ENCLOSURE NO. 1 - FORMULAE

Future value

$$FV = C_0 (1+i)^n$$

Future value of cash flows
$$\boxed{FV = C_O(1+i)^n + C_1(1+i)^{n-1} + C_2(1+i)^{n-2} + ... + C_{n-1}(1+i) + C_n}$$

Present value

$$PV = \frac{C_n}{(1+i)^n}$$

Present value of cash flows

$$PV = C_0 + \frac{C_1}{1+i} + \frac{C_2}{(1+i)^2} + \dots + \frac{C_n}{(1+i)^n}$$

Discount factor

Discount factor FV of an ordinary annuity PV of an ordinary
$$FV = A \frac{(1+i)^n - 1}{i}$$

$$FV = A \frac{(1+i)^n - 1}{i}$$

$$FV = A \frac{(1+i)^n - 1}{i}$$

$$FV = A \frac{(1+i)^n - 1}{i}$$

PV of an ordinary annuity

$$PV = A \frac{(1+i)^n - 1}{i(1+i)^n}$$

Annuity from FV

$$A = FV \frac{i}{(1+i)^n - 1}$$

Annuity from PV

$$A = PV \frac{(1+i)^n i}{(1+i)^n - 1}$$

FV of a growing annuity

$$FV = A \frac{(1+i)^{n} - (1+g)^{n}}{i-g}$$

PV of a growing annuity

$$PV = A \frac{1}{i - g} \left[1 - \frac{(1+g)^n}{(1+i)^n} \right]$$

PV of an ordinary perpetuity

$$PV = \frac{C}{i}$$

Present value of a growing perpetuity

$$PV = \frac{C}{i - g}$$

FV with multiple compounding

$$FV = C_0 (1 + \frac{i}{m})^{nm}$$

Effective annual interest rate

$$EAIR = \left| 1 + \frac{i}{m} \right|^m - 1$$

FV, continuous compounding

$$FV = C_0(e^{in})$$

PV, continuous compounding

$$PV = C_n(e^{-in})$$

Real cash flow

Nominal interest rate Real interest rate

$$C_r = \frac{C_n}{(1+\pi)^n}$$

$$i = (1+r)(1+\pi)-1$$

$$r = \frac{(1+i)}{(1+\pi)} - 1$$

Net present value

$$NPV = C_0 + \sum \frac{C_n}{(1+i)^n}$$

Internal rate of return

$$0 = C_0 + \sum \frac{C_n}{\left(1 + IRR\right)^n}$$

Profitability Index Method

$$PI = \frac{PV \ project}{C_0}$$

$$R = \sum_{i=1}^{n} P_i R_i$$

Expected rate of profit
$$\begin{bmatrix}
R &= \sum_{i=1}^{n} P_{i} R_{i} \\
\end{bmatrix}$$
Variance
$$\sigma^{2} = \sum_{i=1}^{n} P_{i} (R_{i} - R)^{2}$$

Variation coefficient

$$CV = \frac{\sigma}{R}$$

$$R_p = XR_A + (1 - X)R_B$$

$$cov(R_A, R_B) = \sum_{i=1}^{n} P_i(R_{iA} - R_A)(R_{iB} - R_B)$$

$$cov(R_A, R_B) = k_{AB}\sigma_A\sigma_B$$

$$cov(R_A, R_B) = k_{AB}\sigma_A\sigma_B$$

Correlation coefficient

$$k_{AB} = \frac{cov(R_A, R_B)}{\sigma_A \sigma_B}$$