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Lecture 10 

Geometric function series 

  

  

 

  

 

  

 

 

    
 

Geometric function series is defined as follows: 

 

 

 

 

The series is convergent if             , where q = f(x).  

 

The sum is given as:  
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Geometric function series – Problem 1 
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Solution:  

Expanding the sum yields: 

Clearly, a1 = q = x. 

 

Because          , we have             . The range of convergence: 
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Geometric function series – Problem 2 
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xFind the sum of the series:          . 

 

Solution:  

We already know that a1 = q = x. 

 

Using the formula for the sum yields: 

 

This result is valid for all x satysfying   
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Geometric function series – Problem 3 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Find the range of convergence and a sum of the series:           

 

 

Solution:  

                               , 

                             

The convergence: 

 

Which yields:  

 

The sum: 
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Problems to solve  

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Find the range of convergence and a sum of the series:           
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Differential equations 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Differential equation (DE) is an equation that includes 

given function y = f(x) and its derivatives. 

 

Examples:            

 

                      is a DE of the first order and degree 1. 

 

 

                               is a DE of the first order and degree 2. 

 

                                         is a DE of the second order and 

   degree 3. 
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Differential equations – Types of a solution 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

DE can have three types of solutions: 

 

• General solution 

 

• Particular solution 

 

• Singular solution            
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Differential equations – Types of a solution 

Example 1 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Find general solution of DE          and particular solution 

for a condition              .   

 

General solution: 

We simply integrate DE: 

 

Particular solution for the initial condition: we substitute x = 

0 and y = 2 into general solution: 

 

 

Which yields C = 2. Thus, particular solution is  
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Differential equations – Types of a solution 

Example 2 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Find general solution of DE               and particular solution 

for a condition  y (1) = 2.               
 

General solution: 

We integrate DE:  

 

Particular solution for the initial condition: we substitute x = 

1 and y = 2 into general solution: 

 

 

Which yields C = - 2. Thus, particular solution is  
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Differential equations – Types of a solution 

Example 3 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

Find general solution of DE                 and particular 

solution for a conditions               and            . 

  

 General solution:  

 

Particular solution for the initial condition: 

 

 

Which yields C1 = 0, C2 = 1. Thus, particular solution is: 
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Differential equations – Separation of variables 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

One of the most used method for solving DE is separation 

of variables. In this method x and y variables are 

separated on the different sides of an equation before 

integration takes place. 

 

It can be used when DE is separable: 

 

                                      or 
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Differential equations – Separation of variables 

Example 1 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

          

Find a general solution of            . 

 

The equation is separable:              , so we separate both 

variables:  

 

 

And integrate: 

 

Which yields: 
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Differential equations – Separation of variables 

Example 2 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

          

Find a general solution of                         . 

 

The equation is separable, so we separate and integrate:  
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Differential equations – Separation of variables 

Example 3 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

          

Find a general solution of                         . 

 

The equation is separable, so we separate and integrate:  
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Differential equations – Homogenous differential 

equations 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

          

A DE of the form                     such that 

is called homogenous differential equation. It is solved via 

substitution:             and                    . 

 

Example:                     is homogenous, because:                                    
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Differential equations – Homogenous differential 

equations – Example 1 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

          

Find a general solution of a homogenous DE: 

 

 

 

We start with the substitution            :    
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Differential equations – Homogenous differential 

equations – Example 1 – cont. 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

    

And at the end we integratate: 

 

 

 

 

 

 

 

 

which yields: 
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Differential equations – Logistic equation and function 

  

  

 

  

 

  

 

 

    
 

 

 

 

 

  In economics, demographics and other disciplines 

appears a function called a logistic function.  

 

This function arises as a solution to the following logistic 

equation:        

 

 

For an initial condition              the solution is: 
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Differential equations – Logistic equation and function 
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Differential equations  

 Linear differential equations of the first order 

   

By a linear differential equations of the first order we mean an 

equation of the form: 

 

 

 

Assume that q(x) = 0: 

 

This special equation is called homogenous, and is solved by 

separation of variables: 
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Differential equations  

 Linear differential equations of the first order – cont. 

   

 

 

 

 

And finally we obtain:  
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Differential equations  

 Linear differential equations of the first order – Example 1 

  

Find the general solution:                  . 

 

Solution: 

We follow the procedure from the previous slide: 
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Linear differential equations of the first order  

Problems to solve 

  

    Find the general solution:                   
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Thank you for your attention 

  
 

 

 

 


