

Peachpit Press

V I S U A L Q U I C K S tA r t G U I D E

HTML5
and CSS3

Seventh Edition

ElizabEth Castro • bruCE hyslop

HTML5 and CSS3, Seventh Edition: Visual QuickStart Guide
Elizabeth Castro and Bruce Hyslop

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.

To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2012 by Elizabeth Castro and Bruce Hyslop

Editor: Clifford Colby
Development editor: Robyn G. Thomas
Production editor: Cory Borman
Compositor: David Van Ness
Copyeditor: Scout Festa
Proofreader: Nolan Hester
Technical editors: Michael Bester and Chris Casciano
Indexer: Valerie Haynes Perry
Cover design: RHDG/Riezebos Holzbaur Design Group, Peachpit Press
Interior design: Peachpit Press
Logo design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

bart.gov screen shots courtesy of San Francisco Bay Area Rapid Transit District (BART).
css3generator.com screen shots courtesy of Randy Jensen.
dribbble.com screen shots courtesy of Dan Cederholm.
fontsquirrel.com screen shots courtesy of Ethan Dunham.
foodsense.is screen shots courtesy of Julie Lamba.
modernizr.com screen shots courtesy of Faruk Ates.
namecheap.com screen shots courtesy of Namecheap.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been taken
in the preparation of the book, neither the authors nor Peachpit shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-71961-4
ISBN-10: 0-321-71961-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

To family.

iv Acknowledgments

Acknowledgments
Writing the acknowledgments is one of
the most daunting challenges of working
on a book, because you want to be sure
to convey your appreciation of everyone
properly. This book is the result of the
support, tireless work, and good spirits of a
lot of people. I hope to do them all justice,
and I hope that you’ll indulge me for a bit
while I thank them.

A most sincere thank you goes out to:

Nancy Aldrich-Ruenzel and Nancy Davis,
for entrusting me with this edition of a
book that has been important to Peachpit
for many years.

Cliff Colby, for recommending me and mak-
ing this possible; for his confidence in me
and his patience, flexibility, and guidance;
and for countless conversations and lots
of laughs.

Robyn Thomas, for her tremendous effort
in keeping us all on track, wrangling count-
less documents, making thoughtful edits
and suggestions, and providing regular
words of encouragement, which were
always a boost.

Michael Bester, for all the spot-on feed-
back and suggestions, catching technical
errors and omissions, and helping us get
the right message across to readers. It
was a real pleasure working with him on
another book.

Chris Casciano, in the same vein, for all
your technical expertise, suggestions, and
crucial feedback. I really appreciated your
joining us in the final weeks; we were lucky
to have you.

Cory Borman, for expertly overseeing the
production of the book and creating dia-
grams in a pinch, and for his good humor.

Scout Festa, for carefully correcting gram-
mar and punctuation, tightening up lan-
guage, ensuring the accuracy of figure and
chapter references, and, overall, providing
an all-important level of polish.

David Van Ness, for his great care laying
out the pages and for his proficiency and
attention to detail.

Nolan Hester, for lending his expertise to
the effort of reviewing the laid-out pages.

Valerie Haynes Perry, for handling the criti-
cal task of creating an effective index on
which readers will rely time and again.

The numerous marketing, sales, and other
folks at Peachpit for working behind the
scenes to make the book successful.

My family and friends, for checking in on
my progress and providing occasional, wel-
come breaks from writing. Thanks to those
friends in particular who probably tired of
hearing me say often that I couldn’t get
together, but who kept asking anyway.

Robert Reinhardt, as always, for getting me
started in writing books and for his guid-
ance as I was embarking on this one.

The Web community, for your innovations
and for sharing your knowledge so that
others may benefit (I’ve cited many of you
throughout the book).

To you readers, for your interest in learning
about HTML and CSS and for selecting this
book; I know you have a lot of others from
which to choose. I hope the book serves
you well.

Acknowledgments v

Seth Lemoine (Chapters 5 and 16)
Seth Lemoine is a software developer and
teacher in Atlanta. For over ten years, he’s
worked on challenging projects to see
what’s possible, with technologies from
HTML, JavaScript, and CSS to Objective-C
and Ruby. Whether it’s finding innovative
ways to teach HTML5 and CSS to his stu-
dents or perfecting a Schezuan recipe in his
outdoor wok, being creative is his passion.

Erik Vorhes (Appendixes A and B,
available on the book’s Web site)
Erik Vorhes creates things for the Web with
VSA Partners and is managing editor for
Typedia (http://typedia.com/). He lives and
works in Chicago.

Brian Warren (Chapter 13)
Brian Warren is a senior designer at Happy
Cog in Philadelphia. When he’s not writing
or designing, he spends his time playing
with his beautiful family, listening to music,
and brewing beer. He blogs, intermittently,
at http://begoodnotbad.com.

And, finally, I’d like to extend a special
thank you to Elizabeth Castro. She created
the first edition of this book more than
15 years ago and nurtured her audience
with each edition that followed. Her style
of teaching has resonated with literally
hundreds of thousands of readers over the
years. I’m extremely grateful for the oppor-
tunity to be part of this book, and I was
very mindful of doing right by both it and
readers while working on this edition.

—Bruce

Thank you so much to the following con-
tributing authors. Readers have a more
valuable book because of your efforts, for
which I’m grateful. I’d also like to extend my
apologies to Erik Vorhes that we weren’t
able to fit Appendixes A and B in the book.
Readers who see them on the book’s site
will surely appreciate your work.

In alphabetical order by last name, the
contributing authors are:

Scott Boms (Chapter 14)
Scott is an award-winning designer, writer,
and speaker who has partnered with orga-
nizations such as PayPal, HSBC, Hyundai,
DHL, XM Radio, Toronto Life magazine,
and Masterfile during his more than 15
years of working on the Web. When he’s
away from the computer, you might find
him shooting Polaroids; playing drums with
his band, George; or enjoying time with
his wonderful wife and two children. He’s
@scottboms on Twitter.

Ian Devlin (Chapter 17)
Ian Devlin is an Irish Web developer, blog-
ger, and author who enjoys coding and
writing about emerging Web technologies
such as HTML5 and CSS3. In addition to
front-end development, Ian also builds
solutions with back-end technologies such
as .NET and PHP. He has recently written
a book, HTML5 Multimedia: Develop and
Design (Peachpit Press, 2011).

http://typedia.com/
http://begoodnotbad.com

Contents at a Glance

 acknowledgments . iv

 introduction . xv

Chapter 1 Web page building blocks 1

Chapter 2 Working with Web page Files 25

Chapter 3 basic htMl structure 41

Chapter 4 text . 99

Chapter 5 images . 147

Chapter 6 links . 165

Chapter 7 Css building blocks 179

Chapter 8 Working with style sheets 197

Chapter 9 Defining selectors 213

Chapter 10 Formatting text with styles 241

Chapter 11 layout with styles . 275

Chapter 12 style sheets for Mobile to Desktop 327

Chapter 13 Working with Web Fonts 353

Chapter 14 Enhancements with Css3 371

Chapter 15 lists . 397

Chapter 16 Forms . 417

Chapter 17 Video, audio, and other Multimedia 449

Chapter 18 tables . 489

Chapter 19 Working with scripts 497

Chapter 20 testing & Debugging Web pages 505

Chapter 21 publishing your pages on the Web 521

 index . 529

vi Contents at a Glance

Table of Contents vii

Table of Contents

 Acknowledgments . iv

 Introduction . xv

HTML and CSS in Brief xvi
Progressive Enhancement: A Best Practice xviii
Is This Book for You? . xx
How This Book Works. xxii
Companion Web Site xxiv

Chapter 1 Web Page Building Blocks 1

A Basic HTML Page . 3
Semantic HTML: Markup with Meaning 6
Markup: Elements, Attributes, and Values13
A Web Page’s Text Content 16
Links, Images, and Other Non-Text Content17
File Names . 19
URLs . 20
Key Takeaways. 24

Chapter 2 Working with Web Page Files 25

Planning Your Site . 26
Creating a New Web Page 28
Saving Your Web Page 30
Specifying a Default Page or Homepage 33
Editing Web Pages . 35
Organizing Files . 36
Viewing Your Page in a Browser 37
The Inspiration of Others 39

Chapter 3 Basic HTML Structure 41

Starting Your Web Page 43
Creating a Title. . 46
Creating Headings . 48
Understanding HTML5’s Document Outline 50
Grouping Headings . 58
Common Page Constructs 60

viii Table of Contents

Creating a Header . 61
Marking Navigation . 64
Creating an Article . 68
Defining a Section. 72
Specifying an Aside . 75
Creating a Footer . 80
Creating Generic Containers. 84
Improving Accessibility with ARIA 88
Naming Elements with a Class or ID. 92
Adding the Title Attribute to Elements 95
Adding Comments . 96

Chapter 4 Text . 99

Starting a New Paragraph100
Adding Author Contact Information 102
Creating a Figure . 104
Specifying Time .106
Marking Important and Emphasized Text 110
Indicating a Citation or Reference 112
Quoting Text . 113
Highlighting Text . 116
Explaining Abbreviations 118
Defining a Term . 120
Creating Superscripts and Subscripts. 121
Noting Edits and Inaccurate Text 124
Marking Up Code . 128
Using Preformatted Text 130
Specifying Fine Print . 132
Creating a Line Break . 133
Creating Spans . 134
Other Elements . 136

Chapter 5 Images . 147

About Images for the Web 148
Getting Images . 152
Choosing an Image Editor 153
Saving Your Images . 154
Inserting Images on a Page 156
Offering Alternate Text 157
Specifying Image Size 158
Scaling Images with the Browser160

Table of Contents ix

Scaling Images with an Image Editor 161
Adding Icons for Your Web Site 162

Chapter 6 Links . 165

The Anatomy of a Link 166
Creating a Link to Another Web Page. 167
Creating Anchors . 172
Linking to a Specific Anchor 174
Creating Other Kinds of Links 175

Chapter 7 CSS Building Blocks 179

Constructing a Style Rule. 181
Adding Comments to Style Rules 182
The Cascade: When Rules Collide. 184
A Property’s Value. . 188

Chapter 8 Working with Style Sheets 197

Creating an External Style Sheet 198
Linking to External Style Sheets 200
Creating an Embedded Style Sheet 202
Applying Inline Styles 204
The Importance of Location 206
Using Media-Specific Style Sheets 208
Offering Alternate Style Sheets210
The Inspiration of Others: CSS212

Chapter 9 Defining Selectors . 213

Constructing Selectors 214
Selecting Elements by Name 216
Selecting Elements by Class or ID. 218
Selecting Elements by Context221
Selecting Part of an Element 227
Selecting Links Based on Their State 230
Selecting Elements Based on Attributes 232
Specifying Groups of Elements 236
Combining Selectors 238
Selectors Recap . 240

x Table of Contents

Chapter 10 Formatting Text with Styles 241

Choosing a Font Family 243
Specifying Alternate Fonts 244
Creating Italics . 246
Applying Bold Formatting 248
Setting the Font Size 250
Setting the Line Height 255
Setting All Font Values at Once 256
Setting the Color . 258
Changing the Text’s Background 260
Controlling Spacing . 264
Adding Indents . 265
Setting White Space Properties 266
Aligning Text . 268
Changing the Text Case 270
Using Small Caps . 271
Decorating Text . 272

Chapter 11 Layout with Styles 275

Considerations When Beginning a Layout 276
Structuring Your Pages 279
Styling HTML5 Elements in Older Browsers 286
Resetting or Normalizing Default Styles 290
The Box Model. 292
Changing the Background 294
Setting the Height or Width for an Element 298
Setting the Margins around an Element 302
Adding Padding around an Element. 304
Making Elements Float 306
Controlling Where Elements Float. 308
Setting the Border . 311
Offsetting Elements in the Natural Flow 314
Positioning Elements Absolutely 316
Positioning Elements in 3D 318
Determining How to Treat Overflow. 320
Aligning Elements Vertically 322
Changing the Cursor 323
Displaying and Hiding Elements 324

Table of Contents xi

Chapter 12 Style Sheets for Mobile to Desktop 327

Mobile Strategies and Considerations 328
Understanding and Implementing Media Queries. . . 333
Building a Page that Adapts with Media Queries . . . 340

Chapter 13 Working with Web Fonts 353

What Is a Web Font?. 354
Where to Find Web Fonts. 356
Downloading Your First Web Font 358
Working with @font-face 360
Styling Web Fonts and Managing File Size 365

Chapter 14 Enhancements with CSS3 371

Understanding Vendor Prefixes 373
A Quick Look at Browser Compatibility 375
Using Polyfills for Progressive Enhancement 376
Rounding the Corners of Elements 378
Adding Drop Shadows to Text 382
Adding Drop Shadows to Other Elements 384
Applying Multiple Backgrounds 388
Using Gradient Backgrounds 390
Setting the Opacity of Elements 394

Chapter 15 Lists . 397

Creating Ordered and Unordered Lists 398
Choosing Your Markers401
Choosing Where to Start List Numbering. 403
Using Custom Markers 404
Controlling Where Markers Hang 406
Setting All List-Style Properties at Once 407
Styling Nested Lists . 408
Creating Description Lists 412

Chapter 16 Forms . 417

Creating Forms . 419
Processing Forms . 421
Sending Form Data via Email. 424
Organizing the Form Elements. 426
Creating Text Boxes. 428

xii Table of Contents

Creating Password Boxes 431
Creating Email, Telephone, and URL Boxes 432
Labeling Form Parts . 434
Creating Radio Buttons 436
Creating Select Boxes 438
Creating Checkboxes 440
Creating Text Areas . 441
Allowing Visitors to Upload Files 442
Creating Hidden Fields 443
Creating a Submit Button 444
Using an Image to Submit a Form 446
Disabling Form Elements447
New HTML5 Features and Browser Support 448

Chapter 17 Video, Audio, and Other Multimedia 449

Third-Party Plugins and Going Native. 451
Video File Formats . 452
Adding a Single Video to Your Web Page 453
Exploring Video Attributes 454
Adding Controls and Autoplay to Your Video 455
Looping a Video and Specifying a Poster Image . . . 457
Preventing a Video from Preloading 458
Using Video with Multiple Sources 459
Multiple Media Sources and the Source Element . . . 460
Adding Video with Hyperlink Fallbacks. 461
Adding Video with Flash Fallbacks 463
Providing Accessibility 467
Adding Audio File Formats 468
Adding a Single Audio File to Your Web Page 469
Adding a Single Audio File with Controls to Your

Web Page . 470
Exploring Audio Attributes 471
Adding Controls and Autoplay to Audio in a Loop . . . 472
Preloading an Audio File473
Providing Multiple Audio Sources474
Adding Audio with Hyperlink Fallbacks475
Adding Audio with Flash Fallbacks476
Adding Audio with Flash and a Hyperlink Fallback . . .478
Getting Multimedia Files 480
Considering Digital Rights Management (DRM) 481
Embedding Flash Animation 482

Table of Contents xiii

Embedding YouTube Video 484
Using Video with Canvas 485
Coupling Video with SVG 486
Further Resources 487

Chapter 18 Tables 489

Structuring Tables 490
Spanning Columns and Rows 494

Chapter 19 Working with Scripts 497

Loading an External Script 499
Adding an Embedded Script 502
JavaScript Events 503

Chapter 20 Testing & Debugging Web Pages 505

Trying Some Debugging Techniques 506
Checking the Easy Stuff: General 508
Checking the Easy Stuff: HTML 510
Checking the Easy Stuff: CSS 512
Validating Your Code 514
Testing Your Page 516
When Images Don’t Appear 519
Still Stuck? 520

Chapter 21 Publishing Your Pages on the Web 521

Getting Your Own Domain Name 522
Finding a Host for Your Site 523
Transferring Files to the Server 525

 Index 529

 Bonus chapters mentioned in this eBook are
available after the index.

Appendix A A1

Appendix B B1

This page intentionally left blank

Introduction xv

Introduction

Whether you are just beginning your ven-
ture into building Web sites or have built
some before but want to ensure that your
knowledge is current, you’ve come along
at a very exciting time in the industry.

How we code and style pages, the brows-
ers in which we view the pages, and the
devices on which we view the browsers
have all advanced substantially the past
few years. Once limited to browsing the
Web from our desktop computers or lap-
tops, we can now take the Web with us on
any number of devices: phones, tablets,
and, yes, laptops and desktops, and more.

Which is as it should be, because the
Web’s promise has always been the
 dissolution of boundaries—the power
to share and access information freely
from any metropolis, rural community,

or anywhere in between, from any Web-
enabled device. In short, the Web’s prom-
ise lies in its universality. And the Web’s
reach continues to expand as technology
finds its ways to communities that were
once shut out.

Adding to the Web’s greatness is that
anyone is free to create and launch a site.
This book shows you how. It is ideal for
the beginner with no knowledge of HTML
or CSS who wants to begin to create Web
pages. You’ll find clear, easy-to-follow
instructions that take you through the
process of creating pages step by step.
Lastly, the book is a helpful guide to keep
handy. You can look up topics in the table
of contents or index and consult just those
subjects about which you need more
information.

xvi Introduction

HTML and CSS in Brief
At the root of the Web’s success is a
simple, text-based markup language that
is easy to learn and that any device with a
basic Web browser can read: HTML. Every
Web page requires at least some HTML; it
wouldn’t be a Web page without it.

As you will learn in greater detail as you
move through this book, HTML is used to
define your content’s meaning, and CSS is
used to define how your content and Web
page will look. Both HTML pages and CSS
files (style sheets) are text files, making
them easy to edit. You can see snippets of
HTML and CSS in “How This Book Works,”
near the end of this introduction.

You’ll dive into learning a basic HTML page
right off the bat in Chapter 1, and you’ll
begin to learn how to style your pages with
CSS in Chapter 7. See “What this book will
teach you” for an overview of all the chap-
ters and a summary of the topics covered.

What is HTML5?
It helps to know some basics about the
origins of HTML in order to understand
HTML5. HTML began in the early 1990s as
a short document that detailed a handful of
elements used to build Web pages. Many
of those elements were for describing Web
page content such as headings, para-
graphs, and lists. HTML’s version number
has increased as the language has evolved
with the introduction of other elements and
adjustments to its rules. The most current
version is HTML5.

HTML5 is a natural evolution of earlier
versions of HTML and strives to reflect
the needs of both current and future Web
sites. It inherits the vast majority of features
from its predecessors, meaning that if you
coded HTML before HTML5 came on the

scene, you already know a lot of HTML5.
This also means that much of HTML5
works in both old and new browsers; being
backward compatible is a key design
principle of HTML5 (see www.w3.org/TR/
html-design-principles/).

