Mathematics in economics

Lecture 10

Mgr. Jirí Mazurek, Ph.D.
Mathematics in Economics/PMAT

Geometric function series

Geometric function series is defined as follows:

The series is convergent if $\mid q_{<}$, where $q=f(x)$.
The sum is given as: $s(x)=$

Geometric function series - Problem 1

Find the range of convergence:

Solution:
Expanding the sum yields:
Clearly, $\mathrm{a}_{1}=\mathrm{q}=\mathrm{x}$.

$+\quad+$

Because $\mid q_{<}$we have $\mid x_{<}$. The range of convergence:

Geometric function series - Problem 2

Find the sum of the series:

Solution:
We already know that $\mathrm{a}_{1}=\mathrm{q}=\mathrm{x}$.
Using the formula for the sum yields: $S(x)=$
This result is valid for all x satysfying

Geometric function series - Problem 3

Find the range of convergence and a sum of the series:

Solution:

$$
\sum
$$

$$
a_{1}={ }_{\perp}^{1}, q_{=}^{1}
$$

The convergence:

$$
\begin{aligned}
& \mid q_{=}=+- \\
& =-1,-\infty
\end{aligned}
$$

The sum:

$$
s(x)=\begin{array}{cccc}
n & 1 & 1 & 1 \\
- & -1 & 1 & \perp
\end{array}
$$

Problems to solve

Find the range of convergence and a sum of the series:

Differential equations

Differential equation (DE) is an equation that includes given function $y=f(x)$ and its derivatives.

Examples:
$y_{+}^{\prime-}=$ is a DE of the first order and degree 1.
$y^{2}-6 y ; 5 y=0$ is a DE of the first order and degree 2.
$\left.y^{\prime \prime}\right)^{3}-y, 5 x^{2} y^{8}+5 x_{0} 0$ is a DE of the second order and degree 3.

Differential equations - Types of a solution

DE can have three types of solutions:

- General solution
- Particular solution
- Singular solution

Differential equations - Types of a solution Example 1

Find general solution of DE $y_{=}$and particular solution for a condition $\mathcal{H}(U)=$.

General solution:
We simply integrate $D E: y_{=}+$
Particular solution for the initial condition: we substitute $\mathrm{x}=$ 0 and $y=2$ into general solution:

$$
2^{\Omega}=
$$

Which yields $\mathrm{C}=2$. Thus, particular solution is $y_{=}{ }^{2}$

Differential equations - Types of a solution Example 2

Find general solution of DE $\mathcal{Y}_{=}+$and particular solution for a condition $y(1)=2$.

General solution:
We integrate DE: $y_{=}^{{ }^{--}+{ }_{+}^{-}}$
Particular solution for the initial condition: we substitute $x=$ 1 and $y=2$ into general solution:

$$
\angle-\perp
$$

Which yields $C=-2$. Thus, particular solution is

$$
y_{=}^{--}+^{-}-
$$

Differential equations - Types of a solution Example 3

Find general solution of DE $y^{\prime \prime}-+$ and particular solution for a conditions $\mathcal{y}(U)_{=}^{-}$and $\mathcal{y}(U)=$.

General solution: $y_{=}{ }^{-}+{ }^{-}+{ }^{-}$
Particular solution for the initial condition:

$$
y^{\prime}(U)==++\quad y(U)==++
$$

Which yields $C_{1}=0, C_{2}=1$. Thus, particular solution is:

$$
y=++
$$

Differential equations - Separation of variables

One of the most used method for solving DE is separation of variables. In this method x and y variables are separated on the different sides of an equation before integration takes place.

It can be used when DE is separable:

$$
P x_{+} P y y^{\prime}=C \text { or } P x d x_{+} \text {Pyd }=0
$$

Differential equations - Separation of variables Example 1

Find a general solution of $\mathscr{Y}_{=}$.
The equation is separable: $y \frac{d y}{d x}=$, so we separate both variables:

$$
y d y=
$$

And integrate:

$$
\begin{aligned}
& \int y^{2}=r^{2} \\
& 2=+
\end{aligned}
$$

Which yields:

Differential equations - Separation of variables Example 2

Find a general solution of $y_{+} x_{-} y_{=}$.
The equation is separable, so we separate and integrate:

$$
\begin{aligned}
& \frac{d y}{d x+} x^{-} y^{-}{ }^{-}
\end{aligned}
$$

Differential equations - Separation of variables Example 3

Find a general solution of $\frac{y^{\prime}}{x_{+}} x y=?$
The equation is separable, so we separate and integrate:

$$
\begin{aligned}
& \frac{d y}{x_{+}} d x \cdot x= \\
& \frac{d y}{y}=x^{2}+x \\
& \int_{\ln ,}^{d y}=\int_{2}^{2}+3 d d^{-} \\
& \ln y=3+2^{\mathfrak{L}^{2}}+
\end{aligned}
$$

Differential equations - Homogenous differential equations

A DE of the form $y_{=} \quad$ such that $f(x, t y)_{=}, \quad$) is called homogenous differential equation. It is solved via substitution: $y_{=}$and $y_{=}+\cdots$
Example: $x^{2} y^{\prime}={ }^{-}$is homogenous, because:

$$
f(t x, t y)=-=-\cdots=
$$

Differential equations - Homogenous differential equations - Example 1

Find a general solution of a homogenous DE:

We start with the substitution $y_{=}:$

Differential equations - Homogenous differential equations - Example 1 - cont.

And at the end we integratate:

which yields:

$$
\frac{1}{3} \ln \left\lvert\, \frac{u_{1}}{u_{+}} \quad+\right.
$$

Differential equations - Logistic equation and function

In economics, demographics and other disciplines appears a function called a logistic function.

This function arises as a solution to the following logistic equation:

For an initial condition $f(0)={ }^{\text {I }}$ the solution is:

$$
f(t)==_{+}
$$

Differential equations - Logistic equation and function

Differential equations Linear differential equations of the first order

By a linear differential equations of the first order we mean an equation of the form:

$$
y_{+}=
$$

Assume that $\mathrm{q}(\mathrm{x})=0: \quad y_{+}=$
This special equation is called homogenous, and is solved by separation of variables:

$$
\frac{d y}{d x}=-
$$

Differential equations

Linear differential equations of the first order - cont.

$$
\begin{aligned}
& \frac{d y}{y}=- \\
& \ln y=-1
\end{aligned}
$$

And finally we obtain:

$$
y_{=}
$$

Differential equations
 Linear differential equations of the first order - Example 1

Find the general solution: $\dot{y}_{+}=$.
Solution:
We follow the procedure from the previous slide:

$$
\begin{aligned}
& \frac{d y}{d x}=- \\
& \frac{d y}{y}=- \\
& \ln y^{2}=-1 \\
& \ln y^{2}=- \\
& y_{=}=-\quad=\cdot=
\end{aligned}
$$

Linear differential equations of the first order Problems to solve

Find the general solution:

Thank you for your attention

