

SCHOOL OF BUSINESS ADMINISTRATION IN KARVINA

Mathematics in economics

Mgr. Jiří Mazurek, Ph.D. Mathematics in Economics/PMAT

Extremes of a function of two real variables

Local vs global extremes.

Bounded vs unbounded extremes.

Necessary condition for the extreme:

A point satisfying equalities above is called a stationary (critical) point. However, this condition is not sufficient

Extremes of a function of two real variables

In a critical point can be maximum, minimum or an inflection point. To decide which situation occurrs, we use the second derivatives and a matrix called *hessian*:

Then we use Sylvester s theorem.

Extremes of a function of two real variables

We denote:
$$D_1 = \frac{2}{2}$$
 and $D_2 = H_f(C)$. Then:

~ ^

If D2>0, then we have an extreme. Moreover, If D1>0, we have a minimum, if D1<0, we have a maximum.

IF D2<0, we have an inflection point.

If D2 = 0, we cannot decide.

Extremes of a function of two real variables - Problem 1

Find extremes of the function f(x,y) = 1.

Solution: We start with the first derivatives:

$$\begin{array}{ccc} A & - & A \\ A & - & A \end{array}$$

Both derivatives must be 0, which yields the critical point C [0,0].

Extremes of a function of two real variables - Problem 1 – cont.

Now we compute all second derivatives and hessian:

Because D₂<0, the point C is an inflection point.

Extremes of a function of two real variables - Problem 2

Find extremes of the function f(x,y) = - +.

Solution: We start with the first derivatives:

$$\partial_{x} = x_{-}y_{-} \qquad \partial_{y} = y_{+} =$$

Both derivatives must be 0, which yields the critical point C [1/2,1/2].

Extremes of a function of two real variables - Problem 2 – cont.

Now we compute all second derivatives and hessian:

Substituting point C into hessian yields the same result.

Because $D_2 < 0$, the point C is an inflection point.

Extremes of a function of two real variables - Problem 3

Find extremes of the function f(x,y) = f(x,y)

Solution: We start with the first derivatives:

Both derivatives must be 0, which yields the critical point C [0,0].

Extremes of a function of two real variables - Problem 3 – cont.

Now we compute all second derivatives and hessian:

Because $D_2 = 0$, We cannot decide the nature of C. But how do we know it is certainly a minimum?

Problem 4

Solution: We start with the first derivatives:

Both derivatives must be 0, which yields the critical point *C* [12.5,2].

Problem 4 – cont.

Now we compute all second derivatives and hessian:

$$H_f(x,y) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \quad H_f(C) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

Because $D_2 > 0$, we have an extreme. Because $D_1 < 0$, we have a maximum.

Problems to solve – 1 (Assignment 7)

Find extremes of the following functions:

Indefinite integral

Integration is a reverse procedure to differentiation.

Legend:

Indefinite integral - cont

Indefinite integral is a linear operator:

We compute integrals with the use of formulas above, and with the use of the table of elementary integrals, see the next slide.

Indefinite integral – elementary integrals

f(x)	$\int f(x)dx$
0	С
1	<i>x</i> + C
x^n	$\frac{x^{n+1}}{n+1} + C$
e^{x}	$e^{x} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{1}{ax+b}$	$\frac{1}{a}\ln\left ax+b\right +C$
a ^x	$\frac{a^x}{\ln a} + C$

Indefinite integral – elementary integrals

sinx	$-\cos x + C$
cosx	$\sin x + C$
$\frac{1}{\cos^2 x}$	tgx + C
$-\frac{1}{\sin^2 x}$	$\cot gx + C$
$\frac{1}{1+x^2}$	$\operatorname{arctg} x + C$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$
$\frac{1}{\sqrt{1-x^2}}$	arcsinx + C
$-\frac{1}{\sqrt{1-x^2}}$	$\operatorname{arccos} x + C$
$\frac{1}{\sqrt{1\pm x^2}}$	$\ln \left x + \sqrt{1 \pm x^2} \right + C$

Lecture 5

Indefinite integral - examples

Lecture 5

Indefinite integral - examples

Indefinite integral – integration methods

For more complicated integration we use sutitable integration methods:

- Method per partes
- Partial fractions
- Substitutions

All these methods will be demonstrated on examples.

Indefinite integral – rational functions

By a rational function we mean the function of the form:

H(x) Q(x)

where P(x) and Q(x) are polynomials.

In the first step we find the roots x_i of the denominator in order to rearrange the denominator into a product.

$$\frac{H(x)}{Q(x)} = \frac{H(x)}{\dots}$$

Indefinite integral – rational functions – cont.

Then, the situation splits into three possible cases:

1. All roots of a denominator are single. Then we obtain the following partial fractions:

Hx)	μ_{γ}		Δ R		K
$\overline{Q(x)} =$					
	• — •				

2. Some root, for example x₁, is of order higher than 1:

H(x)	μ_{γ}	Δ	Δ Δ	R	K
Qx =	· _ · _	— .		_	_

Indefinite integral – rational functions – cont.

3. A denominator or its part given as a quadratic polynomial has no roots:

Coeffcients in numerators are unknown and must be computed by clearing a denomiantor and solving a subsequent equation.

Integration of rational functions – Problem 1

Solve:

Solution: The rational function is of case 1, with roots -2 and 1. Therefore, we obtain the following division into partial fractions:

$$\frac{3x_{+}}{x_{+}} - + -$$

Now we clear the denominator:

$$3x_{+} = -+ +$$

And we get two equations: $3^{3} = +$

Integration of rational functions – Problem 1-cont.

Solving the equation yields: $A_{\underline{}}$ _ _ .

Hence: $\frac{3x_{+}}{x_{+}} - \frac{1}{x_{-}}$

Now, we can integrate:

We will continue in Lecture 6.

Thank you for your attention!