HTML5 also adds a bevy of new features.
Many are straightforward, such as addi-
tional elements (article, section, figure,
and many more) that are used to describe
content. Others are quite complex and
aid in creating powerful Web applications.
You’ll need to have a firm grasp of creat-
ing Web pages before you can graduate to
the more complicated features that HTML5
provides. HTML5 also introduces native
audio and video playback to your Web
pages, which the book also covers.

What is CSS3?
The first version of CSS didn’t exist until
after HTML had been around for a few
years, becoming official in 1996. Like
HTML5 and its relationship to earlier ver-
sions of HTML, CSS3 is a natural extension
of the versions of CSS that preceded it.

CSS3 is more powerful than earlier ver-
sions of CSS and introduces numerous
visual effects, such as drop shadows, text
shadows, rounded corners, and gradients.
(See “What this book will teach you” for
details of what’s covered.)

Web standards and specifications
You might be wondering who created
HTML and CSS in the first place, and who
continues to evolve them. The World Wide
Web Consortium (W3C)—directed by the
inventor of the Web and HTML, Tim Bern-
ers-Lee—is the organization responsible for
shepherding the development of Web stan-
dards. Specifications (or specs, for short)
are documents that define the parameters

www.w3.org/TR/html-design-principles/
www.w3.org/TR/html-design-principles/

Introduction xvii

of languages like HTML and CSS. In other
words, specs standardize the rules. Follow
the W3C’s activity at www.w3.org A.

For a variety of reasons, another organi-
zation—the Web Hypertext Application
Technology Working Group (WHATWG,
found at www.whatwg.org)—is developing
the HTML5 specification. The W3C incor-
porates WHATWG’s work into its official
version of the in-progress spec.

With standards in place, we can build our
pages from the agreed-upon set of rules,
and browsers—like Chrome, Firefox, Inter-
net Explorer (IE), Opera, and Safari—can be
built to display our pages with those rules
in mind. (On the whole, browsers imple-
ment the standards well. Older versions of
IE, especially IE6, have some issues.

Specifications go through several stages of
development before they are considered
final, at which point they are dubbed a
Recommendation (www.w3.org/2005/10/
Process-20051014/tr).

Parts of the HTML5 and CSS3 specs are still
being finalized, but that doesn’t mean you
can’t use them. It just takes time (literally
years) for the standardization process to
run its course. Browsers begin to implement
a spec’s features long before it becomes
a Recommendation, because that informs
the spec development process itself. So
browsers already include a wide variety of
features in HTML5 and CSS3, even though
they aren’t Recommendations yet.

On the whole, the features covered in this
book are well entrenched in their respec-
tive specs, so the risk of their changing
prior to becoming a Recommendation
is minimal. Developers have been using
many HTML5 and CSS3 features for some
time. So can you.

A The W3C site is the industry’s primary source of
Web-standards specifications.

www.w3.org
www.whatwg.org
www.w3.org/2005/10/Process-20051014/tr
www.w3.org/2005/10/Process-20051014/tr

xviii Introduction

Progressive
Enhancement:
A Best Practice
I began the introduction by speaking of the
universality of the Web—the notion that
information on the Web should be accessi-
ble to all. Progressive enhancement helps
you build sites with universality in mind. It
is not a language, rather it’s an approach
to building sites that Steve Champeon cre-
ated in 2003 (http://en.wikipedia.org/wiki/
Progressive_enhancement).

The idea is simple but powerful: Start your
site with HTML content and behavior that
is accessible to all visitors A. To the same
page, add your design with CSS B and
add additional behavior with JavaScript,
typically loading them from external files
(you’ll learn how to do this).

The result is that devices and browsers
capable of accessing basic pages will get
the simplified, default experience; devices
and browsers capable of viewing more-
robust sites will see the enhanced version.
The experience on your site doesn’t have
to be the same for everyone, as long as
your content is accessible. In essence, the
idea behind progressive enhancement is
that everyone wins.

A A basic HTML page with no custom CSS
applied to it. This page may not look great, but
the information is accessible—and that’s what’s
important. Even browsers from near the inception
of the Web more than 20 years ago can display
this page; so too can the oldest of mobile phones
with Web browsers. And screen readers, software
that reads Web pages aloud to visually impaired
visitors, will be able to navigate it easily.

http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement

Introduction xix

This book teaches you how to build pro-
gressively enhanced sites even if it doesn’t
always explicitly call that out while doing
so. It’s a natural result of the best practices
imparted throughout the book.

However, Chapters 12 and 14 do address
progressive enhancement head on. Take
an early peek at those if you’re interested
in seeing how the principle of progres-
sive enhancement helps you build a site
that adapts its layout based on a device’s
screen size and browser capabilities, or
how older browsers will display simplified
designs while modern browsers will display
ones enhanced with CSS3 effects.

Progressive enhancement is a key best
practice that is at the heart of building sites
for everyone.

B The same page as viewed in a browser
that supports CSS. It’s the same information,
just presented differently. Users with more
capable devices and browsers get an enhanced
experience when visiting the page.

xx Introduction

Is This Book for You?
This book assumes no prior knowledge
of building Web sites. So in that sense, it
is for the absolute beginner. You will learn
both HTML and CSS from the ground up. In
the course of doing so, you will also learn
about features that are new in HTML5 and
CSS3, with an emphasis on the ones that
designers and developers are using today
in their daily work.

But even if you are familiar with HTML and
CSS, you still stand to learn from this book,
especially if you want to get up to speed
on much of the latest in HTML5, CSS3, and
best practices.

What this book will teach you
We’ve added approximately 125 pages
to this book since the previous edition in
order to bring you as much material as
possible. (The very first edition of the book,
published in 1996, had 176 pages total.)
We’ve also made substantial updates to (or
done complete rewrites of) nearly every
previous page. In short, this Seventh Edi-
tion represents a major revision.

The chapters are organized like so:

n	 Chapters 1 through 6 and 15 through 18
cover the principles of creating HTML
pages and the range of HTML elements
at your disposal, clearly demonstrating
when and how to use each one.

n	 Chapters 7 through 14 dive into CSS,
all the way from creating your first style
rule to applying enhanced visual effects
with CSS3.

n	 Chapter 19 shows you how to add pre-
written JavaScript to your pages.

n	 Chapter 20 tells you how to test and
debug your pages before putting them
on the Web.

n	 Chapter 21 explains how to secure your
own domain name and then publish
your site on the Web for all to see.

Expanding on that, some of the topics
include:

n	 Creating, saving, and editing HTML and
CSS files.

n	 What it means to write semantic HTML
and why it is important.

n	 How to separate your page’s content
(that is, your HTML) from its presenta-
tion (that is, your CSS)—a key aspect of
progressive enhancement.

n	 Structuring your content in a meaningful
way by using HTML elements that have
been around for years and ones that
are new in HTML5.

n	 Improving your site’s accessibility with
ARIA landmark roles and other good
coding practices.

n	 Adding images to your pages and opti-
mizing them for the Web.

n	 Linking from one Web page to another
page, or from one part of a page to
another part.

n	 Styling text (size, color, bold, italics,
and more); adding background colors
and images; and implementing a fluid,
multi-column layout that can shrink
and expand to accommodate different
screen sizes.

Introduction xxi

What this book won’t teach you
Alas, even after adding so many pages
since the previous edition, there is so much
to talk about when it comes to HTML and
CSS that we had to leave out some topics.

With a couple of exceptions, we stuck
to omitting items that you would have
fewer occasions to use, are still subject to
change, lack widespread browser sup-
port, require JavaScript knowledge, or are
advanced subjects.

Some of the topics not covered include:

n	 The HTML5 details, summary, menu,
command, and keygen elements.

n	 The HTML5 canvas element, which
allows you to draw graphics (and even
create games) with JavaScript.

n	 The HTML5 APIs and other advanced
features that require JavaScript knowl-
edge or are otherwise not directly
related to the new semantic HTML5
elements.

n	 CSS sprites. This technique involves
combining more than one image
into a single image, which is very
helpful in minimizing the number of
assets your pages need to load. See
www.bruceontheloose.com/sprites/ for
more information.

n	 CSS image replacement. These tech-
niques are often paired with CSS
sprites. See www.bruceontheloose
.com/ir/ for more information.

n	 CSS3 transforms, animations, and
transitions.

n	 CSS3’s new layout modules.

n	 Leveraging new selectors in CSS3
that allow you to target your styles in a
wider range of ways than was previ-
ously possible.

n	 Learning your options for addressing
visitors on mobile devices.

n	 Building a single site for all users—
whether they are using a mobile phone,
tablet, laptop, desktop computer, or
other Web-enabled device—based on
many of the principles of responsive
web design, some of which leverage
CSS3 media queries.

n	 Adding custom Web fonts to your
pages with @font-face.

n	 Using CSS3 effects such as opacity,
background alpha transparency, gradi-
ents, rounded corners, drop shadows,
shadows inside elements, text shad-
ows, and multiple background images.

n	 Building forms to solicit input from your
visitors, including using some of the
new form input types in HTML5.

n	 Including media in your pages with the
HTML5 audio and video elements.

And more.

These topics are complemented by many
dozens of code samples that show you
how to implement the features based on
best practices in the industry.

www.bruceontheloose.com/sprites/
www.bruceontheloose.com/ir/
www.bruceontheloose.com/ir/

xxii Introduction

How This Book Works
Nearly every section of the book contains
practical code examples that demonstrate
real-world use (A and B). Typically, they
are coupled with screen shots that show
the results of the code when you view the
Web page in a browser C.

Most of the screen shots are of the lat-
est version of Firefox that was available
at the time. However, this doesn’t imply
a recommendation of Firefox over any
other browser. The code samples will look
very similar in any of the latest versions
of Chrome, Internet Explorer, Opera, or
Safari. As you will learn in Chapter 20, you
should test your pages in a wide range of
browsers before putting them on the Web,

...
<body>
<header role="banner">
 ...
 <nav role="navigation">
 <ul class="nav">
 home
 about
 resources
 archives

 </nav>
 ...
</header>

...

</body>
</html>

A You’ll find a snippet of HTML code on many pages, with the pertinent sections highlighted. An ellipsis (...)
represents additional code or content that was omitted for brevity. Often, the omitted portion is shown in a
different code figure.

because there’s no telling what browsers
your visitors will use.

The code and screen shots are accompa-
nied by descriptions of the HTML elements
or CSS properties in question, both to give
the samples context and to increase your
understanding of them.

In many cases, you may find that the
descriptions and code samples are enough
for you to start using the HTML and CSS
features. But if you need explicit guidance
on how to use them, step-by-step instruc-
tions are always provided.

Finally, most sections contain tips that
relay additional usage information, best
practices, references to related parts of the
book, links to relevant resources, and more.

Introduction xxiii

Conventions used in this book
The book uses the following conventions:

n	 The word HTML is all encompassing,
representing the language in general.
HTML5 is used when referring to that
specific version of HTML, such as when
discussing a feature that is new in
HTML5 and doesn’t exist in previous
versions of HTML. The same approach
applies to usage of the terms CSS (gen-
eral) and CSS3 (specific to CSS3).

n	 Text or code that is a placeholder for a
value you would create yourself is itali-
cized. Most placeholders appear in the
step-by-step instructions. For example,
“Or type #rrggbb, where rrggbb is the
color’s hexadecimal representation.”

n	 Code that you should actually type or
that represents HTML or CSS code
appears in this font.

n	 An arrow (➝) in a code figure indicates
a continuation of the previous line—the
line has been wrapped to fit in the
book’s column B. The arrow is not part
of the code itself, so it’s not something
you would type. Instead, type the line
continuously, as if it had not wrapped to
another line.

n	 The first occurrence of a word is itali-
cized when it is defined.

n	 IE is often used as a popular abbrevia-
tion of Internet Explorer. For instance,
IE9 is synonymous with Internet
Explorer 9.

n	 Whenever a plus sign (+) follows a
browser version number, it means the
version listed plus subsequent versions.
For instance, Firefox 8+ refers to Firefox
8.0 and all versions after it.

B If CSS code is relevant to the example, it is
shown in its own box, with the pertinent sections
highlighted.

/* Site Navigation */
.nav li {
 float: left;
 font-size: .75em; /* makes the

➝ bullets smaller */
}

.nav li a {
 font-size: 1.5em;
}

.nav li:first-child {
 list-style: none;
 padding-left: 0;
}

C Screen shots of one or more browsers
demonstrate how the code affects the page.

Companion Web Site
The book’s site, at www.bruceontheloose
.com/htmlcss/, contains the table of
contents, every complete code example
featured in the book (plus some additional
ones that wouldn’t fit), links to resources
cited in the book (as well as additional
ones), information about references used
during writing, a list of errata, and more.

The site also includes reference sections
(Appendixes A and B) that we didn’t have
room to include in the book. These are
handy for quickly looking up HTML ele-
ments and attributes or CSS properties and
values. (They also contain some informa-
tion not covered in the book.)

You can find the code examples at www
.bruceontheloose.com/htmlcss/examples/.
You can browse them from there or down-
load them to your computer—all the HTML
and CSS files are yours for the taking.

In some cases, I’ve included additional
comments in the code to explain more
about what it does or how to use it. A
handful of the code samples in the book
are truncated for space considerations, but
the complete versions are on the book’s
Web site. Please feel free to use the code
as you please, modifying it as needed for
your own projects.

The URLs for some of the key pages on the
book’s site follow:

n	 Home page: www.bruceontheloose
.com/htmlcss/

n	 Code samples: www.bruceontheloose
.com/htmlcss/examples/

n	 Appendix A: HTML Reference:
www.bruceontheloose.com/ref/html/

n	 Appendix B: CSS Properties and Values:
www.bruceontheloose.com/ref/css/

I hope you find the site helpful.

Video Training
Visual QuickStart Guides are now even
more visual: Building on the success of the
top-selling Visual QuickStart Guide books,
Peachpit now offers Video QuickStarts. As
a companion to this book, Peachpit offers
more than an hour of short, task-based
videos that will help you master HTML5’s
top features and techniques; instead of just
reading about how to use HTML5, you can
watch it in action. It’s a great way to learn
all the basics and some of the newer or
more complex features of HTML5. Log on
to the Peachpit site at www.peachpit.com/
register to register your book, and you’ll
find a free streaming sample; purchasing
the rest of the material is quick and easy.

xxiv Introduction

www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/ref/html/
www.bruceontheloose.com/ref/css/
www.peachpit.com/

This page intentionally left blank

4
Text

In This Chapter
Starting a New Paragraph 100

Adding Author Contact Information 102

Creating a Figure 104

Specifying Time 106

Marking Important and Emphasized Text 110

Indicating a Citation or Reference 112

Quoting Text 113

Highlighting Text 116

Explaining Abbreviations 118

Defining a Term 120

Creating Superscripts and Subscripts 121

Noting Edits and Inaccurate Text 124

Marking Up Code 128

Using Preformatted Text 130

Specifying Fine Print 132

Creating a Line Break 133

Creating Spans 134

Other Elements 136

Unless a site is heavy on videos or photo
galleries, most content on Web pages is
text. This chapter explains which HTML
semantics are appropriate for different
types of text, especially (but not solely) for
text within a sentence or phrase.

For example, the em element is specifically
designed for indicating emphasized text,
and the cite element’s purpose is to cite
works of art, movies, books, and more.

Browsers typically style many text ele-
ments differently than normal text. For
instance, both the em and cite elements
are italicized. Another element, code,
which is specifically designed for format-
ting lines of code from a script or program,
displays in a monospace font by default.

How content will look is irrelevant when
deciding how to mark it up. So, you
shouldn’t use em or cite just because you
want to italicize text. That’s the job of CSS.

Instead, focus on choosing HTML elements
that describe the content. If by default a
browser styles it as you would yourself with
CSS, that’s just a bonus. If not, just override
the default formatting with your own CSS.

100 Chapter 4

Starting a New
Paragraph
HTML does not recognize the returns or
other extra white space that you enter in
your text editor. To start a new paragraph
in your Web page, you use the p element
(A and B).

To begin a new paragraph:
1. Type <p>.

2. Type the contents of the new
paragraph.

3. Type </p> to end the paragraph.

...
<body>

<article>
 <h1>Antoni Gaudí</h1>
 <p>Many tourists are drawn to

➝ Barcelona to see Antoni Gaudí's
➝ incredible architecture.</p>

 <p>Barcelona celebrated the 150th
➝ anniversary of Gaudí's birth in
➝ 2002.</p>

 <h2>La Casa Milà</h2>
 <p>Gaudí's work was essentially useful.

➝ La Casa Milà is
➝ an apartment building and real people
➝ live there.</p>

 <h2>La Sagrada Família</h2>
 <p>The complicatedly named and curiously

➝ unfinished Expiatory Temple of the
➝ Sacred Family is the most visited
➝ building in Barcelona.</p>

</article>

</body>
</html>

A Not surprisingly, p is one of the most frequently
used HTML elements.

Text 101

 You can use styles to format paragraphs
with a particular font, size, or color (and more).
For details, consult Chapter 10.

 To control the amount of space between
lines, consult “Setting the Line Height” in
Chapter 10. To control the amount of space
after a paragraph, consult “Setting the Mar-
gins around an Element” or “Adding Padding
around an Element,” both of which are in
Chapter 11.

 You can justify paragraph text or align
it to the left, right, or center with CSS (see
“Aligning Text” in Chapter 10).

B Here you see the typical default rendering of
paragraphs. As with all content elements, you have
full control over the formatting with CSS.

102 Chapter 4

Adding Author
Contact Information
You might think the address element is
for marking up a postal address, but it isn’t
(except for one circumstance; see the tips).
In fact, there isn’t an HTML element explic-
itly designed for that purpose.

Instead, address defines the contact infor-
mation for the author, people, or organiza-
tion relevant to an HTML page (usually
appearing at the end of the page, if at all)
or part of a page, such as within a report or
a news article (A and B).

To provide the author’s
contact information:
1. If you want to provide author contact

information for an article, place the
cursor within that article. Alternatively,
place the cursor within the body (or,
more commonly, the page-level footer)
if you want to provide author contact
information for the page at large.

2. Type <address>.

3. Type the author’s email address, a link
to a page with contact information, and
so on.

4. Type </address>.

...
<body>

<article>
 <h1>Museum Opens on the Waterfront</h1>
 <p>The new art museum not only introduces

➝ a range of contemporary works to the
➝ city, it's part of larger development
➝ effort on the waterfront.</p>

 ... [rest of story content] ...

