1. Odvodte vztahy z nasledujiciho ¢lanku:

3.8 Uniform acceleration

The Newtonian definition of a particle moving under uniform acceleration is

du

— = constant.

dt
This turns out to be inappropriate in special relativity since it would imply
that u — oo as ¢t — oo, which we know is impossible. We therefore adopt a
different definition. Acceleration is said to be uniform in special relativity if it
has the same value in any co-moving frame, that is, at each instant, the
acceleration in an inertial frame travelling with the same velocity as the
particle has the same value. This is analogous to the idea in Newtonian
theory of motion under a constant force. For example, a spaceship whose
motor 18 set at a constant emission rate would be uniformly accelerated in this
sense. Taking the velocity of the particle to be u = u(r) relative to an inertial
frame S, then at any instant in a co-moving frame §', it follows that v = u, the
velocity relative to S’ is zero, i.e. &' = 0, and the acceleration is a constant, a
say, i.e, du'/dt" = a. Using (3.21), we find
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We can solve this differential equation by separating the variables

d
(1 —u?fc?)y
and integrating both sides. Assuming that the particle starts from rest at
t=t,, we find
U
m = ﬂ(t - tu ]

Solving for u, we get
L dx a(t — to)
Todt [+ at(t — 1) ]

Next, integrating with respect to t, and setting x = xg at t = tg, produces

(x — xg) = E [c? + a?(t — to)*]* - %-



Fig. 3.8 Hyperbolic motions.

This can be rewritten in the form

(x — xo + c*fa)* (et —ctgf® _

(c*/a)? (c*ayp
which is a hyperbola in (x, ct)-space. If, in particular, we take x, — c¢*/a =ty = (,
then we obtain a family of hyperbolae for different values of a (Fig. 3.8). These
world-lines are known as hyperbolic motions and, as we shall see in
Chapter 23, they have significance in cosmology. It can be shown that the
radar distance between the world-lines is a constant. Moreover, consider the
regions 1 and IT bounded by the light rays passing through O, and a system of
particles undergoing hyperbolic motions as shown in Fig 3.8 (in some
cosmological models, the particles would be galaxies). Then, remembering
that light rays emanating from any point in the diagram do so at 45° no
particle in region I can communicate with another particle in region II, and
vice versa. The light rays are called event horizons and act as barriers beyond
which no knowledge can ever be gained. We shall see that event horizons will
play an important role later in this book.

(3.24)

Spocitejte priklady 3.9,10
3.9(43.8) A particle moves from rest at the origin of a frame
§ along the x-axis, with constant acceleration x (as measured
in an instantaneous rest frame). Show that the equation of
motion is

ax? + 2c*x — ac?t? =0,

and prove that the light signals emitted after time ¢ = ¢/x at
the origin will never reach the receding particle. A standard
clock carried along with the particle is set to read zero at the
beginning of the motion and reads 7 at time ¢ in S. Using the
clock hypothesis, prove the following relationships:
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Show that, if T? < ¢*/«*, then, during an elapsed time T in
the inertial system, the particle clock will record approxim-
ately the time T(1 — a® T?/6).

If «=3g, find the difference in recorded times by the
spaceship clock and those of the inertial system

{a) after 1 hour;
(b) after 10 days.

3.10 (§3.9) A space traveller A travels through space with
uniform acceleration g (to ensure maximum comfort). Find
the distance covered in 22 years of A’s time. [Hint: using
years and light years as time and distance units, respectively,
then g = 1.03]. If on the other hand, 4 describes a straight
double path X YZYX, with acceleration g on XY and ZY,
and deceleration on YZ and YX, for 6 years each, then draw
a space-time diagram as seen from the Earth and find by
how much the Earth would have aged in 24 years of A’s
time.



