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Lecture 11 

Differential equations - continued 

  

  

 

  

 

  

 

 

    
 

Now assume that q(x) is not zero: 

 

 

In such case we use the method called variation of 

parameters. We assume the solution of the form: 

 

 

 

But C is now a function:  
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Differential equations - continued 

  

  

 

  

 

  

 

 

    
 

Substituting the last formula into                        yields 

the solution. 

 

Example:  

 

Solution: we search for a solution of the form                     . 

Substituting into the equation: 
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Differential equations - continued 

  

  

 

  

 

  

 

 

    
 

Rearranging of terms yields: 

 

 

 

Now we integrate: 

 

 

Solution of the given equation is:  

 

 

2

2(́ )
x

c x e x
2 2

2 2( )
x x

cx e xdx e C

2

21
x

y Ce



Lecture 11 

Differential equations – Problem 1 

  

  

 

  

 

  

 

 

    
 

Solve:                        . 

 

Solution: 

First, we solve corresponding homogenous equation by 

the separation of variables method: 

 

 

 

 

 

 

And finally: 
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Differential equations – Problem 1 – cont. 

  

  

 

  

 

  

 

 

    
 

In the second step, we apply the variation of a constant 

method:                         

 

 

Substitution: 
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Lecture 11 

Linear differential equations of the second order with 

constant coefficients 

  

  

 

  

 

  

 

 

    
 

The last type of differential equation we will address. 

 

It is of the form:                     .                        

 

A solution is assumed to be in the form            ,  

where lambda is a root of the so called characteristic  

equation: 

 

 

 

 

 

0´´´ cybyay

xey

02 cba



Lecture 11 

Linear differential equations of the second order with 

constant coefficients 

  

  

 

  

 

  

 

 

    
 

In the aforementioned three cases, we yield following  

solutions: 

 

Case 1: 

 

Case 2: 

 

Case 3: 

 

 

 

 

xx eCeCy 21
21

1 2
x xy Cxe Ce

1 2sin cosmx mxy Ce nx Ce nx



Lecture 11 

Linear differential equations of the second order with 

constant coefficients 

  

  

 

  

 

  

 

 

    
 

The characteristic equation is a quadratic equation, 

which means we have three cases: 

 

• Two real roots. 

 

• One real root of the order two. 

 

• Two imaginary roots. 
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Linear differential equations of the second order with 

constant coefficients  - Problem 1 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = 2 and λ2 = 3. 

 

Therefore, th e solution is: 
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Linear differential equations of the second order with 

constant coefficients  - Problem 2 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = 3 and λ2 = -1. 

 

Therefore, th e solution is: 
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Linear differential equations of the second order with 

constant coefficients  - Problem 3 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = 3 and λ2 = 3. 

 

Therefore, th e solution is: 
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Linear differential equations of the second order with 

constant coefficients  - Problem 4 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = -2+i and λ2 = -2-i. 

 

Therefore, th e solution is: 

 

 

  

 

    
 

 

 

 

 

 

´́ 4 ´ 5 0y y y

2 4 5 0

2 2
1 2sin cosx xy Ce x Ce nx



Lecture 11 

Linear differential equations of the second order with 

constant coefficients  - Problem 5 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = 1  and λ2 = -1. 

 

Therefore, th e solution is: 
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Linear differential equations of the second order with 

constant coefficients  - Problem 6 

  

  Solve: 

 

  Solution: we start with the characteristic equation: 

 

 

This equation has two real roots: λ1 = i  and λ2 = -i. 

 

Therefore, the solution is: 
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Linear differential equations of the second order with 

constant coefficients 

  

  Now we will focus on eqautions with non-zero right hand side: 

 

 

 

   

 This type of equation is called non-homogenous. 

 

  Solution of this equation has the following form:  
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Linear differential equations of the second order with 

constant coefficients – cont. 

  

  The solution                   correspond to a homogenous case,  

  while           is the so called particular integral, which solves  

a nonhomogenous part of an equation. 

 

 A particular integral for the most common functions (polynomials, 

exponentials, logarithms, etc.) can be easily “guessed“. 

 

We will illustrate the procedure by several examples.   
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Linear differential equations of the second order with 

constant coefficients – Problem 9 

  

  Solve: 

  

Solution: we begin with the homogenous case and its 

characteristic polynom: 

 

 

The roots are λ1 = 2 a λ2 = –1, hence the solution is: 

 

 

 

Now we seek a particular integral in the form:  
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Linear differential equations of the second order with 

constant coefficients – Problem 9 – cont. 

  

  Solve: 

  

Solution: we substitute y = P(x) into the given equation: 

 

    
 

Which yields: a = -2, b = 2. 

 

Therefore, the general solution to the equation is: 
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Linear differential equations of the second order with 

constant coefficients – Problem 10 

  

  Solve: 

  

Solution: we begin with the homogenous case and its 

characteristic polynom: 

 

 

The roots are λ1 = 0 a λ2 = –4, hence the solution is: 

 

 

Now we seek a particular integral in the form:  
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Linear differential equations of the second order with 

constant coefficients – Problem 10 – cont. 

  

  Solve: 

  

Solution: we substitute y = P(x) into the given equation: 

 

    
 

Which yields: 

 

Therefore, the general solution to the equation is: 
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Problems to solve - 1 

  

  Solve: 
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Problems to solve - 2 

  

  Solve: 
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Problems to solve - 3 

  

  Solve: 
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Final remarks 

  

•   See the exam dates in STAG. Everybody has 2 attempts. 

 

•  Also, see the older versions of exam tests on my public or 

Moodle. 

 

•  If you need consultations, write me (or Dr. Stoklasova) an e-

mail. 

 

• Good luck! 
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Thank you for your attention! 

 

 

 

 

 