 <!-- the article's footer with address

➝ information for the article -->
 <footer>
 <p>Tracey Wong has written for <cite>

➝ The Paper of Papers</cite> since
➝ receiving her MFA in art history
three years ago.</p>

 <address>
 Email her at <a href="mailto:

➝ traceyw@thepaperofpapers.com">
➝ traceyw@thepaperofpapers.com
➝ .

 </address>
 </footer>
</article>

<!-- the page's footer with address
➝ information for the whole page -->
<footer>
 <p><small>© 2011 The Paper of

➝ Papers, Inc.</small></p>

 <address>
 Have a question or comment about the

➝ site?
➝ Contact our Web team.

 </address>
</footer>

</body>
</html>

A This page has two address elements: one for
the article’s author and the other in a page-level
footer for the people who maintain the whole
page. Note that the address for the article
contains contact information only. Although the
background information about Tracey Wong is also
in the article’s footer, it’s outside the address
element.

Text 103

 Most of the time, contact information
takes the form of the author's email address
or a link to a page with more contact informa-
tion. The contact information could very well
be the author's postal address, in which case
marking it up with address would be valid.
But if you're creating the Contact Us page for
your business and want to include your office
locations, it would be incorrect to code those
with address.

 address pertains to the nearest
 article element ancestor, or to the page’s
body if address isn’t nested within an
article. It’s customary to place address in a
footer element when noting author contact
information for the page at large A.

 An address in an article provides
contact information for the author of that
article A, not for any articles nested
within that article, such as user comments.

 address may contain author contact
information only, not anything else such as the
document or article’s last modified date A.
Additionally, HTML5 forbids nesting any of the
following elements inside address: h1–h6,
article, address, aside, footer, header,
hgroup, nav, and section.

 See Chapter 3 to learn more about the
article and footer elements.

B The address element renders in italics by
default.

104 Chapter 4

Creating a Figure
As you well know, it’s a common conven-
tion in the print world to associate figures
with text. A figure may be a chart, a graph,
a photo, an illustration, a code segment,
and so on. You’ve seen these at play in
newspapers, magazines, reports, and
more. Why, this very book has figures on
most pages.

Prior to HTML5, there wasn’t an element
designed for this purpose, so developers
cobbled together solutions on their own,
often involving the less-than-ideal, non-
semantic div element. HTML5 changes
that with figure and figcaption. By
definition, a figure is a self-contained
piece of content (with an optional caption)
that is referred to by the main content of
your document (A and B). The optional
 figcaption is a figure’s caption or leg-
end and may appear either at the begin-
ning or at the end of a figure’s content A.

To create a figure and
figure caption:
1. Type <figure>.

2. Optionally, type <figcaption> to begin
the figure’s caption.

3. Type the caption text.

4. Type </figcaption> if you created a
caption in steps 2 and 3.

5. Create your figure by adding code for
images, videos, data tables, and so on.

6. If you didn’t include a figcaption
before your figure’s content, optionally
follow steps 2–4 to add one after the
content.

7. Type </figure>.

...
<body>

<article>
 <h1>2011 Revenue by Industry</h1>
 ... [report content] ...

 <figure>
 <figcaption>Figure 3: 2011 Revenue

➝ by Industry</figcaption>

 <img src="chart-revenue.png"
➝ width="180" height="143" alt=
➝ "Revenue chart: Clothing 42%,
➝ Toys 36%, Food 22%" />

 </figure>

 <p>As Figure 3 illustrates, ... </p>

 ... [more report content] ...
</article>

</body>
</html>

A This figure has a chart image, though more
than one image or other types of content (such
as a data table or video) are allowed as well. The
figcaption element isn’t required, but it must
be the first or last element in a figure if you do
include it. A figure doesn’t have a default styling
aside from starting on its own line in modern
browsers B.

Text 105

 Typically, figure is part of the content
that refers to it A, but it could also live else-
where on the page or on another page, such
as in an appendix.

 The figure element may include
multiple pieces of content. For instance, A
could include two charts: one for revenue and
another for profits. Keep in mind, though, that
regardless of how much content a figure
has, only one figcaption is allowed.

 Don't use figure simply as a means to
embed all instances of self-contained content
within text. Oftentimes, the aside element
may be appropriate instead (see “Specifying
an Aside” in Chapter 3).

 The figure element is known as a
sectioning root in HTML5, which means it
can have h1–h6 headings (and thus, its own
outline), but they don’t contribute to the
document outline. This is very different than
sectioning content. Please see “Understand-
ing HTML5’s Document Outline” in Chapter 3.

 You can’t use the optional figcaption
element unless it's in a figure with other
content.

 figcaption text doesn’t have to begin
with “Figure 3” or “Exhibit B.” It could just as
well be a brief description of the content, like a
photo caption.

 If you include a figcaption, it must be
either the first or last element of the figure.

B The figure with the chart and caption appears
within the article text. It would be simple to
style the figure with CSS so, for example, it has a
border and so the article text wraps around it.

106 Chapter 4

Specifying Time
You can mark up a precise time or calendar
date with the time element. This element
is new in HTML5. (See the sidebar “Under-
standing the datetime Format” for more
specifics about the calendar date system.)

One of the most common uses of time is
to indicate the publication date of an arti-
cle element. To do so, include the pubdate
attribute. The time element with pubdate
represents the publication date of the
nearest ancestor article element A. You
could also time-stamp an article’s reader-
submitted comments with time, datetime,
and pubdate, assuming each comment
is wrapped in an article element that is
nested in the article to which the com-
ment relates (see Example 2 of the sidebar
in “Creating an Article” in Chapter 3).

You can represent time with the time
element in a variety of ways (A and C).
The optional text content inside time (that
is, <time>text</time>) appears on the
screen as a human-readable version (B
and D) of the optional, machine-readable
datetime value.

...
<body>

<article>
 <header>
 <h1>Cheetah and Gazelle Make Fast

➝ Friends</h1>
 <p><time datetime="2011-10-15"

➝ pubdate="pubdate">October 15,
➝ 2011</time></p>

 </header>

 ... [article content] ...
</article>

</body>
</html>

A As is proper, the datetime attribute and the
time element’s text reflect the same date, though
they can be written differently than one another
(see C for more examples). This time element
represents the date the article was published,
because the pubdate attribute is included.

B The article’s publication date appears
underneath its heading. The text content version
of the time element displays, not the datetime
value.

Text 107

To specify a precise time,
calendar date, or both:
1. Type <time to begin a time element.

2. If desired, type datetime="time" where
time is represented in the approved
format (see the “Understanding the
datetime Format” sidebar).

3. If the time represents the publication
date of an article or the whole page,
type either pubdate="pubdate" or
pubdate.

4. Type > to complete the start tag.

5. If you want the time to display in the
browser, type text that reflects the time,
the date, or both (see the first tip about
the allowed text format).

6. Type </time>.

 If you omit the datetime attribute, the
text content must conform to the valid date or
time format. In other words, the first example
in C could not be coded as <p>The train
arrives at <time>8:45 a.m.</time> and
<time>4:20 p.m.</time> on <time>October
4th, 2012</time>.</p>. However, when you
do include datetime, you’re free to represent
the date or time in the text content as you
wish, as seen in the second and third exam-
ples of C.

 Don’t use time to mark up imprecise
dates or times, such as "the mid-1900s," "just
after midnight," "the latter part of the Renais-
sance," or "early last week."

 Always include a text version of the time
and date inside the time element if you want
it to show in your page. If it’s missing, brows-
ers are supposed to display text that is based
on datetime’s value, but support is lacking
greatly at the time of this writing D.

continues on page 109

...
<body>

<p>The train arrives at <time>08:45</time>
➝ and <time>16:20</time> on
➝ <time>2012-04-10</time>.</p>

<p>We began our descent from the peak of
➝ Everest on <time datetime="1952-06-12T11:
➝ 05:00">June 12, 1952 at 11:05 a.m.
➝ </time></p>

<p>They made their dinner reservation
➝ for <time datetime="2011-09-20T18:
➝ 30:00">tonight at 6:30</time>.</p>

<p>The record release party is on <time
➝ datetime="2011-12-09"></time>.</p>

</body>
</html>

C The time element can be utilized several
ways. The simplest form (the first example) lacks
a datetime attribute. But it does provide the date
and times in the valid format as required when
datetime is omitted. The top three examples
contain time and/or date with text inside time,
which will display on the screen D. I suggest you
always include this human-readable form of the
time, since, currently, browsers won’t display a
value otherwise B.

D The first three paragraphs show a time. The
last does not (see the last tip).

108 Chapter 4

Understanding the datetime Format
The time element’s time is based on a 24-hour clock with an optional time-zone offset from UTC
(Coordinated Universal Time). The datetime attribute provides the date and time in a machine-
readable format, which I’ve simplified for this initial example:

YYYY-MM-DDThh:mm:ss

For example (local time):

2011-11-03T17:19:10

This means “November 3, 2011, at 10 seconds after 5:19 p.m. local time.” T separates the date
(YYYY-MM-DD) and time (hh:mm:ss), and if you include a time, the seconds are optional. (You
may also provide time with milliseconds in the format of hh:mm.sss. Note the period before the
milliseconds.)

If you’d like, you can represent your time in a global context instead. Add a Z at the end, and the
time zone is UTC.

For example (global time in UTC):

2011-11-03T17:19:10Z

Or, you can specify a time-zone offset from UTC by omitting Z and preceding the offset with
– (minus) or + (plus).

For example (global time with offset from UTC):

2011-11-03T17:19:10-03:30

This means “November 3, 2011, at 10 seconds after 5:19 p.m. Newfoundland standard time
(it’s minus three and a half hours from UTC).” A list of time zones by UTC offsets is available at
http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset.

If you do include datetime, it doesn’t require the full complement of information I just described,
as the examples in C show. Technically speaking, dates in the time element are based on the
proleptic Gregorian calendar (as you may know, the Gregorian calendar is the internationally
accepted civil calendar system in common use today). As such, HTML5 recommends you don’t
use it for pre-Gregorian dates (chances are this won’t be an issue for your content, but just so you
know about it). There has been a lot of discussion about this limitation, but it’s a complicated topic.
Read http://dev.w3.org/html5/spec-author-view/the-time-element.html for more information and
examples, or www.quirksmode.org/blog/archives/2009/04/making_time_saf.html for an extensive
explanation of some of the issues.

http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset
http://dev.w3.org/html5/spec-author-view/the-time-element.html
www.quirksmode.org/blog/archives/2009/04/making_time_saf.html

Text 109

 If you use time with pubdate to indicate
an article’s publication date, it’s com-
mon but not mandatory to place it in either a
header or footer element of the article
element. Regardless, be sure it’s nested some-
where within the relevant article.

 If a time element with the pubdate
attribute doesn’t have an article element as
an ancestor, it represents the publication date
and time of the whole page.

 You can specify pubdate as either

<time pubdate></time>

or <time pubdate="pubdate"></time>.

However, if you include it, either datetime
or a text content version of the time is
required A.

 The datetime attribute’s machine-
readable format (see the “Understanding the
datetime Format” sidebar) allows for syncing
dates and times between Web applications.
As of this writing, no browser displays the
 datetime value (B and D).

 You may not nest a time element inside
another one.

110 Chapter 4

Marking Important
and Emphasized Text
The strong element denotes important
text, while em conveys emphasis. You can
use them individually or together as your
content requires (A and B).

To mark important text:
1. Type .

2. Type the text that you want to mark as
important.

3. Type .

To emphasize text:
1. Type .

2. Type the text that you want to
emphasize.

3. Type .

 Do not use the b and i elements as
replacements for strong and em, respectively.
Although they may look similar in a browser,
their meanings are very different (see the
sidebar “The b and i Elements: Redefined in
HTML5”).

 You may nest strong text inside a
phrase that is also marked with strong. If you
do, the importance of strong text increases
each time it’s a child of another strong.
The same is true of the level of emphasis for
em text nested in another em. For example,
“due by November 17th” is marked as more
important semantically than the other strong
text in this sentence: <p>Remember
that entries are due by
 November 17th.</p>.

 You can style any text as bold or italic
with CSS, as well as override the browser’s
default styling of elements like strong and em
B. For details, consult “Creating Italics” and
“Applying Bold Formatting” in Chapter 10.

...
<body>

<p>Warning: Do not approach the
➝ zombies under any circumstances.
➝ They may look
➝ friendly, but that's just because they want
➝ to eat your arm.</p>

</body>
</html>

A The first sentence has both strong and em,
while the second has em only. If under any
circumstances were marked up instead as
under any circumstances,
it would have greater importance than the text
contained in the surrounding strong.

B Browsers typically display strong text in
boldface and em text in italics. If em is a child of a
strong element (see the first sentence in A), its
text will be both italicized and bold.

Text 111

 If you had experience with HTML
before HTML5, you may know that at that
time strong represented text with stronger
emphasis than em text. In HTML5, however, em
is the only element that indicates emphasis,
and strong has shifted to importance.

[Begin Sidebar]

[end Sidebar]

The b and i Elements: Redefined in HTML5
HTML5 focuses on semantics, not on an element’s presentation. The b and i elements are hold-
overs from the earliest days of HTML, when they were used to make text bold or italic (CSS didn’t
exist yet). They rightly fell out of favor in HTML 4 and XHTML 1 because of their presentational
nature. Coders were encouraged to use strong instead of b, and em instead of i. It turns out,
though, that em and strong are not always semantically appropriate. HTML5 addresses this by
redefining b and i.

Some typographic conventions in traditional publishing fall through the cracks of available HTML
semantics. Among them are italicizing certain scientific names (for example, “The Ulmus ameri-
cana is the Massachusetts state tree.”), named vehicles (for example, the “We rode the Orient
Express.”), and foreign (to English) language phrases (for example, “The couple exhibited a joie de
vivre that was infectious.”). These terms aren’t italicized for emphasis, just stylized per convention.

Rather than create several new semantic elements (and further muddy the waters) to address
cases like these, HTML5 takes a practical stance by trying to make do with what is available: em for
all levels of emphasis, strong for importance, and b and i for the through-the-cracks cases.

The notion is that although b and i don’t carry explicit semantic meaning, the reader will recognize
that a difference is implied because they differ from the surrounding text. And you’re still free to
change their appearance from bold and italics with CSS. HTML5 emphasizes that you use b and i
only as a last resort when another element (such as strong, em, cite, and others) won’t do.

The b Element in Brief

HTML5 redefines the b element this way:

The b element represents a span of text to which attention is being drawn for utilitarian pur-
poses without conveying any extra importance and with no implication of an alternate voice
or mood, such as key words in a document abstract, product names in a review, actionable
words in interactive text-driven software, or an article lede.

For example:

<p>The XR-5, also dubbed the Extreme Robot 5, is the best robot we've ever
➝ tested.</p>

The b element renders as bold by default.

The i Element in Brief

HTML5 redefines the i element this way:

The i element represents a span of text in an alternate voice or mood, or otherwise offset
from the normal prose in a manner indicating a different quality of text, such as a taxonomic
designation, a technical term, an idiomatic phrase from another language, a thought, or a
ship name in Western texts.

Here are some examples:

<p>The <i lang="la">Ulmus americana</i> is the Massachusetts state tree.</p>

<p>The <i>Orient Express</i> began service in 1883.<p>

<p>The couple exhibited a <i lang="fr">joie de vivre</i> that was infectious.<p>

The i element displays in italics by default.

112 Chapter 4

Indicating a Citation
or Reference
Use the cite element for a citation or ref-
erence to a source. Examples include the
title of a play, script, or book; the name of a
song, movie, photo, or sculpture; a concert
or musical tour; a specification; a news-
paper or legal paper; and more (A and B).

To cite a reference:
1. Type <cite>.

2. Type the reference’s name.

3. Type </cite>.

 For instances in which you are quoting
from the cited source, use the blockquote
or q elements, as appropriate, to mark up the
quoted text (see “Quoting Text”). To be clear,
cite is only for the source, not what you are
quoting from it.

...

<p>He listened to <cite>Abbey Road</cite>
➝ while watching <cite>A Hard Day's Night
➝ </cite> and reading <cite>The Beatles
➝ Anthology</cite>.

<p>When he went to The Louvre, he learned
➝ that <cite>Mona Lisa</cite> is also known
➝ as <cite lang="it">La Gioconda</cite>.</p>

...

A The cite element is appropriate for marking up
the titles of works of art, music, movies, and books.

HTML5 and Using the cite Element for Names
Amid a good amount of disagreement from the development community, HTML5 explicitly
declares that using cite for a reference to a person’s name is invalid, even though previous ver-
sions of HTML allowed it and many developers and designers used it that way.

The HTML 4 spec provides the following example (I’ve changed the element names from upper-
case to lowercase):

 As <cite>Harry S. Truman</cite> said,
 <q lang="en-us">The buck stops here.</q>

In addition to instances like that, sites have often used cite for the name of visitors who leave
comments in blog postings and articles (the default WordPress theme does too).

Many developers have made it clear that they intend to continue to use cite on names associ-
ated with quotes in their HTML5 pages because HTML5 doesn't provide an alternative they
deem acceptable (namely, the span and b elements). Jeremy Keith made the case vociferously in
http://24ways.org/2009/incite-a-riot/.

B The cite element renders in italics by default.

http://24ways.org/2009/incite-a-riot/

Text 113

Quoting Text
There are two special elements for
marking text quoted from a source. The
blockquote element represents a quote
(generally a longer one, but not necessar-
ily) that stands alone A and renders on
its own line by default B. Meanwhile, the
q element is for short quotes, like those
within a sentence C (on the next page).

Browsers are supposed to enclose q
 element text in language-specific quotation
marks automatically, but Internet Explorer
didn’t support this until IE8. Some browsers
have issues with nested quotes, too. Be
sure to read the tips to learn about alterna-
tives to using the q element.

To quote a block of text:
1. Type <blockquote to begin a block

quote.

2. If desired, type cite="url", where url
is the address of the source of the
quote.

3. Type > to complete the start tag.

4. Type the text you wish to quote, sur-
rounding it with paragraphs and other
elements as appropriate.

5. Type </blockquote>.

...
<body>

<p>He enjoyed this selection from <cite>The
➝ Adventures of Huckleberry Finn</cite> by
➝ Mark Twain:</p>

<blockquote cite="http://www.marktwain
➝ books.edu/the-adventures-of-huckleberry
➝ -finn/">
 <p>We said there warn't no home like a

➝ raft, after all. Other places do seem
➝ so cramped up and smothery, but a
➝ raft don't. You feel mighty free and
➝ easy and comfortable on a raft.</p>

</blockquote>

<p>It reminded him of his own youth exploring
➝ the county by river.</p>

</body>
</html>

A A blockquote can be as short or as long as you
need. Optionally, include the cite attribute—not
to be confused with the cite element shown in
the first paragraph—to provide the location of the
quoted text. However, browsers don’t display the
cite attribute’s information B. (See the second
tip for a related recommendation.)

