochloric acid	HC1	Calsium hydroxide		Ca(OH) ₂
Hydroiodic acid	HI	Lithium hydroxide		LiOH
Nitric acid	HNO ₃	Potassium hydroxide		КОН
Perchloric acid	HClO ₄	Sodium hydrox	ide	NaOH
Sulfuric acid	H ₂ SO ₄	Strontium hydrox	xide	Sr(OH) ₂
Weak acids		Weak bases		
Acetic acid	CH ₃ COOH	Ammonia	NH ₃	
Carbonic acid	H ₂ CO ₃	Diethylamine	(CH ₃ CH ₂) ₂ NH	
Formic acid	СНООН	Methylamine	CH ₃ NH ₂	
Hydrocyanic acid	HCN	Sodium bicarbonate	NaHCO ₃	
Hydrofluoric acid	HF			
Phosphoric acid	H ₃ PO ₄			