B Browsers typically indent blockquote text by
default. Historically, browsers haven’t displayed
the cite attribute’s value (see the second tip for
a related recommendation). The cite element, on
the other hand, is supported by all browsers and
typically renders in italics, as shown. All of these
defaults can be overridden with CSS.

114 Chapter 4

To quote a short phrase:
1. Type <q to begin quoting a word or

phrase.

2. If desired, type cite="url", where url
is the address of the source of the
quote.

3. If the quote’s language is different than
the page’s default language (as speci-
fied by the lang attribute on the html
element), type lang="xx", where xx is
the two-letter code for the language the
quote will be in. This code is supposed
to determine the type of quote marks
that will be used (“” for English, «» for
many European languages, and so on),
though browser support for this render-
ing can vary.

4. Type > to complete the start tag.

5. Type the text that should be quoted.

6. Type </q>.

 Although it’s allowed, avoid placing
text directly between the start and end
 blockquote tags. Instead, enclose it in p
or other semantically appropriate elements
within the blockquote.

 You can use the optional cite attribute
on blockquote and q to provide a URL to the
source you are quoting. Unfortunately, brows-
ers traditionally haven’t presented the cite
URL to users B, so it’s not the most useful
of attributes on its own. Consequently, if you
do include cite, I recommend you repeat the
URL in a link (the a element) in your content,
allowing visitors to access it. Less effectively,
you could expose cite’s value via JavaScript.

...
<body>

<p>And then she said, <q>Have you read
➝ Barbara Kingsolver's <cite>High Tide in
➝ Tucson</cite>? It's inspiring.</q></p>

<p>She tried again, this time in French:
➝ <q lang="fr">Avez-vous lu le livre
➝ <cite>High Tide in Tucson</cite> de
➝ Kingsolver? C'est inspirational.</q></p>

</body>
</html>

C Add the lang attribute to the q element if the
quoted text is in a different language than the
page’s default (as specified by the lang attribute
on the html element).

Text 115

 The blockquote element is known as
a sectioning root in HTML5, which means
it can have h1–h6 headings (and thus, its
own outline), but they don’t contribute to the
document outline. This is very different than
sectioning content. Please see “Understand-
ing HTML5’s Document Outline” in Chapter 3.

 The q element is invalid for a quote that
extends beyond one paragraph.

 Be sure you don't use q simply because
you want quotation marks around a word or
phrase. For instance, <p>Every time I hear
the word <q>soy</q>, I jump for joy.</p>
is improper because “soy” isn't a quote from a
source.

 You can nest blockquote and q ele-
ments. For example, <p>The short story
began, <q>When she was a child, she
would say, <q>Howdy, stranger!</q> to
everyone she passed.</q></p>. Nested
q elements should automatically have the
appropriate quotation marks—in English the
outer quotes should be double and the inner
ones should be single—but browser support
varies. Since outer and inner quotations are
treated differently in languages, add the lang
attribute to q as needed (C and D).

 Because of cross-browser issues with
q D, many (probably the majority of) coders
choose to simply type the proper quotation
marks or use character entities instead of the
q element. In his in-depth article “Quoting
and citing with <blockquote>, <q>, <cite>,
and the cite attribute” at HTML5 Doctor,
Oli Studholme discusses this and more, such
as a series of options for styling quotation
marks with the q element and related browser
support information (http://html5doctor.com/
blockquote-q-cite/).

D Browsers are supposed to add curly double
quotes around q elements (and curly single quotes
around nested q elements) automatically. As
shown here, Firefox does, but not all browsers do
(for example, older versions of Internet Explorer).

http://html5doctor.com/blockquote-q-cite/
http://html5doctor.com/blockquote-q-cite/

116 Chapter 4

Highlighting Text
We’ve all used a highlighter pen at some
point or another. Maybe it was when
studying for an exam or going through a
contract. Whatever the case, you used the
highlighter to mark key words or phrases
that were relevant to a task.

HTML5 replicates this with the new mark
element. Think of mark like a semantic
 version of a highlighter pen. In other words,
what’s important is that you’re noting cer-
tain words; how they appear is irrelevant.
Style its text with CSS as you please (or not
at all), but use mark only when it’s pertinent
to do so.

No matter when you use mark, it’s to draw
the reader’s attention to a particular text
segment. Here are some use cases for it:

n	 To highlight a search term when it
appears in a search results page or an
article. When people talk about mark,
this is the most common context. Sup-
pose you used a site’s search feature
to look for “solar panels.” The search
results or each resulting article could
use <mark>solar panels</mark> to
highlight the term throughout the text.

n	 To call attention to part of a quote that
wasn’t highlighted by the author in its
original form (A and B).

n	 To draw attention to a code fragment
(C and D).

...
<body>

<p>So, I went back and read the instructions
➝ myself to see what I'd done wrong. They
➝ said:</p>

<blockquote>
 <p>Remove the tray from the box. Pierce

➝ the overwrap several times with a
➝ fork and cook on High for <mark>15
➝ minutes</mark>, rotating it half way
➝ through.</p>

</blockquote>

<p>I thought he'd told me fifty. No
➝ wonder it exploded in my microwave.</p>

</body>
</html>

A Although mark may see its most widespread
use in search results, here’s another valid use of it.
The phrase “15 minutes” was not highlighted in the
instructions on the packaging. Instead, the author
of this HTML used mark to call out the phrase as
part of the story. Default browser rendering of
mark text varies B.

B Browsers with native support of the mark
element display a yellow background behind the
text by default. Older browsers don’t, but you can
tell them to do so with a simple rule in your style
sheet (see the tips).

Text 117

To highlight text:
1. Type <mark>.

2. Type the word or words to which you
want to call attention.

3. Type </mark>.

 The mark element is not the same as
either em (which represents emphasis) or
strong (which represents importance). Both
are covered in this chapter as well.

 Since mark is new in HTML5, older
browsers don’t render a background color by
default B and D. You can instruct them to
do so by adding mark { background-color:
yellow; } to your style sheet.

 Be sure not to use mark simply to give
text a background color or other visual treat-
ment. If all you’re looking for is a means to
style text and there’s no proper semantic
HTML element with which to wrap it, use the
span element (covered in this chapter) and
style it with CSS.

...
<body>

<p>It's bad practice to use a class name that
➝ describes how an element should look, such
➝ as the highlighted portion of CSS below:
<pre>
 <code>
 <mark>.greenText</mark> {
 color: green;
 }
 </code>
</pre>

</body>
</html>

C This example uses mark to draw attention to a
segment of code.

D This code noted with mark is called out.

118 Chapter 4

Explaining
Abbreviations
Abbreviations abound, whether as Jr., M.D.,
or even good ol’ HTML. You can use the
abbr element to mark up abbreviations
and explain their meaning (A through C).
You don’t have to wrap every abbrevia-
tion in abbr, only when you think it would
be helpful for visitors to be given the
expanded meaning.

To explain abbreviations:
1. Type <abbr.

2. Optionally, next type
title="expansion", where expansion
is the words that represent the
abbreviation.

3. Type >.

4. Then type the abbreviation itself.

5. Finally, finish up with </abbr>.

6. Optionally, type a space and
 (expansion), where expansion is the
words that represent the abbreviation.

...
<body>

<p>The <abbr title="National Football
➝ League">NFL</abbr> promised a <abbr
➝ title="light amplification by
➝ stimulated emission of radiation">
➝ laser</abbr> show at 9 p.m. after every
➝ night game.</p>

<p>But, that's nothing compared to what
➝ <abbr>MLB</abbr> (Major League
➝ Baseball) did. They gave out free
➝ <abbr title="self-contained underwater
➝ breathing apparatus">scuba</abbr> gear
➝ during rain delays.</p>

</body>
</html>

A Use the optional title attribute to provide the
expanded version of an abbreviation. Alternatively,
and arguably preferably, you could place the
expansion in parentheses after the abbreviation.
Or mix and match. Most people will be familiar
with words like laser and scuba, so marking
them up with abbr and providing titles isn’t really
necessary, but I’ve done it here for demonstration
purposes.

Text 119

 It’s common practice to include an abbre-
viation’s expansion (by way of a title or a
parenthetical) only the first time it appears on
a page A.

 A parenthetical abbreviation expan-
sion is the most explicit way to describe an
abbreviation, making it available to the widest
set of visitors A. For instance, users on touch
screen devices like smartphones and tablets
may not be able to hover on an abbr element
to see a title tool tip. So if you provide an
expansion, consider putting it in parentheses
whenever possible.

 If you use an abbreviation in its plural
form, make the expansion plural as well.

 As a visual cue to sighted users, brows-
ers like Firefox and Opera display abbr with
a dotted bottom border if it has a title B. If
you’d like to replicate that effect in all brows-
ers (except IE6), add the following to your style
sheet: abbr[title] { border-bottom: 1px
dotted #000; }. Browsers provide the title
attribute’s contents as a tool tip C regardless
of whether the abbr is styled with a border.

 If you don't see the dotted bottom border
on your abbr in Internet Explorer 7, try adjust-
ing the parent element’s CSS line-height
property (see Chapter 10).

 IE6 doesn’t support abbr, so you won’t
see a border or a tool tip, just the text. If you
really want to style abbr in IE6, you could
put document.createElement('abbr'); in
a JavaScript file targeted for IE6 before your
CSS. I say skip that and let IE6 be an outlier in
this case. (See Chapter 11 to learn more about
document.createElement as it pertains to
styling elements that are new in HTML5 in IE8
and lower.)

 HTML had an acronym element before
HTML5, but developers and designers often
were confused by the difference between an
abbreviation and an acronym, so HTML5 elimi-
nated the acronym element in favor of abbr
for all instances.

B When abbreviations have a title attribute,
Firefox and Opera draw attention to them with a
dotted underline. (You can instruct other browsers
to do the same with CSS; see the tips.) In all
browsers except IE6, when your visitors hover on
an abbr, the contents of the element’s title are
shown in a tool tip.

C Chrome and some other browsers display the
title of abbreviations as a tool tip, but they don’t
display the abbreviation itself any differently
unless you apply some CSS yourself.

120 Chapter 4

Defining a Term
The dfn element marks the one place in
your document that you define a term. Sub-
sequent uses of the term are not marked.
You wrap dfn only around the term you’re
defining, not around the definition A.

It’s important where you place the dfn in
relation to its definition. HTML5 states,
“The paragraph, description list group,
or section that is the nearest ancestor of
the dfn element must also contain the
definition(s) for the term given by the dfn
element.” This means that the dfn and its
definition should be in proximity to each
other. This is the case in both A and the
example given in the third tip; the dfn and
its definition are in the same paragraph.

To mark the defining
instance of a term:
1. Type <dfn>.

2. Type the term you wish to define.

3. Type </dfn>.

 You can also use dfn in a definition list
(the dl element). See Chapter 15.

 If you want to direct users to the defining
instance of a term, you can add an id to the
dfn and link to it from other points in the site.

 dfn may also enclose another phras-
ing element like abbr, when appropriate.
For example, <p>A <dfn><abbr title=
"Junior">Jr.</abbr></dfn> is a son with
the same full name as his father.</p>.

 HTML5 says that if you use the optional
title attribute on a dfn, it should have the
same value as the dfn term. As in the previous
tip, if you nest a single abbr in dfn and the
dfn has no text node of its own, the optional
title should be on the abbr only.

...
<body>

<p>The contestant was asked to spell
➝ "pleonasm." She requested the definition
➝ and was told that <dfn>pleonasm</dfn>
➝ means "a redundant word or expression"
➝ (Ref: <cite><a href=" http://dictionary.
➝ reference.com/browse/pleonasm" rel=
➝ "external">dictionary.com</cite>).</p>

</body>
</html>

A Note that although pleonasm appears twice
in the example, dfn marks the second one only,
because that’s when I defined the term (that is,
it’s the defining instance). Similarly, if I were to
use pleonasm subsequently in the document,
I wouldn’t wrap it in dfn because I’ve already
defined it. By default, browsers style dfn text
differently than normal text B. Also, you don’t
have to use the cite element each time you use
dfn, just when you reference a source.

B The dfn element renders in italics by default in
some browsers (Firefox, in this case), just like cite,
but not in Webkit-based browsers such as Safari
and Chrome. You can make them consistent by
adding dfn { font-style: italic; } to your style
sheet (see Chapters 8 and 10).

Text 121

Creating Superscripts
and Subscripts
Letters or numbers that are raised or
lowered slightly relative to the main body
text are called superscripts and subscripts,
respectively A. HTML includes elements
for defining both kinds of text. Com-
mon uses for superscripts include mark-
ing trademark symbols, exponents, and
footnotes B. Subscripts are common in
chemical notation.

...
<body>

<article>
 <h1>Famous Catalans</h1>
 <p>When I was in the sixth grade, I

➝ played the cello. There was a
➝ teacher at school who always used
➝ to ask me if I knew who "Pablo
➝ Casals" was. I didn't at the time
➝ (although I had met Rostropovich once
➝ at a concert). Actually, Pablo Casals'
➝ real name was <i>Pau</i> Casals, Pau
➝ being the Catalan equivalent of Pablo
➝ <a href="#footnote-1" title="Read
➝ footnote">¹.</p>

 <p>In addition to being an amazing
➝ cellist, Pau Casals is remembered in
➝ this country for his empassioned
➝ speech against nuclear proliferation
➝ at the United Nations <a href=
➝ "#footnote-2" title="Read
➝ footnote">² which
➝ he began by saying "I am a Catalan.
➝ Catalonia is an oppressed nation."</p>

 <footer>
 <p>¹It means Paul in

➝ English.</p>
 <p>²In 1963, I believe.</p>
 </footer>
</article>

</body>
</html>

A One use of the sup element is to indicate
footnotes. I placed the footnotes in a footer within
the article rather than on the page at large
because they are associated. I also linked each
footnote number within the text to its footnote in
the footer so visitors can access them more easily.
Note, too, that the title attribute on the links
provides another cue.

B Unfortunately, the sub and sup elements
spoil the line spacing. Notice that there is
more space between lines 4 and 5 of the first
paragraph and lines 2 and 3 of the second than
between the other lines. A little CSS comes
to the rescue, though; see the sidebar “Fixing
the Spacing between Lines when Using sub
or sup” to learn how to fix this. You could also
change the treatment of linked superscripts so
that an underline doesn’t appear so far from the
superscripted text.

122 Chapter 4

To create superscripts or subscripts:
1. Type <sub> to create a subscript or

<sup> to create a superscript.

2. Type the characters or symbols that
represent the subscript or superscript.

3. Type </sub> or </sup>, depending on
what you used in step 1, to complete
the element.

 Most browsers automatically reduce the
font size of sub- or superscripted text by a few
points.

 Superscripts are the ideal way to mark
up certain foreign language abbreviations like
Mlle for Mademoiselle in French or 3a for ter-
cera in Spanish, or numerics like 2nd and 5th.

 One proper use of subscripts is for
writing out chemical molecules like H20. For
example, <p>I'm parched. Could I please
have a glass of H₂O?</p>.

 Super- and subscripted characters gently
spoil the even spacing between lines B. See
the sidebar for a solution.

Text 123

Fixing the Spacing between Lines when Using sub or sup
The sub and sup elements tend to throw off the line height between lines of text B. Fortunately,
you can set it straight with a bit of CSS.

The following code comes from Nicolas Gallagher and Jonathan Neal’s excellent normalize.css
(http://necolas.github.com/normalize.css/). They didn’t invent the method that follows; they bor-
rowed it from https://gist.github.com/413930 and removed the code comments. The second GitHub
link includes a full explanation of what this CSS does, so I encourage you to give it a look. I also
recommend checking out normalize.css, which you can use on your own projects. It helps you
achieve a consistent baseline for rendering across browsers and is documented thoroughly (see
“Resetting or Normalizing Default Styles” in Chapter 11).

/*
* Prevents sub and sup affecting line-height in all browsers
* gist.github.com/413930
*/
sub,
sup {
 font-size: 75%;
 line-height: 0;
 position: relative;
 vertical-align: baseline;
}

sup {
 top: -0.5em;
}

sub {
 bottom: -0.25em;
}

You may need to adjust this CSS a bit to level out the line heights, depending on your content’s
font size, but this should give you a very good start at the least. You’ll learn about creating style
sheets and how to add this CSS to your site in Chapter 8.

http://necolas.github.com/normalize.css/
https://gist.github.com/413930

124 Chapter 4

Noting Edits and
Inaccurate Text
Sometimes you may want to indicate
content edits that have occurred since the
previous version of your page, or mark up
text that is no longer accurate or relevant.
There are two elements for noting edits:
the ins element represents content that
has been added, and the del element
marks content that has been removed (A
through D). You may use them together or
individually.

Meanwhile, the s element notes content
that is no longer accurate or relevant (it’s
not for edits) (E and F).

To mark an edit involving
newly inserted text:
1. Type <ins>.

2. Type the new content.

3. Type </ins>.

To mark an edit involving
deleted text:
1. Place the cursor before the text or ele-

ment you wish to mark as deleted.

2. Type .

3. Place the cursor after the text or ele-
ment you wish to mark as deleted.

4. Type .

...
<body>

<h1>Charitable Gifts Wishlist</h1>

<p>Please consider donating one or more
➝ of the following items to the village's
➝ community center:</p>

 2 desks
 1 chalkboard
 4 <abbr>OLPC</abbr> (One

➝ Laptop Per Child) XO laptops
➝

 <ins>1 bicycle</ins>

</body>
</html>

A One item (the bicycle) has been added to this
gift list since it was previously published, and
purchased items have been removed, as noted by
the del elements. You are not required to use del
each time you use ins, or vice versa. Browsers
differentiate the contents of each element visually
by default B.

B Browsers typically display a line through
deleted text and underline inserted text. You can
change these treatments with CSS.

Text 125

...
<body>

<h1>Charitable Gifts Wishlist</h1>

 <p>Please consider donating one or more of the following items to the village's community

➝ center:</p>

<ins>
 <p>Please note that all gifts have been purchased.</p>
 <p>Thank you so much for your generous donations!</p>
</ins>

 2 desks
 1 chalkboard
 4 <abbr>OLPC</abbr> (One Laptop Per Child) XO laptops
 <ins>1 bicycle</ins>

</body>
</html>

C Both del and ins are rare in that they can surround both phrasing (“inline” in pre-HTML5 parlance)
content and blocks of content, as shown here. However, default browser rendering varies D.

D Most browsers, like Chrome (left), display del and ins wrapped around blocks of content by default
as expected. That is, they reflect that entire pieces of content have been deleted or inserted. As of this
writing, Firefox does not; it only renders the lines for del and ins text phrases within other elements.
See the “Getting del and ins to Display Consistently” sidebar to learn how to rectify this.

126 Chapter 4

To mark text that is no longer
accurate or relevant:
1. Place the cursor before the text you

wish to mark as no longer accurate or
relevant.

2. Type <s>.

3. Place the cursor after the text you wish
to mark.

4. Type </s>.

 Both del and ins support two attributes:
cite and datetime. The cite attribute (not
the same as the cite element) is for providing
a URL to a source that explains why an edit
was made. For example, <ins cite="http://
www.movienews.com/ticket-demand-
high.html">2 p.m. (this show just
added!)</ins>. Use the datetime attribute
to indicate the time of the edit. (See “Specify-
ing Time” to learn about datetime’s accept-
able format.) Browsers don’t display the values
you assign to either of these attributes, so
their use isn’t widespread, but feel free to
include them to add context to your content.
The values could be extracted with JavaScript
or a program that parses through your page.

...
<body>

<h1>Today's Showtimes</h1>

<p>Tickets are available for the following
➝ times today:</p>

 <ins>2 p.m. (this show just added!)

➝ </ins>
 <s>5 p.m.</s> SOLD OUT
 <s>8:30 p.m.</s> SOLD OUT

</body>
</html>

E This example shows an ordered list (the ol
element) of show times. The time slots for which
ticket availability is no longer relevant have been
marked with the s element. You can use s around
any phrases, not just text within list items (li
elements), but not around a whole paragraph or
other “block-level” element like you can with del
and ins.

F The s element renders as a strikethrough by
default in browsers.

Text 127

 Use del and ins anytime you want to
inform your visitors of your content’s evolu-
tion. For instance, you’ll often see them used
in a Web development or design tutorial to
indicate information learned since it was ini-
tially posted, while maintaining the copy as it
originally stood for completeness. The same is
true of blogs, news sites, and so on.

 Text marked with the ins element is
generally underlined B. Since links are often
underlined as well (if not in your site, then in
many others), this may be confusing to visi-
tors. You may want to use styles to change
how inserted passages (or links) are displayed
(see Chapter 10).

 Text marked with the del element
is generally struck out B. Why not just
erase it and be done with it? It depends on
the context of your content. Striking it out
makes it easy for sighted users to know
what has changed. (Also, screen readers
could announce the content as having been
removed, but their support for doing so has
been lacking historically.)

 Only use del, ins, and s for their
semantic value. If you wish to underline or
strike out text purely for cosmetic reasons, you
can do so with CSS (see “Decorating Text” in
Chapter 10).

 HTML5 notes that “The s element is not
appropriate when indicating document edits;
to mark a span of text as having been removed
from a document, use the del element.” You
may find the distinction a little subtle at times.
It’s up to you to decide which is the appropri-
ate semantic choice for your content.

Getting del and ins to Display
Consistently
Browsers render content in a block-level
del and ins inconsistently. Most display
a strikethrough for del and an under-
line for ins on all nested content as
expected, but at the least, Firefox does
not D.

You can rectify this with the following
explicit CSS rules (the * means that
every element inside del and ins gets
the treatment):

del * {
 text-decoration:

➝ line-through;
}

ins * {
 text-decoration: underline;
}

Please consult Chapter 8 if you aren’t
sure how to add this CSS to a style
sheet.

128 Chapter 4

Marking Up Code
If your content contains code samples,
file names, or program names, the code
element is for you (A and B). To show
a standalone block of code (outside of a
sentence), wrap the code element with a
pre element to maintain its formatting (see
“Using Preformatted Text” for an example).

To mark up code or a file name:
1. Type <code>.

2. Type the code or file name.

3. Type </code>.

 You can change the default mono-
spaced font applied to code B with CSS
(see Chapter 10).

...
<body>

<p>The <code>showPhoto()</code> function
➝ displays the full-size photo of the
➝ thumbnail in our <code><ul id=
➝ "thumbnail"></code> carousel list.</p>

<p>This CSS shorthand example applies a
➝ margin to all sides of paragraphs:
➝ <code>p { margin: 20px; }</code>. Take
➝ a look at <code>base.css</code> to see
➝ more examples.</p>

</body>
</html>

A The code element indicates that the text
is code or a file name. It also renders as a
monospaced font by default B. If your code
needs to display < or > signs, use the < and
> character entities instead, respectively. Here,
the second instance of code demonstrates this. If
you did use < and >, the browser would treat your
code as an HTML element, not text.

B The code element’s text even looks like code
because of the monospaced default font.

Text 129

Other Computer and Related Elements: kbd, samp, and var
The kbd, samp, and var elements see infrequent use, but you may have occasion to take advan-
tage of them in your content. I’ll explain each briefly.

The kbd Element

Use kbd to mark up user input instructions.

<p>To log into the demo:</p>

 Type <kbd>tryDemo</kbd> in the User Name field
 <kbd>TAB</kbd> to the Password field and type <kbd>demoPass</kbd>
 Hit <kbd>RETURN</kbd> or <kbd>ENTER</kbd>

Like code, kbd renders as a monospaced font by default.

The samp Element

The samp element indicates sample output from a program or system.

<p>Once the payment went through, the site returned a message reading,
➝ <samp>Thanks for your order!</samp></p>

samp also renders as a monospaced font by default.

The var Element

The var element represents a variable or placeholder value.

<p>Einstein is best known for <var>E</var>=<var>m</var><var>c</var>².
➝ </p>

var can also be a placeholder value in content, like a Mad Libs sheet in which you’d put
➝ <var>adjective</var>, <var>verb</var>, and so on.

var renders in italics by default.

Note that you can use the math and other MathML elements in your HTML5 pages for advanced
math-related markup. See http://dev.w3.org/html5/spec-author-view/mathml.html for more
information.

http://dev.w3.org/html5/spec-author-view/mathml.html

130 Chapter 4

Using Preformatted
Text
Usually, browsers collapse all extra returns
and spaces and automatically break
lines according to the size of the win-
dow. Preformatted text lets you maintain
and display the original line breaks and
spacing that you’ve inserted in the text. It
is ideal for computer code examples A,
though you can also use it for text (hello,
ASCII art!).

To use preformatted text:
1. Type <pre>.

2. Type or copy the text that you wish
to display as is, with all the necessary
spaces, returns, and line breaks. Unless
it is code, do not mark up the text with
any HTML, such as p elements.

3. Type </pre>.

...
<body>

<p>Add this to your style sheet if you want
➝ to display a dotted border underneath the
➝ <code>abbr</code> element whenever it has
➝ a <code>title</code> attribute.</p>

<pre>
 <code>
 abbr[title] {
 border-bottom: 1px dotted #000;
 }
 </code>
</pre>

</body>
</html>

A The pre element is ideal for text that contains
important spaces and line breaks, like the bit of
CSS code shown here. Note, too, the use of the
code element to mark up pieces of code or code-
related text outside of pre (see “Marking Up Code”
for more details).

B Notice that the indentation and line breaks are
maintained in the pre content.

Text 131

 Preformatted text is typically displayed
with a monospaced font like Courier or Courier
New B. You can use CSS to change the font,
if you like (see Chapter 10).

 If what you want to display—such as
a code sample in a tutorial—contains HTML
elements, you’ll have to substitute each <
and > around the element name with their
appropriate character entities, < and >
respectively (see “Marking Up Code” for an
example). Otherwise the browser may try to
display those elements. Be sure to validate
your pages to see if you’ve nested HTML ele-
ments in pre when you shouldn’t have (see
“Validating Your Code” in Chapter 20).

 The pre element isn’t a shortcut for
avoiding marking up your content with proper
semantics and styling its presentation with
CSS. For instance, if you want to post a news
article you wrote in a word processor, don’t
simply copy and paste it into a pre because
you like the spacing the way it is. Instead,
wrap your content in p (and other relevant text
elements) and write CSS to control the layout
as desired.

 pre, like a paragraph, always displays on
a new line by default B.

Presentation Considerations
with pre
Be aware that browsers typically disable
automatic word wrapping of content
inside a pre, so if it’s too wide, it might
affect your layout or force a horizontal
scrollbar. The following CSS rule enables
wrapping within pre in many browsers,
but not in Internet Explorer 7 and below.

pre {

 white-space: pre-wrap;

}

On a related note, in most cases I don’t
recommend you use the white-space:
pre; CSS declaration on an element
such as div as a substitute for pre,
because the whitespace can be cru-
cial to the semantics of the enclosed
content, especially code, and only pre
always preserves it. (Also, if the user has
disabled CSS in his or her browser, the
formatting will be lost.)

Please see CSS coverage beginning in
Chapter 7. Text formatting, in particular, is
discussed in Chapter 10.

132 Chapter 4

Specifying Fine Print
According to HTML5, small represents
side comments such as fine print, which
“typically features disclaimers, caveats,
legal restrictions, or copyrights. Small print
is also sometimes used for attribution or for
satisfying licensing requirements.” small is
intended for brief portions of inline text, not
for text spanning multiple paragraphs or
other elements (A and B).

To specify fine print:
1. Type <small>.

2. Type the text that represents a legal
disclaimer, note, attribution, and so on.

3. Type </small>.

 Be sure to use small only because it fits
your content, not because you want to reduce
the text size, as happens in some browsers B.
You can always adjust the size with CSS (even
making it larger if you’d like). See “Setting the
Font Size” in Chapter 10 for more information.

 small is a common choice for marking
up your page’s copyright notice (A and B).
It’s meant for short phrases like that, so don’t
wrap it around long legal notices, such as your
Terms of Use or Privacy Policy pages. Those
should be marked up with paragraphs and
other semantics, as necessary.

...
<body>

<p>Order now to receive free shipping.
➝ <small>(Some restrictions may apply.)
➝ </small></p>

...

<footer>
 <p><small>© 2011 The Super

➝ Store. All Rights Reserved.
➝ </small></p>

</footer>

</body>
</html>

A The small element denotes brief legal notices
in both instances shown. The second one is a
copyright notice contained in a page-level footer,
a common convention.

B The small element may render smaller than
normal text in some browsers, but the visual size
is immaterial to whether you should mark up your
content with it.

Text 133

Creating a Line Break
Browsers automatically wrap text accord-
ing to the width of the block or window that
contains content. It’s best to let content
flow like this in most cases, but sometimes
you’ll want to force a line break manually.
You achieve this with the br element.

To be sure, using br is a last resort tactic
because it mixes presentation with your
HTML instead of leaving all display control
to your CSS. For instance, never use br
to simulate spacing between paragraphs.
Instead, mark up the two paragraphs with p
elements and define the spacing between
the two with the CSS margin property.

So, when might br be OK? Well, the br ele-
ment is suitable for creating line breaks in
poems, in a street address (A and B), and
occasionally in other short lines of text that
should appear one after another.

To insert a line break:
Type
 (or
) where the line break
should occur. There is no separate end br
tag because it’s what’s known as an empty
(or void) element; it lacks content.

 Typing br as either
 or
 is
perfectly valid in HTML5.

 Styles can help you control the space
between lines in a paragraph (see “Setting
the Line Height” in Chapter 10) and between
the paragraphs themselves (see “Setting the
Margins around an Element” in Chapter 11).

 The hCard microformat
(http://microformats.org/wiki/hcard) is “for
representing people, companies, organiza-
tions, and places” in a semantic manner that’s
human- and machine-readable. You could use
it to represent a street address instead of the
provided example A.

...
<body>

<p>53 North Railway Street

Okotoks, Alberta

Canada T1Q 4H5</p>

<p>53 North Railway Street
Okotoks,
➝ Alberta
Canada T1Q 4H5</p>

</body>
</html>

A The same address appears twice, but I
coded them a little differently for demonstration
purposes. Remember that the returns in your code
are always ignored, so both paragraphs display
the same way B. Also, you can code br as either

 or
 in HTML5.

B Each br element forces the subsequent
content to a new line.

http://microformats.org/wiki/hcard

134 Chapter 4

Creating Spans
The span element, like div, has absolutely
no semantic meaning. The difference is
that span is appropriate around a word or
phrase only, whereas div is for blocks of
content (see “Creating Generic Containers”
in Chapter 3).

span is useful when you want to apply any
of the following to a snippet of content for
which HTML doesn’t provide an appropri-
ate semantic element:

n	 Attributes, like class, dir, id, lang,
title, and more (A and B)

n	 Styling with CSS

n	 Behavior with JavaScript

Because span has no semantic meaning,
use it as a last resort when no other ele-
ment will do.

...
<body>

<h1 lang="es">La Casa Milà</h1>

<p>Gaudí's work was essentially useful.
➝ La Casa Milà is
➝ an apartment building and real people
➝ live there.</p>

</body>
</html>

A In this case, I want to specify the language of
a portion of text, but there isn’t an HTML element
whose semantics are a fit for “La Casa Milà” in the
context of a sentence. The h1 that contains “La
Casa Milà” before the paragraph is appropriate
semantically because the text is the heading
for the content that follows. So for the heading,
I simply added the lang attribute to the h1
rather than wrap a span around the heading text
unnecessarily for that purpose.

Text 135

To add spans:
1. Type <span.

2. If desired, type id="name", where name
uniquely identifies the spanned content.

3. If desired, type class="name", where
name is the name of the class that the
spanned content belongs to.

4. If desired, type other attributes (such as
dir, lang, or title) and their values.

5. Type > to complete the start span tag.

6. Create the content you wish to contain
in the span.

7. Type .

 A span doesn’t have default format-
ting B, but just as with other HTML elements,
you can apply your own with CSS (see Chap-
ters 10 and 11).

 You may apply both a class and id attri-
bute to the same span element, although it’s
more common to apply one or the other, if at
all. The principal difference is that class is for
a group of elements, whereas id is for identi-
fying individual, unique elements on a page.

 Microformats often use span to attach
semantic class names to content as a way of
filling the gaps where HTML doesn’t provide a
suitable semantic element. You can learn more
about them at http://microformats.org.

B The span element has no default styling.

http://microformats.org

136 Chapter 4

Other Elements
This section covers other elements that
you can include within your text, but which
typically have fewer occasions to be used
or have limited browser support (or both).

The u element
Like b, i, s, and small, the u element has
been redefined in HTML5 to disassociate
it from its past as a non-semantic, presen-
tational element. In those days, the u ele-
ment was for underlining text. Now, it’s for
unarticulated annotations. HTML5 defines
it thus:

The u element represents a span of
text with an unarticulated, though
explicitly rendered, non-textual anno-
tation, such as labeling the text as
being a proper name in Chinese text
(a Chinese proper name mark), or
labeling the text as being misspelt.

Here is an example of how you could use u
to note misspelled words:

<p>When they <u class="spelling">
➝ recieved</u> the package, they put
➝ it with <u class="spelling">there
➝ </u> other ones with the intention
➝ of opening them all later.</p>

The class is entirely optional, and its
value (which can be whatever you’d like)
doesn’t render with the content to explicitly
indicate a spelling error. But, you could
use it to style misspelled words differently
(though u still renders as underlined text
by default). Or, you could add a title
attribute with a note such as “[sic],” a con-
vention in some languages to indicate a
misspelling.

Text 137

Use u only when an element like cite, em,
or mark doesn’t fit your desired semantics.
Also, it’s best to change its styling if u text
will be confused with linked text, which is
also underlined by default A.

The wbr element
HTML5 introduces a cousin of br called
wbr. It represents “a line break opportu-
nity.” Use it in between words or letters in
a long, unbroken phrase (or, say, a URL) to
indicate where it could wrap if necessary
to fit the text in the available space in a
readable fashion. So, unlike br, wbr doesn’t
force a wrap, it just lets the browser know
where it can force a line break if needed.

Here are a couple of examples:

<p>They liked to say,
"FriendlyFleasandFireFlies<wbr />
➝ FriendlyFleasandFireFlies<wbr />
➝ FriendlyFleasandFireFlies<wbr />
➝" as fast as they could over and
➝ over.</p>

<p>His favorite site is this<wbr
/>is<wbr />a<wbr />really<wbr
/>really<wbr />longurl.com.</p>

You can type wbr as either <wbr /> or
<wbr>. As you might have guessed, you
won’t find many occasions to use wbr.
Additionally, browser support is incon-
sistent as of this writing. Although wbr
works in current versions of Chrome and
Firefox, Internet Explorer and Opera simply
ignore it.

A Like links, u elements are underlined by
default, which can cause confusion unless you
change one or both with CSS.

138 Chapter 4

The ruby, rp, and rt elements
A ruby annotation is a convention in East
Asian languages, such as Chinese and Jap-
anese, typically used to show the pronun-
ciation of lesser-known characters. These
small annotative characters appear either
above or to the right of the characters they
annotate. They are often called simply ruby
or rubi, and the Japanese ruby characters
are known as furigana.

The ruby element, as well as its rt and rp
child elements, is HTML5’s mechanism for
adding them to your content. rt speci-
fies the ruby characters that annotate the
base characters. The optional rp element
allows you to display parentheses around
the ruby text in browsers that don’t support
ruby.

The following example demonstrates this
structure with English placeholder copy to
help you understand the arrangement of
information both in the code and in a sup-
porting browser B. The area for ruby text
is highlighted:

<ruby>

 base <rp>(</rp><rt>ruby chars
➝ </rt><rp>)</rp>

 base <rp>(</rp><rt>ruby chars
➝ </rt><rp>)</rp>

</ruby>

Now, a real-world example with the two
Chinese base characters for “Beijing,” and
their accompanying ruby characters C:

<ruby>

 北 <rp>(</rp><rt>ㄅㄟˇ</rt><rp>)
➝ </rp>

 京 <rp>(</rp><rt>ㄐㄧㄥ</rt><rp>)
➝ </rp>

</ruby>

B A supporting browser will display the ruby text
above the base (or possibly on the side), without
parentheses.

C Now, the ruby markup for “Beijing” as seen in a
supporting browser.

Text 139

You can see how important the parenthe-
ses are for browsers that don’t support
ruby D. Without them, the base and ruby
text would run together, clouding the
message.

 At the time of this writing, only Safari
5+, Chrome 11+, and all versions of Internet
Explorer have basic ruby support (all the more
reason to use rp in your markup). The HTML
Ruby Firefox add-on (https://addons.mozilla
.org/en-US/firefox/addon/6812) provides sup-
port for Firefox in the meantime.

 You can learn more about ruby char-
acters at http://en.wikipedia.org/wiki/
Ruby_character.

The bdi and bdo elements
If your HTML pages ever mix left-to-right
characters (like Latin characters in most
languages) and right-to-left characters (like
characters in Arabic or Hebrew), the bdi
and bdo elements may be of interest.

But, first, a little backstory. The base
directionality of your content defaults to
left-to-right unless you set the dir attribute
on the html element to rtl. For instance,
<html dir="rtl" lang="he"> specifies the
base directionality of your content is right-
to-left and the base language is Hebrew.

Just as I’ve done with lang in several
examples throughout the book, you
may also set dir on elements within the
page when the content deviates from
the page’s base setting. So, if the base
were set to English (<html lang="en">)
and you wanted to include a paragraph in
Hebrew, you’d mark it up as <p dir="rtl"
lang="he">...</p>.

D A browser that supports ruby ignores the rp
parentheses and just presents the rt content B
and C. However, a browser that doesn’t support
ruby displays the rt content in parentheses, as
seen here.

http://en.wikipedia.org/wiki/Ruby_character
http://en.wikipedia.org/wiki/Ruby_character
https://addons.mozilla.org/en-US/firefox/addon/6812
https://addons.mozilla.org/en-US/firefox/addon/6812

140 Chapter 4

With those settings in place, the content will
display in the desired directionality most
of the time; Unicode's bidirectional (“bidi”)
algorithm takes care of figuring it out.

The bdo (“bidirectional override”) element
is for those occasions when the algorithm
doesn’t display the content as intended
and you need to override it. Typically,
that’s the case when the content in the
HTML source is in visual order instead of
logical order.

Visual order is just what it sounds like—
the HTML source code content is in the
same order in which you want it displayed.
 Logical order is the opposite for a right-to-
left language like Hebrew; the first charac-
ter going right to left is typed first, then the
second character (in other words, the one
to the left of it), and so on.

In line with best practices, Unicode expects
bidirectional text in logical order. So, if
it's visual instead, the algorithm will still
reverse the characters, displaying them
opposite of what is intended. If you aren't
able to change the text in the HTML source
to logical order (for instance, maybe it’s
coming from a database or a feed), your
only recourse is to wrap it in a bdo.

To use bdo, you must include the dir attri-
bute and set it to either ltr (left-to-right)
or rtl (right-to-left) to specify the direction
you want. Continuing our earlier example
of a Hebrew paragraph within an otherwise
English page, you would type, <p lang=
"he"><bdo dir="rtl">...</bdo></p>.
bdo is appropriate for phrases or sen-
tences within a paragraph. You wouldn’t
wrap it around several paragraphs.

Text 141

The bdi element, new in HTML5, is for
cases when the content’s directionality is
unknown. You don’t have to include the
dir attribute because it’s set to auto by
default. HTML5 provides the following
example, which I’ve modified slightly:

This element is especially use-
ful when embedding user-gen-
erated content with an unknown
directionality.

In this example, usernames are
shown along with the number of
posts that the user has submitted.
If the bdi element were not used,
the username of the Arabic user
would end up confusing the text (the
bidirectional algorithm would put the
colon and the number “3” next to the
word “User” rather than next to the
word “posts”).

 User <bdi>jcranmer</bdi>:
➝ 12 posts.

 User <bdi>hober</bdi>:
➝ 5 posts.

 User <bdi>نايإ</bdi>:
➝ 3 posts.

 If you want to learn more on the subject
of incorporating right-to-left languages,
I recommend reading the W3C’s article
“Creating HTML Pages in Arabic, Hebrew,
and Other Right-to-Left Scripts” (www.w3.org/
International/tutorials/bidi-xhtml/).

www.w3.org/International/tutorials/bidi-xhtml/
www.w3.org/International/tutorials/bidi-xhtml/

142 Chapter 4

The meter element
The meter element is another that is new
thanks to HTML5. You can use it to indicate
a fractional value or a measurement within
a known range. Or, in plain language, it’s
the type of gauge you use for the likes of
voting results (for example, “30% Smith,
37% Garcia, 33% Clark”), the number of
tickets sold (for example, “811 out of 850”),
numerical test grades, and disk usage.

HTML5 suggests browsers could render
a meter not unlike a thermometer on its
side—a horizontal bar with the measured
value colored differently than the maximum
value (unless they're the same, of course).
Chrome, one of the few browsers that sup-
ports meter so far, does just that E. For
non-supporting browsers, you can style
meter to some extent with CSS or enhance
it further with JavaScript.

Although it’s not required, it’s best to
include text inside meter that reflects the
current measurement for non-supporting
browsers to display F.

Here are some meter examples (as seen in
E and F):

<p>Project completion status: <meter
➝ value="0.80">80% completed</meter>
➝ </p>

<p>Car brake pad wear: <meter low=
➝"0.25" high="0.75" optimum="0"
➝ value="0.21">21% worn</meter></p>

<p>Miles walked during half-marathon:
➝ <meter min="0" max="13.1" value="4.5"
➝ title="Miles">4.5</meter></p>

meter doesn’t have defined units of mea-
sure, but you can use the title attribute to
specify text of your choosing, as in the last
example. Chrome displays it as a tooltip E.

E A browser like Chrome that supports meter
displays the gauge automatically, coloring it in
based on the attribute values. It doesn’t display
the text in between <meter> and </meter>.

F Most browsers, like Firefox, don’t support
meter, so instead of a colored bar, they display
the text content inside the meter element. You can
change the look with CSS.

Text 143

 meter supports several attributes. The
value attribute is the only one that’s required.
min and max default to 0 and 1.0, respectively,
if omitted. The low, high, and optimum attri-
butes work together to split the range into low,
medium, and high segments. optimum indi-
cates the optimum position within the range,
such as “0 brake pad wear” in one of the
examples. Set optimum in between if neither a
low nor a high value is optimal.

 At the time of this writing, meter is sup-
ported only by Chrome 11+ and Opera 11+. This
partially explains why you don’t yet see it in
the wild too much. Feel free to use it, but just
understand that most browsers will render the
meter text rather than the visual gauge by
default F.

 The style of the gauge that each support-
ing browser displays may vary.

 Some people have experimented with
styling meter CSS for both supporting and
non-supporting browsers. Search online for
“style HTML5 meter with CSS” to see some of
the results (note that some use JavaScript).

 meter is not for marking up general
measurements, such as height, weight, dis-
tance, or circumference, that have no known
range. For example, you cannot do this: <p>I
walked <meter value="4.5">4.5</meter>
miles yesterday.</p>.

 Be sure not to mix up your uses of the
meter and progress elements.

144 Chapter 4

The progress element
The progress element is yet another of
the new elements in HTML5. You use it for
a progress bar, like the kind you might see
in a Web application to indicate progress
while it is saving or loading a large amount
of data.

As with meter, supporting browsers auto-
matically display a progress bar based on
the values of the attributes G. And again
like meter, it’s usually best to include text
(for example, “0% saved,” as shown in the
example) inside progress to reflect the
current progress for older browsers to dis-
play H, even though it’s not required.

Here’s an example:

<p>Please wait while we save your
➝ data. Current progress: <progress
➝ max="100" value="0">0% saved
➝ </progress></p>

A full discussion of progress is beyond
the scope of this book since typically you
would dynamically update both the value
attribute and the inner text with JavaScript
as the task progresses (for example, to
indicate that it’s 37% completed). The
visual results are the same whether you
do that with JavaScript or hard-code it in
the HTML, that is, <progress max="100"
value="37">37% saved</progress> I. Of
course, non-supporting browsers would
display it similarly to H.

G A browser like Chrome that supports progress
displays the progress bar automatically, coloring it
in based on the value. It doesn’t display the text in
between <progress> and </progress>. The value
attribute is set to 0 in this example, so the whole
bar is the same color.

H Firefox doesn’t support progress, so instead of
a colored bar, it displays the text content inside the
element. You can change the look with CSS.

I The progress bar in Chrome when the value
attribute is set to 37 programmatically with
JavaScript (or directly in the HTML), assuming
max="100".

Text 145

 The progress element supports three
attributes, all of which are optional: max,
value, and form. The max attribute specifies
the total amount of work for the task and must
be greater than 0. value is the amount com-
pleted relative to the task. Assign the form
attribute to the id of a form element on the
page if you want to associate the progress
element with a form it isn’t nested within.

 Here’s a small taste of how to modify
a progress element with JavaScript. Let’s
assume the bar had been coded with an id of
your choosing, like this:

<progress max="100" value="0"
➝ id="progressBar">0% saved</progress>

JavaScript such as the following would give
you access to the element:

var bar = document.getElementById
➝ ('progressBar');

Then you could get or set the value via bar.
value as needed. For example, bar.value =
37; would set it.

 The progress element has pretty
solid support among modern browsers as of
this writing: Chrome 11+, Firefox 6+, Internet
Explorer 10 (available only as a Platform Pre-
view at the time of this writing), and Opera 11+.
Safari doesn’t support it.

 The style of the progress bar that
each supporting browser displays may vary,
though you can style it yourself to some
extent with CSS.

This page intentionally left blank

Index 529

Index

/*, */, using for CSS comments, 182
: (colon) versus = (equals) sign, 205
; (semicolon), using with CSS properties, 205
<!--, -->, using for HTML comments, 97
3D, positioning elements in, 318–319
320 and Up, 351

A
a element. See anchors
AAC audio file format, 468
abbr element, 118–119
abbreviations, explaining, 118–119
absolute versus relative URLs, 21–23
accessibility. See also ARIA (Accessible Rich

Internet Applications), and screen readers
advocates, 91
explained, 11
HTML5 media, 467

active links, 230
:active pseudo-class, 231
address element

defining contact information with, 102–103
using with article element, 70

Adobe Fireworks, 153, 155
Adobe Photoshop, 153–155

finding image sizes, 159
mockups, 359
scaling images, 161

::after pseudo-element, 229

aligning
elements vertically, 322
text, 268–269

alt attribute, 157
alternate text, 157
anchors. See also links

creating, 172–173, 175–177
linking to, 174

animated images, saving, 151
Apple’s Link Maker, 177
ARIA (Accessible Rich Internet Applications),

88–91. See also accessibility
form role, 91
landmark roles, 88–89
role="banner" definition, 89
role="complementary" definition, 90
role="contentinfo" definition, 90
role="main" definition, 89
role="navigation" definition, 89
screen reader test results, 90
spec, 91

ARIA landmark roles. See landmark roles
versus ids, 284–285
overlap with HTML5 elements, 88
recommendation, 90
styling elements with, 284–285

article element, 68–71
address element, 70
children of, 15

530 Index

article element (continued)
content in, 9
examples, 70–71
footer element, 70
nesting, 69
nesting content in, 9
providing contact information, 102–103
versus section element, 69, 73, 283

ASCII characters, 16
aside element, 75–79

examples, 78–79
versus figure element, 77
restrictions, 77
as sidebar, 76–77

assistive technologies, 54. See also screen
readers

Ateş, Faruk, 377
attribute selectors, 232–235. See also

selectors
attribute values, enclosing in quotes, 510
attributes

contents of, 14
numeric values, 15
values, 14–15

audio
Flash and hyperlink fallback, 478–479
Flash fallbacks, 476–477
hyperlink fallbacks, 475

audio attributes
autoplay, 471
controls, 471
loop, 471
muted, 471
preload, 471, 473
src, 471

audio controls, 470
audio element, 471
audio file formats

AAC, 468
MP3, 468
MP4, 468
Ogg Vorbis, 468
type attribute, 474
WAV, 468

audio files
adding to Web pages, 469–470
preload attribute, 471, 473

audio in loop
autoplay attribute, 472
controls attribute, 472

audio sources, multiple, 474–475
author contact information, adding, 102–103
autoplay

audio attribute, 471–472
video attribute, 454–457

B
b element, 111

redefinition of, 111
versus strong element, 110

background color
choosing, 297
fallback, 391

background images
controlling attachment of, 295
multiple, 388
repeating, 294
specifying position of, 295
using, 294

background properties, 262–263, 296–297
background-attachment property, 295
background-color property, 296, 388–389
background-image property, 294, 388–389
background-position property, 295, 297,

388–389
background-repeat property, 294, 388–389
backgrounds. See also gradient backgrounds

applying, 388–389
changing, 294–297
changing for text, 260–263
creating, 297
multiple, 388

BART’s site, 329
BBEdit text editor, downloading, 29
bdi element, 139–141

logical order, 140
visual order, 140

bdo element, 139–141
logical order, 140
visual order, 140

Beaird, Jason, 27
::before pseudo-element, 229
Bester, Michael, 196
block-level elements, 7

Index 531

block-level links, 168–170
blockquote element, 113–115

nesting with q elements, 115
as sectioning root, 115

body element, 44
bold formatting

applying, 248–249
removing, 248

BOM, Web resource for, 32
border properties, setting, 312
border style, defining, 311
border-image property, 313
border-radius property, 376, 378–381
borders

adding to images, 156
colors, 311
deleting from images, 156
setting, 311–313
shortcuts, 312–313
widths, 311

Boston Globe, 332
box model, 292–293
box-shadow property, 384–386
br element

coding, 133
using with white-space property, 267

browser developer tools
Chrome Developer Tools, 507
Firebug for Firefox, 507
Internet Explorer, 507
Opera Dragonfly, 507
Safari Web Inspector, 507

browsers
capabilities, 518
compatibility, 375
considering in layouts, 276–277
default style sheets, 7
finding image sizes, 158
Graded Browser Support, 518
styling HTML5 elements in, 286–289
support for, 448
testing, 518
viewing Web pages in, 37–38

C
calendar date, specifying, 107
Camen, Kroc, 466

canvas element, using with video, 485
capitalize value, using with text-transform,

270
captions, creating for figures, 104–105
Cascading Style Sheets (CSS). See CSS

(Cascading Style Sheets)
character encoding, specifying, 16
characters, reading right-to-left, 139–141
@charset declaration, using with style

sheets, 199
checkboxes, creating, 440
Chrome

Developer Tools, 507
verifying sites in, 518

circles, creating with border-radius, 380
citations, indicating, 112
cite element, 112
Clark, Keith, 351
Clarke, Andy, 351
class attribute. See also pseudo-classes

assigning to elements, 92–94
versus id attributes, 94
versus id selectors, 220
naming, 94
selecting elements by, 218–220
using with microformats, 92–94

clear property, using with floats, 308–310
client side vs. server side, 421
Coda text editor, 29
code

indenting, 5
marking up, 128
validating, 508, 514–515

code element, 128
codecs, 452
colon (:) versus equals (=) sign, 205
color, setting, 258–259. See also CSS colors
ColorZilla’s gradient generator, 393
comments, 282. See also HTML comments

adding to style rules, 182–183
conditional, 351

compressing files, 177
conditional comments, 351
contact information, adding, 102–103
containers

creating, 84–87
wrapping around content, 84–85

532 Index

CSS1, introduction of, 8
CSS3

backgrounds, 388–389
browser compatibility, 375
drop shadows, 382–387
general sibling combinator, 226
gradient backgrounds, 390–393
opacity elements, 394–395
polyfills for progressive enhancement,

376–377
rounding corners of elements, 378–381
vendor prefixes, 373–374

CSS3 Generator, 374
CSS3 selectors, resource for, 239
cursor property

auto value, 323
crosshair value, 323
default value, 323
move value, 323
pointer value, 323
progress value, 323
text value, 323
wait value, 323
x-resize value, 323

cursors, changing, 323
custom markers. See also markers

displaying, 405
URLs (Uniform Resource Locators), 405
using, 404–405

CyberDuck FTP client, 528

D
datetime attribute, 106–108
debugging techniques

checking HTML, 510–511
syntax highlighting, 506–507

default page, specifying, 33–34. See also
HTML pages; Web pages

default styles. See also styles
normalizing, 290–291
resetting, 290–291

default.htm page, 33
defining terms, 120
del element, 124–127
deleting, borders from images, 156
description list (dl). See also lists

creating, 414–415

content. See also text content
separating from presentation, 276
syndicated, 57

controls
audio attribute, 471–472
video attribute, 454–456

corners
elliptical, 380
rounding, 378–381

Coyier, Chris, 322
Creative Commons licenses, 152
CSS (Cascading Style Sheets)

adjacent sibling combinator, 226
colliding rules, 184–187
comments for style rules, 182–183
style rules, 181

CSS code, viewing, 212
CSS colors, 190. See also color

HSL, 193–196
HSLA, 193–196
RGB, 191
RGBA, 192–196

CSS errors, checking, 515
CSS properties

bare numbers, 189
hexadecimal colors, 191
inherit value, 188
lengths, 188–189
percentages, 188–189
predefined values, 188
URLs, 190
using ; (semicolon) with, 205

CSS reset, beginning main style sheet
with, 290

CSS Tricks, 395
CSS troubleshooting

browser support, 513
curly braces, 512
declarations, 512
developer tools, 513
linking HTML documents, 513
property/value pairs, 512
punctuation, 513
separating properties from values, 512
spaces, 512–513
</style> end tag, 513
values, 512

Index 533

Dribbble site, 376
DRM (Digital Rights Management), 481
drop shadows

adding to elements, 384–387
adding to text, 382–383

drop-down navigation, using nested lists for,
411

Dunham, Ethan, 360–361

E
editing Web pages, 35
edits, noting, 124–127
Electric Mobile Simulator for Windows, 347
element box

controlling appearance of, 293
positioning, 293

elements, 13–14. See also pseudo-elements
adding padding around, 304–305
aligning vertically, 322
ancestors, 221
applying styles to groups of, 236–237
auto value for width, 300
contents of, 13
descendants, 221
displaying, 324–326
empty, 13
end and start tags, 511
end tag, 13
floating, 306–310
formatting, 93
hiding, 324–326
naming with classes or IDs, 92–94
nesting, 15
offsetting in natural flow, 314–315
overlap with landmark roles, 88
positioning absolutely, 316–317
positioning in 3D, 318–319
rounding corners of, 378–381
selecting based on adjacent sibling, 226
selecting based on ancestors, 222–223
selecting based on attributes, 232–235
selecting based on child, 224–226
selecting based on parents, 223–224
selecting based on type, 217
selecting by class or id, 218–220
selecting by context, 221–226
selecting by name, 216–217

dt and dd elements, 413
name-value groups, 412
nesting, 415

Devlin, Ian, 467, 487
dfn (definition) element, 120
Digital Rights Management (DRM), 481
disabled attribute, 447
display property, 324

block value, 325
inline value, 325
inline-block value, 325
none value, 325

div element
applying styles to, 85
best practices, 86
examples, 87
as generic container, 84–87
versus span element, 85
structuring pages with, 279
surrounding content, 84
using with JavaScript, 85

dl (description list). See also lists
creating, 414–415
dt and dd elements, 413
name-value groups, 412
nesting, 415

DOCTYPE
case insensitivity, 45
rendering in browsers, 45
for XHTML Strict document, 45

<!DOCTYPE html> declaration, 4, 24
document outline, 50–55

algorithm, 57
assistive technologies, 54
explicit semantics, 53
h1-h6 hierarchy, 51
screen readers, 54
sectioning elements, 51–52, 55

document structure, inspecting, 511
document.createElement(), 287
documents. See also HTML documents; Web

pages
ending, 5
saving, 35
structuring, 278

domain name
connecting to Web host, 524
getting, 522

534 Index

Fetch FTP client, 528
fieldset element, 426–427
figcaption element, 104–105
figure element

versus aside element, 77
using, 104–105

figures, creating, 104–105
file extensions, using with text editors, 32
file names

dashes between words, 19, 24
extensions, 19
filename, marking up, 128
.htm and .html extensions, 19, 30–31
lowercase, 19, 24

file scheme, 20
file uploads, allowing, 442
files

choosing encoding for, 32
compressing, 177
hiding, 34
naming, 36
organizing, 36
transferring to servers, 525–528
viewing, 35

FileZilla, transferring files to server with, 527
fine print, specifying, 132
Firebug for Firefox, 212, 507
Firefox, verifying sites in, 518
::first-letter syntax, 229
::first-line syntax, 229
Firtman, Maximiliano, 351
Flash animation, embedding, 482–483
Flash fallback player, 463
Flash fallbacks

audio, 476–477
and hyperlink fallback for audio, 478–479
and hyperlink fallback for video, 465–466
video, 464–465

float property
clearfix method, 310
left value, 306
none value, 307
overflow method, 310
right value, 306
using clear property with, 308–310

focus links, 230
folder names, lowercase, 24

elements (continued)
selecting first letters of, 228
selecting first lines of, 227
selecting parts of, 227–229
setting height or width, 298–301
space and forward slash, 13
specifying groups of, 236–237
start and end tags, 511
start tag, 13
styling in browsers, 286–289
typing names of, 14
void, 13, 511

elliptical corners, creating, 380
em element, 110

calculating values for indents, 265
versus i, 110–111
versus mark, 117
using with paragraphs, 10

email boxes, creating, 432–433
embedded scripts, adding, 502
embedded style sheets, creating, 202–203
emulators, using with mobile devices, 347
encoding, choosing for files, 32
end tags, including in elements, 13
.eot (Embedded OpenType) Web fonts, 354
equals (=) sign versus colon (:), 205
event handlers. See JavaScript events
external scripts, loading, 499
external style sheets. See also style sheets

benefits of, 200
changing, 200
creating, 198–199
@import rules in, 207
importing, 199
linking to, 199–201
rules, 201
URLs in, 201

F
family trees, creating for Web pages, 15
Faulkner, Steve, 91, 168
favicons

adding to Web sites, 162–163
saving, 163

Featherstone, Derek, 168
Ferg, Stephen, 489

Index 535

restrictions, 81
using with article element, 70
using with role="contentinfo", 81

footer links, placing nav elements in, 65
footers, creating, 80–83
form data, sending via email, 424–425
form elements

for attribute, 435
disabling, 447
id attribute, 435
organizing, 426–427
output, 448
title attribute, 435

form input attributes, 428
form parts, labeling, 434–435
form element, 419
forms

creating, 419–420
disabled attribute, 447
fieldset element, 426–427
get method, 442
hidden fields in, 443
legend element, 426–427
processing, 421–423
resource for, 448
security, 423
submitting with images, 446

fractional values, indicating, 142–143
FTP clients

CyberDuck, 528
Fetch, 528
FileZilla, 525–528
resizing windows of, 528
Transmit, 528

FTP sites, defining properties for, 526

G
Gallagher, Nicolas, 123, 290
Gasston, Peter, 334
generic containers

creating, 84–87
div element, 84–87

GIF format
color, 149
images, 148
lossless, 151
transparency, 151

folders
naming, 36
organizing files in, 36
sub-folders, 36
using, 370

font declarations, combining, 257
font families

naming, 364
setting, 243

font files, organizing in folders, 370
font names

generic, 245
with non-ASCII characters, 243
using quotes with, 243

font size
% unit, 250, 251–252, 254
child of element, 254
em unit, 251–252, 254
ex unit, 254
parent element, 254
pt unit type, 253
px unit, 250–254
rem unit, 254
setting, 250–254

Font Squirrel, 355–356, 358, 366
font values, setting all, 256–257
Fontdeck service, 356
@font-face feature, 355, 360–364

rule, 360
syntax, 360
using, 370

font-family property, 243–244, 247
fonts. See also Web fonts

defaults, 244
specifying, 244–245

Fonts.com service, 356
FontShop, 356
Fontspring Web site, 361
font-style: italic, 247
font-variant property, 271
font-weight: bold, 248
font-weight: normal, 248
Food Sense home page, 330–331
footer element, 80–83

contents of, 81
examples, 82–83
placement of, 81

536 Index

hidden fields
creating, 443
readonly attribute, 443

hiding files, 34
highlighting text, 116–117
homepage, specifying, 33–34
host, finding for sites, 523–524
hover links, 230
:hover pseudo-class, 231
href attribute

beginning with #, 172
values in, 15

HSL and HSLA color, 193–196
HSL Color Picker, 194–195
.htm and .html extensions, 19, 30–31
HTML

checking, 514
markup, 6
semantic, 6, 24
start and end tags, 511
validating, 515

HTML code, viewing, 39
HTML comments. See also comments

adding, 96–97
restrictions, 97
syntax, 97

HTML documents, beginning, 24. See also
documents

HTML elements
block-level, 7
displaying, 6–8
inline, 7

HTML forms. See forms
HTML Lint, 515
HTML markup, components, 24. See also

markup
HTML pages. See also default page; Web

pages
above <body> start tag, 4
basic page, 3
carriage returns, 3
DOCTYPE, 4, 24
ending documents, 5
foundation, 43
h1 heading, 9
headings, 9
images, 9
links, 10

Google Apps, 518
Google Closure Compiler, 501
Google WebFonts, 356
Graded Browser Support, 518
gradient backgrounds, 390–393. See also

backgrounds
gradient generator, 393
grouping

headings, 58–59
selectors, 237

groups of elements, specifying, 236–237

H
H.264 video file formats, 452
h1 heading, using, 9
h1-h6 elements, 48

sizes of, 49
using consistently, 49, 55

HandBrake video converter, 452
hanging indent, creating, 265
hasLayout, 395
head element

explained, 44
indenting code nested in, 45

header element, 61–63, 279
headers

creating, 61–63
versus headings, 63
nav element, 63
restrictions, 63
using, 63

headings, 282
adding ids to, 49
creating, 48–49
grouping, 58–59
versus headers, 63
lang attribute in, 49
in search engines, 49
using, 9, 48

height: property
versus min-height, 300
setting, 298–299

height video attribute, 454
hexadecimal colors, 191
hgroup element, 58–59
hh:mm:ss format, 108

Index 537

selecting based on parents, 223–224
selecting based on type, 217
selecting by class or id, 218–220
selecting by context, 221–226
selecting by name, 216–217
selecting first letters of, 228
selecting first lines of, 227
selecting parts of, 227–229
setting height or width, 298–301
space and forward slash, 13
specifying groups of, 236–237
start and end tags, 511
start tag, 13
styling in browsers, 286–289
typing names of, 14
void, 13, 511

HTML5 pages. See also Web pages
body section, 44
head section, 44
starting, 43–44

HTML5 shiv, 287
HTML5 Video, 487
html5.js, downloading, 289. See also

HTML5 shiv
http scheme, 20
https://, using, 431–432
Hudson, Roger, 489
hyperlink fallbacks

audio, 475
video, 461–462

I
i element, 111

redefinition of, 111
versus em element, 110

icons, adding for Web sites, 162–163
id attribute

versus class attribute, 94
naming elements with, 92–94
selecting elements by, 218–220

id vs. class selectors, 220
ids versus ARIA landmark roles, 284–285
image editors

Adobe Fireworks, 153
Adobe Photoshop, 153
choosing, 153
scaling images with, 161

organizing in folders, 370
paragraphs, 10
semantics, 9–10
testing, 516–517
text content, 3, 5
title element, 4

HTML troubleshooting
attribute values, 510
character formatting, 510
element nesting, 510
typos, 510

</html> end tag, 5
html element, 45
HTML5

DOCTYPE, 45
formatting code, 515
new forms features, 448
Outliner, 52
phrasing content, 7
semantics, 8–9

“HTML5 Canvas: The Basics,” 487
HTML5 elements, 13–14. See also pseudo-

elements
adding padding around, 304–305
aligning vertically, 322
ancestors, 221
applying styles to groups of, 236–237
auto value for width, 300
contents of, 13
descendants, 221
displaying, 324–326
empty, 13
end and start tags, 511
end tag, 13
floating, 306–310
formatting, 93
hiding, 324–326
naming with classes or IDs, 92–94
nesting, 15
offsetting in natural flow, 314–315
overlap with landmark roles, 88
positioning absolutely, 316–317
positioning in 3D, 318–319
rounding corners of, 378–381
selecting based on adjacent sibling, 226
selecting based on ancestors, 222–223
selecting based on attributes, 232–235
selecting based on child, 224–226

538 Index

iPad
rendering, 345
testing pages for, 347

iPhones
support for media queries, 341
testing pages for, 347

Irish, Paul, 377
ISP, using as Web host, 523
italics, creating, 246–247

J
JavaScript

adding to Web pages, 499–500
document.createElement(), 287
inline scripts, 500
libraries, 498
Modernizr library, 287
polyfills for progressive enhancement,

376–377
JavaScript events

onblur, 503
onchange, 503
onclick, 503
ondblclick, 503
onfocus, 503
onkeydown, 503
onkeypress, 504
onkeyup, 504
onload, 504
onmousedown, 504
onmousemove, 504
onmouseout, 504
onmouseover, 504
onmouseup, 504
onreset, 504
onselect, 504
onsubmit, 504
touch-based handlers, 504
touchend, 504
touchmove, 504
touchstart, 504

JAWS screen reader, 91
Jehl, Scott, 348
Johansson, Roger

“Bring On the Tables,” 489
@font-face code, 370

image size, specifying, 158–159
images, 17. See also poster images

adding borders to, 156
adding to pages, 9
alternate text, 157
animation, 151
color, 149
Creative Commons licenses, 152
deleting borders from, 156
format, 148
getting, 152
GIF format, 148, 151
including in HTML pages, 9
inserting on pages, 156
JPEG format, 148, 150
missing, 519
pixels, 149
PNG format, 148, 151
saving, 154–155, 519
scaling with browsers, 160
scaling with image editor, 161
size and resolution, 149–150
speed, 150–151
transparency, 151
troubleshooting, 519
using to submit forms, 446

img element, using, 9
@import rules

in external style sheets, 207
in style element, 206

!important, marking styles with, 207
indenting code, 5, 45
indents

adding, 265
removing, 265

index.html default page, 33–34
inline elements, 7
inline scripts, 500
inline styles, applying, 204–205
ins element, 124–127
inset shadow, creating, 385
Internet Explorer

Developer Tools, 507
Gradient filter, 195–196
recognizing CSS, 287
verifying sites in, 518

iOS Simulator, 347

Index 539

linking thumbnail images, 177
links, 17. See also anchors

active, 230
block-level, 168–170
changing appearance of, 230
creating, 167–170
defining, 10
defining rules for, 231
designating for navigation, 65
destination, 166
focus, 230
hover, 230
labels, 166, 170
LVFHA mnemonic, 231
marking up groups of links with, 399
nesting in nav element, 64
opening, 171
selecting based on states, 230–231
structuring in ul and ol elements, 65
target attribute, 171
visited, 230
wrapping in nav element, 66–67

list content, placement of, 400
list item (li) elements, 398–400
list numbering, starting, 403
list type, choosing, 399
lists. See also dl (description lists); nested lists

choosing markers, 401–402
creating, 398–400
custom markers, 404–405
displaying without markers, 402
hanging markers, 406
indenting, 400
nesting, 400
ordered (ol), 398–400
right-to-left content direction, 400
start value, 403
unordered (ul), 398–400
value attribute, 403

list-style properties, setting, 407
list-style-type property, 401
loop

audio attribute, 471
video attribute, 454

lowercase value, using with text-transform,
270

Johnston, Jason, 377
JPEG format, 148, 150
jQuery JavaScript library, 498
JW Player, 463

K
kbd element, 129
Keith, Jeremy, 332
kerning, specifying, 264
-khtml- prefix, 373
Kiss, Jason, 91
Kissane, Erin, 27

L
label element

example of, 14
using with forms, 434

landmark roles
versus ids, 284–285
overlap with HTML5 elements, 88
recommendation, 90
styling elements with, 284–285

lang attribute, 43
in headings, 49
using with q element, 114

layout with styles. See also styles
approaches, 277–278
background color, 296
background images, 294–295
background properties, 296–297
box model, 292–293
browsers, 276–277
content and presentation, 276

layouts
elastic, 278
fixed, 277
fluid, 277–278

The League of Moveable Type, 355–356
“Learning SVG,” 487
legend element, 426–427
letter spacing, setting, 264
li (list item) elements, 398–400
line break, creating, 133, 137
line height, setting, 255
line spacing, fixing, 123

540 Index

Mobile Boilerplate, 347, 350
mobile coding tools, 346
mobile devices, HTML5 and CSS3 support

for, 351
“mobile first” design, 332
mobile phones. See also responsive Web

design
base styling, 340
building baseline for, 341–342
building for desktop, 342
building sites for, 328–332
testing pages on, 347

Mobile Safari’s viewport, 335
Modernizr JavaScript library, 287, 348, 377
monospaced font, rendering, 129
MooTools JavaScript library, 498
-moz- prefix, 373, 378–379
MP3 audio file format, 468
MP4

audio file format, 468
video file formats, 452

-ms- prefix, 373
multimedia files, getting, 480
multimedia resources, 487
muted

audio attribute, 471
video attribute, 454

MyFonts, 356

N
nav element, 64–67

in headers, 63
nesting links in, 64
placing footer links in, 65
restrictions, 65
role attribute, 64
using with screen readers, 65
wrapping links in, 66–67

navigation
with keyboard, 170
marking, 64–67

Neal, Jonathan, 123, 290, 466
nested lists. See also lists

drop-down navigation, 411
:hover pseudo-class, 411
selectors, 409
styling, 408–411

M
mailto scheme, 20
Marcotte, Ethan, 331
margins

auto value, 302–303
setting around elements, 302–303
setting values for, 301

mark element, 116–117
markers. See also custom markers

choosing for lists, 401
controlling hanging, 406
inside value, 406
outside value, 406

markup, defined, 1, 6. See also HTML markup
math element, 129
mathML element, 129
max-width property, setting, 299
McLellan, Drew, 483
@media at-rule, using in style sheets, 208–209
media queries

building pages adapting with, 349–350
chaining features and values, 336
content and HTML, 340–341
declarations in rules, 338
defining, 336–337
design implementation, 341–342
evolving layout, 343–346
examples, 334–336, 344–345
feature: value pair, 335
features of, 333–334
iPhone 4, 351
logic portion, 335
min-width and max-width, 348
Opera Mobile 11 browser, 351
rendering styles in Internet Explorer, 348
syntax, 334–336
type portion, 335
width feature, 338

media sources, source element, 460
media-specific style sheets, 208–209
meta element, 339
meter element

versus progress element, 143
using, 142–143

Meyer, Eric, 290
min-height versus height, 300
Miro Video Converter, 452

Index 541

online resources (continued)
forms, 428
Google Apps, 518
Google Closure Compiler, 501
Google WebFonts, 356
Graded Browser Support, 518
gradient backgrounds, 392
gradient generator, 393
HandBrake, 452
hasLayout, 395
HTML forms, 428
HTML Lint, 515
“HTML5 Canvas: The Basics,” 487
HTML5 Video, 487
HTML5’s new features, 448
iOS Simulator, 347
JavaScript events, 504
JavaScript libraries, 498
jQuery JavaScript library, 498
JW Player, 463
The League of Moveable Type, 355–356
“Learning SVG,” 487
Meyer reset, 290
Miro Video Converter, 452
Mobile Boilerplate, 347, 350
mobile devices, 351
“mobile first” design, 332
Modernizr, 287, 348, 377
MooTools JavaScript library, 498
multimedia, 487
MyFonts, 356
normalize css, 123
“One Web” presentation, 332
PHP server-side language, 422
polyfills, 377
ProtoFluid, 347
right-to-left languages, 141
showform.php script, 420
SitePoint, 520
Stack Overflow, 520
Sublime Text editor, 29
table structures, 489
text editors, 29
TextMate, 29
TextWrangler, 28
Typekit service, 356–357, 359
validating code, 515

none value, using with text-transform, 270
normalize.css, 123, 290–291
Notepad text editor, using, 28–30
NVDA screen reader, 91

O
Ogg Theora video file formats, 452
Ogg Vorbis audio file format, 468
ol (ordered list)

Arabic numerals, 409
creating, 398–400
marker types, 402
using with links, 65

onblur JavaScript event, 503
onchange JavaScript event, 503
onclick JavaScript event, 503
ondblclick JavaScript event, 503
“One Web” presentation, 332
onfocus JavaScript event, 503
onkeydown JavaScript event, 503
onkeypress JavaScript event, 504
onkeyup JavaScript event, 504
online resources

320 and Up, 351
Apple’s Link Maker, 177
ARIA spec, 91
BOM, 32
browser compatibility, 375
browser developer tools, 507
Coda text editor, 29
collapse value for visibility, 326
ColorZilla’s gradient generator, 393
conditional comments, 351
Creative Commons licenses, 152
CSS error checking, 515
CSS Tricks, 395
CSS3 Generator, 374
CSS3 selectors, 239
developer tools, 507
Electric Mobile Simulator for Windows, 347
event handlers, 504
Firebug for Firefox, 212
Font Squirrel, 355–356, 358, 366
Fontdeck service, 356
Fonts.com service, 356
FontShop, 356
Fontspring, 361

542 Index

-right suffix, 305
-top suffix, 305

page constructs
information, 60
layout, 60
semantics, 60

pages. See HTML pages; Web pages
paragraphs

a element, 10
em element, 10
inspecting, 511
marking up, 10
starting, 100–101

parents and children, 15
password boxes, creating, 431
passwords, protecting, 431
patterns, finding, 433
Pfeiffer, Silvia, 487
Photoshop, 153–155

finding image sizes, 159
mockups, 359
scaling images, 161

PHP server-side language, 421–423
phrases, quoting, 114
pixels, 149
placeholder value, representing, 129
placeholders versus labels, 434
player.swf file, 463
plugins, 18, 451
PNG format, 148

alpha transparency, 151
color, 149
lossless, 151

polyfills, using for progressive enhancement,
376–377

position: absolute, 316
position: fixed, 317
position: relative, 314–316
position: static, 317
positioning, relative, 314–315
poster images, specifying for videos, 457. See

also images
poster video attribute, 454
Powers, Shelley, 487
pre element, 130–131

math-related markup, 129
using with white-space property, 267

online resources (continued)
video, 487
video converters, 452
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
Web Font Specimen, 357
WebINK service, 356
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
Wufoo, 448
YouTube video, 484
YUI Compressor, 501
YUI JavaScript library, 498

onload JavaScript event, 504
onmousedown JavaScript event, 504
onmousemove JavaScript event, 504
onmouseout JavaScript event, 504
onmouseover JavaScript event, 504
onmouseup JavaScript event, 504
onreset JavaScript event, 504
onselect JavaScript event, 504
onsubmit JavaScript event, 504
opacity, setting for elements, 394–395
Opera

Dragonfly, 507
verifying sites in, 518

ordered list (ol)
Arabic numerals, 409
creating, 398–400
marker types, 402
using with links, 65

outline algorithm, 57
output form element, 448
overflow, treatment by browsers, 320–321
overflow property

auto value, 320
hidden value, 320
scroll value, 320
visible value, 320–321

P
p element, using, 100
padding

adding around elements, 304–305
-bottom suffix, 305
-left suffix, 305

Index 543

Resig, John, 287
resources

320 and Up, 351
Apple’s Link Maker, 177
ARIA spec, 91
BOM, 32
browser compatibility, 375
browser developer tools, 507
Coda text editor, 29
collapse value for visibility, 326
ColorZilla’s gradient generator, 393
conditional comments, 351
Creative Commons licenses, 152
CSS error checking, 515
CSS Tricks, 395
CSS3 Generator, 374
CSS3 selectors, 239
developer tools, 507
Electric Mobile Simulator for Windows, 347
event handlers, 504
Firebug for Firefox, 212
Font Squirrel, 355–356, 358, 366
Fontdeck service, 356
Fonts.com service, 356
FontShop, 356
Fontspring, 361
forms, 428
Google Apps, 518
Google Closure Compiler, 501
Google WebFonts, 356
Graded Browser Support, 518
gradient backgrounds, 392
gradient generator, 393
HandBrake, 452
hasLayout, 395
HTML forms, 428
HTML Lint, 515
“HTML5 Canvas: The Basics,” 487
HTML5 Video, 487
HTML5’s new features, 448
iOS Simulator, 347
JavaScript events, 504
JavaScript libraries, 498
jQuery JavaScript library, 498
JW Player, 463
The League of Moveable Type, 355–356
“Learning SVG,” 487
Meyer reset, 290

preload
audio attribute, 471, 473
video attribute, 454, 458

print, fine, 132
progress element

versus meter element, 143
using, 144–145

progressive enhancement
applying, 330–331
Dribbble site, 376
using polyfills for, 376–377

pronunciation, indicating, 138
ProtoFluid, downloading, 347
pseudo-classes, 229. See also class attribute

:active, 231
:hover, 231

pseudo-elements. See also elements
::after, 229
::before, 229
::first-letter, 229
::first-line, 229

pubdate attribute, 106–107
specifying, 109
using with time, 109

Q
q element, 114–115
quotes

enclosing attribute values in, 510
using with font names, 243

quoting
phrases, 114
text, 113–115

R
radial gradients, 391
radio buttons

creating, 436–437
name attribute, 436
value attribute, 436–437

readonly attribute, using with hidden fields, 443
references, indicating, 112
regular expressions, use of, 433
relative positioning, 314–315
relative URLs

versus absolute URLs, 21–23
using, 169

544 Index

RGBA color, 193–196
role attribute, using with nav element, 64
role="banner" definition, 89
role="complementary" definition, 90
role="contentinfo," using with footer

element, 81
role="contentinfo" definition, 90
role="main," using with article element, 69
role="main" definition, 89
role="navigation" definition, 89
rp element, 138–139
rt element, 138–139
ruby element, 138–139

S
s element, 126–127
Safari

verifying sites in, 518
Web Inspector, 507

samp element, 129
saving

animated images, 151
changes to documents, 35
favicons, 163
files as UTF-8, 45
images, 154–155, 519
Web pages, 30–32

Scalable Vector Graphics (SVG)
coupling with video, 486
Web fonts, 354

scaling images
with browser, 160
with image editor, 161
with Photoshop, 161

screen readers, 12, 54
availability of, 91
JAWS, 91
landmark role support, 91
nav element, 65
NVDA, 91
VoiceOver, 91

script element
best practices, 501
blocking behavior, 501
processing, 502
</script> end tab, 502
src attribute, 499

resources (continued)
Miro Video Converter, 452
Mobile Boilerplate, 347, 350
mobile devices, 351
“mobile first” design, 332
Modernizr, 287, 348, 377
MooTools JavaScript library, 498
multimedia, 487
MyFonts, 356
normalize css, 123
“One Web” presentation, 332
PHP server-side language, 422
polyfills, 377
ProtoFluid, 347
right-to-left languages, 141
showform.php script, 420
SitePoint, 520
Stack Overflow, 520
Sublime Text editor, 29
table structures, 489
text editors, 29
TextMate, 29
TextWrangler, 28
Typekit service, 356–357, 359
validating code, 515
video, 487
video converters, 452
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
Web Font Specimen, 357
WebINK service, 356
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
Wufoo, 448
YouTube video, 484
YUI Compressor, 501
YUI JavaScript library, 498

respond.js script, 348, 351
responsive Web design, 331–332, 341–342.

See also mobile phones
defining styles for breakpoints, 343
grid-based layout, 331
images and media, 331
media queries, 331, 343
pixel widths, 343, 346

reversed attribute, 400
RGB color, 191

Index 545

small caps
removing, 271
using, 271

small element, 8, 132
Sneddon, Geoffrey, 52
Snook, Jonathan, 254
source code, saving, 40
source element

media attribute, 460
type attribute, 460
using with multiple media, 460
using with video element, 461–462

spacing
controlling, 264
fixing between lines, 123

span element
versus div element, 85
using, 134

spans, creating, 134–135
src attribute

audio, 471
contents, 15
video, 454, 460

Stack Overflow, Web resources, 520
stacking order, specifying, 315, 317
start tags, including in elements, 13
strikethrough, applying, 126
strong element, 110

versus b element, 110
versus i element, 110
versus mark, 117
nesting, 110

style element, @import rules in, 206
style rules

adding comments to, 182–183
cascading, 185–187
constructing, 181
creating, 237
declaration blocks, 181
inheritance, 185–186
location of, 187
selectors, 181
specificity, 186–187

style sheets. See also external style sheets
alternate, 210–211
@charset declaration, 199
CSS reset, 290

scripting best practices, 501
scripts

adding embedded, 502
Google Closure Compiler, 501
loading external, 499
YUI Compressor, 501

search engine optimization (SEO), 12
section element

versus article element, 69, 73, 283
example, 74
terminology, 50
using, 72–74
using with role="main", 69

sections, defining, 72–74
secure server, using, 431
Seddon, Ryan, 377
select boxes

creating, 438–439
grouping options, 439
option element, 438–439
select element, 438
size attribute, 438–439

selectors. See also attribute selectors
combining, 238–239
constructing, 214–215
grouping, 237

semantics
accessibility, 11
displaying HTML, 12
importance of, 11–12
screen readers, 12

semicolon (;), using with CSS properties, 205
SEO (search engine optimization), 12
server, transferring files to, 525–528
server side vs. client side, 421
Sexton, Alex, 377
shims, using for progressive enhancement,

376–377
showform.php script, downloading, 420
sidebar, aside as, 76–77
simulators, using with mobile devices, 347
SitePoint, 520
sites

HTML 5 Outliner, 52
loading, 528
planning, 26
sketching out, 26–27

546 Index

structuring, 490–493
tbody element, 491
td element, 490
tfoot element, 491
thead element, 491
tr element, 490

target attribute, 171
telephone boxes, creating, 432–433
terms, defining, 120
testing

browsers, 518
HTML pages, 516–517
local versions of sites, 517

testing techniques
enabling browser features, 509
file uploads, 508–509
saving files, 509
URL entry, 509
validating code, 508

text
adding drop shadows to, 382–383
aligning, 268–269
alternate, 157
decorating, 272–273
deleting, 124
emphasizing, 110
highlighting, 116–117
inserting, 124
marking important, 110
noting inaccuracies, 124–127
quoting, 113–115
removing decorations, 273
using preformatted, 130–131

text areas
cols, 441
creating, 441
maximum characters, 441
maxlength, 441
rows, 441

text background, changing, 260–263
text boxes

autofocus attribute, 430
creating, 428–430
maxlength attribute, 430
name attribute, 428
placeholder attribute, 429–430
required attribute, 429

style sheets (continued)
embedded, 202–203
external, 198–200
linking to, 201
media-specific, 208–209
naming, 199
organizing in folders, 370
persistent styles, 210
preferred styles, 210–211
rendering headings in, 7

styles. See also default styles; layout with
styles

applying to groups of elements, 236–237
location of, 206–207

styles-480.css, styles in, 333
sub element, 121–122
Sublime Text editor, 29
submit button

button element, 445
creating, 444–445
with image, 444
labeling, 445
name/value pair, 445

subscripts, creating, 121–122
sup element, 121–122
superscripts, creating, 121–122
SVG (Scalable Vector Graphics)

coupling with video, 486
Web fonts, 354

syndicated content, management of, 57
syntax highlighting, using, 39, 506

T
Tab key, pressing, 170
table element, 489
tables

borders for data cells, 492
caption text, 490
cells, 490
colspan attribute, 494–495
figcaption, 493
headers, 490
padding, 492
rows, 490
rowspan attribute, 494–495
scope attribute, 490, 493
spanning columns and rows, 494–495

Index 547

resources, 520
saving files, 509
techniques, 520
URL entry, 509
validating code, 508

TrueDoc Web fonts, 354
.ttf (TrueType) Web fonts, 354, 359
Typekit service, 356–357, 359
typos, correcting, 510–511

U
u element, 136
Uggedal, Eivind, 350
ul (unordered list)

creating, 398–400
using with links, 65

Ullman, Larry, 422
Unicode, 16
uppercase value, using with text-transform,

270
URL boxes, creating, 432–433
URLs (Uniform Resource Locators), 20–23

absolute versus relative, 21–23
creating, 175–177
file scheme, 20
http scheme, 20
lowercase letters, 170
mailto scheme, 20
scheme, 20
server name, 20
trailing forward slash, 20
using cite and blockquote with, 114
visiting, 528

user input instructions, marking up, 129
UTF-8 encoding

choosing, 32
saving files in, 45

V
validating code, 514–515
var element, 129
vendor prefixes, 373–374
vertical-align property

baseline value, 322
bottom value, 322
middle value, 322
sub value, 322

text case, changing, 270
text content, 16–17. See also content
text editors

choosing encoding, 32
default extensions, 32
using, 28–29

text-decoration property, 272–273
TextMate editor, 29–30
text-only format

choosing, 32
saving Web pages in, 30

text-shadow property, 382–383
text-transform property, 270
TextWrangler

downloading, 28
using, 28

thumbnail images, linking, 177
time, specifying, 106–109
time element, 106–107

restrictions, 109
using with pubdate, 109

title attribute
adding to elements, 95
versus title element, 95
using with abbr element, 118
using with dfn element, 120

title element, 4
best practices, 47
core message, 47
placement of, 46
restrictions, 47
special characters in, 47
versus title attribute, 95

titles
creating, 46–47
length of, 46
using as linked text, 46

tool tip labels, adding, 95
touchend JavaScript event, 504
touchmove JavaScript event, 504
touchstart JavaScript event, 504
troubleshooting

CSS, 512–513
enabling browser features, 509
file uploads, 508–509
HTML, 510–512
images, 519

548 Index

viewports
features of, 339
meta element, 339

visibility property, 324
collapse value, 326
hidden value, 326

visited links, 230
visitors, allowing to upload files, 442
Visscher, Sjoerd, 287
VoiceOver screen reader, 91
void elements, omitting end tags from, 511

W
WAI-ARIA. See ARIA (Accessible Rich Internet

Applications)
WAV audio file format, 468
wbr element, 137
Web design. See responsive Web design
Web Font Specimen, 357
Web fonts. See also fonts

bold formatting, 366–369
browser support, 355
demo.html file, 358–359
downloading, 358–359
.eot (Embedded OpenType), 354
features of, 354
file types, 354
finding, 356–357
@font-face feature, 355
incorporating into Web pages, 361–362
italic formatting, 366–369
legal issues, 355
managing file sizes, 365–369
quality, 357
rendering, 357
self-hosting, 356
services, 356–357, 370
styling, 365–369
subsetting, 365–366
.svg (Scalable Vector Graphics), 354
TrueDoc, 354
.ttf (TrueType), 354, 359
using, 362–364
using for headlines, 369
.woff (Web Open Font Format), 354

vertical-align property (continued)
super value, 322
text-bottom value, 322
text-top value, 322
top value, 322

video
adding to Web pages, 453
adding with Flash fallbacks, 463–466
autoplay attribute, 455–456
books, 487
controls attribute, 455–456
coupling with SVG (Scalable Vector

Graphics), 486
embedding YouTube, 484
hyperlink fallbacks, 461–462
looping, 457
multiple sources, 459
object element for Flash fallbacks, 463–466
online resources, 487
preload attribute, 454
preventing preloading, 458
specifying poster images, 457
using with canvas element, 485

video attributes
autoplay, 454–456
autoplay and loop, 457
controls, 454–456
height, 454
loop, 454
muted, 454
poster, 454
preload, 454
src, 454, 460
width, 454

video element, using with source element,
461–462

video file formats
converting between, 452
H.264, 452
MP4, 452
Ogg Theora, 452
WebM, 452–453, 455, 457

“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
View Source command, using, 39

Index 549

Web resources (continued)
Electric Mobile Simulator for Windows, 347
event handlers, 504
Firebug for Firefox, 212
Font Squirrel, 355–356, 358, 366
Fontdeck service, 356
Fonts.com service, 356
FontShop, 356
Fontspring, 361
forms, 428
Google Apps, 518
Google Closure Compiler, 501
Google WebFonts, 356
Graded Browser Support, 518
gradient backgrounds, 392
gradient generator, 393
HandBrake, 452
hasLayout, 395
HTML forms, 428
HTML Lint, 515
“HTML5 Canvas: The Basics,” 487
HTML5 Video, 487
HTML5’s new features, 448
iOS Simulator, 347
JavaScript events, 504
JavaScript libraries, 498
jQuery JavaScript library, 498
JW Player, 463
The League of Moveable Type, 355–356
“Learning SVG,” 487
Meyer reset, 290
Miro Video Converter, 452
Mobile Boilerplate, 347, 350
mobile devices, 351
“mobile first” design, 332
Modernizr, 287, 348, 377
MooTools JavaScript library, 498
multimedia, 487
MyFonts, 356
normalize css, 123
“One Web” presentation, 332
PHP server-side language, 422
polyfills, 377
ProtoFluid, 347
right-to-left languages, 141
showform.php script, 420

Web host
connecting to domain, 524
finding for sites, 523–524

Web Open Font Format (.woff), 354
Web pages. See also default page; documents;

HTML pages
article versus section elements, 283
background-related capabilities, 261
blog entries, 283
comments, 282
components, 24
containers, 279
content, 24
creating, 28–29
divs, 279
editing, 35
family trees, 15
file references, 1
footer element, 279
header element, 279
heading elements, 282
HTML, 2
marking up, 283
markup, 1
ordering content, 282
saving, 30–32
structure, 279–283
text content, 1, 16–17
viewing in browsers, 37–38

Web resources
320 and Up, 351
Apple’s Link Maker, 177
ARIA spec, 91
BOM, 32
browser compatibility, 375
browser developer tools, 507
Coda text editor, 29
collapse value for visibility, 326
ColorZilla’s gradient generator, 393
conditional comments, 351
Creative Commons licenses, 152
CSS error checking, 515
CSS Tricks, 395
CSS3 Generator, 374
CSS3 selectors, 239
developer tools, 507

550 Index

WebM videos
autoplay and loop, 457
autoplay attribute, 456
controls attribute, 455
described, 454
without controls, 453

WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
white space properties, setting, 266–267
width: property

auto property, 300
setting, 298–299

width video attribute, 454
.woff (Web Open Font Format), 354
word processors, avoiding use of, 29
word spacing, setting, 264
Wroblewski, Luke, 332, 351

X
XHTML Strict document, DOCTYPE for, 45

Y
YouTube video, embedding, 484
YUI Compressor, 501
YUI JavaScript library, 498
YYYY-MM-DD format, 108

Z
z-index property, 315, 317–319

Web resources (continued)
SitePoint, 520
Stack Overflow, 520
Sublime Text editor, 29
table structures, 489
text editors, 29
TextMate, 29
TextWrangler, 28
Typekit service, 356–357, 359
validating code, 515
video, 487
video converters, 452
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
Web Font Specimen, 357
WebINK service, 356
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
Wufoo, 448
YouTube video, 484
YUI Compressor, 501
YUI JavaScript library, 498

Web sites
HTML 5 Outliner, 52
loading, 528
planning, 26
sketching out, 26–27

WebINK service, 356
-webkit- prefix, 373, 378–379

	Table of Contents
	Acknowledgments
	Introduction
	HTML and CSS in Brief
	Progressive Enhancement: A Best Practice
	Is This Book for You?
	How This Book Works
	Companion Web Site

	Chapter 4 Text
	Starting a New Paragraph
	Adding Author Contact Information
	Creating a Figure
	Specifying Time
	Marking Important and Emphasized Text
	Indicating a Citation or Reference
	Quoting Text
	Highlighting Text
	Explaining Abbreviations
	Defining a Term
	Creating Superscripts and Subscripts
	Noting Edits and Inaccurate Text
	Marking Up Code
	Using Preformatted Text
	Specifying Fine Print
	Creating a Line Break
	Creating Spans
	Other Elements

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

