Mathematics in economics

Lecture 5

Mgr. Jirí Mazurek, Ph.D.
Mathematics in Economics/PMAT

Extremes of a function of two real variables

Local vs global extremes.
Bounded vs unbounded extremes.

Necessary condition for the extreme:

A point satisfying equalities above is called a stationary (critical) point. However, this condition is not sufficient

Extremes of a function of two real variables

In a critical point can be maximum, minimum or an inflection point. To decide which situation occurrs, we use the second derivatives and a matrix called hessian:

Then we use Sylvester s theorem.

Extremes of a function of two real variables

We denote: $D_{1}=\lambda$ A \quad and $D_{2}=H_{f}(C)$. Then:
If D2>0, then we have an extreme. Moreover, If D1>0, we have a minimum, if D1<0, we have a maximum.

IF D2<0, we have an inflection point.
If $D 2=0$, we cannot decide.

Extremes of a function of two real variables
 - Problem 1

Find extremes of the function $f(x, y)=-{ }_{-}^{-}$.
Solution:
We start with the first derivatives:

$$
\begin{array}{ll}
\lambda & - \\
\lambda & -\lambda
\end{array}
$$

Both derivatives must be 0 , which yields the critical point C [0,0].

Extremes of a function of two real variables - Problem 1 - cont.

Now we compute all second derivatives and hessian:

We substitute point C into hessian: $H f(0,0)=$

7.

Because $D_{2}<0$, the point C is an inflection point.

Extremes of a function of two real variables
 - Problem 2

Find extremes of the function $f(x, y)={ }_{-}^{-}+$
Solution:
We start with the first derivatives:

$$
\partial_{x=}=x-y_{=} \quad \not \partial y=-y_{+}=
$$

Both derivatives must be 0, which yields the critical point $C[1 / 2,1 / 2]$.

Extremes of a function of two real variables - Problem 2 - cont.

Now we compute all second derivatives and hessian:

$$
\begin{aligned}
& \partial_{A x} f=\quad \partial_{y} f=\quad \partial_{A}^{\prime} f= \\
& H_{f}(x, y)=\left[\left.\begin{array}{ll}
2 & 2 \\
I_{2} & 0
\end{array} \right\rvert\,\right.
\end{aligned}
$$

Substituting point C into hessian yields the same result.
Because $D_{2}<0$, the point C is an inflection point.

Extremes of a function of two real variables
 - Problem 3

Find extremes of the function $f(x, y)={ }^{-4}+$
Solution:
We start with the first derivatives:

$$
\not \partial x=x^{3}=9 \quad \not y=y^{3}=
$$

Both derivatives must be 0 , which yields the critical point $C[0,0]$.

Extremes of a function of two real variables - Problem 3 - cont.

Now we compute all second derivatives and hessian:

Because $D_{2}=0$, We cannot decide the nature of C. But how do we know it is certainly a minimum?

Problem 4

Find the maximum of the revenue function:

Solution:
We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point C [12.5,2].

Problem 4 - cont.

Now we compute all second derivatives and hessian:

$$
H_{f}(x, y)=\Gamma
$$

7

Because $D_{2}>0$, we have an extreme. Because $\mathrm{D}_{1}<0$, we have a maximum.

Problems to solve - 1 (Assignment 7)

Find extremes of the following functions:
$f x, y=+{ }^{-}+$
$f(x, y)=-+$
$f\left(x, y=2 x y-3 x^{2}-2 y^{2}+10\right.$
$f(x)={ }^{2}-3+{ }^{k^{3}} \cdot n \boldsymbol{y}-\gamma$
$f(x, y)=$

Indefinite integral

Integration is a reverse procedure to differentiation.
Notation:

Legend:
$\begin{array}{ll}\int(x) & \ldots . \text { Integration sign } \\ \mathrm{C} & \ldots . \text { Integrated function } \\ \ldots\end{array}$

Indefinite integral - cont

Indefinite integral is a linear operator:

We compute integrals with the use of formulas above, and with the use of the table of elementary integrals, see the next slide.

Indefinite integral - elementary integrals

$f(x)$	$\int f(x) d x$
0	C
1	$x+\mathrm{C}$
x^{n}	$\frac{x^{n+1}}{n+1}+\mathrm{C}$
e^{x}	$e^{x}+\mathrm{C}$
$\frac{1}{x}$	$\ln \|x\|+\mathrm{C}$
$\frac{1}{a x+b}$	$\frac{1}{a} \ln \|a x+b\|+C$
a^{x}	$\frac{a^{x}}{\ln a}+\mathrm{C}$

Indefinite integral - elementary integrals

$\sin x$	$-\cos x+\mathrm{C}$
$\frac{\cos x}{\cos ^{2} x}$	$\sin x+\mathrm{C}$
$-\frac{1}{\sin ^{2} x}$	$\operatorname{tg} x+\mathrm{C}$
$\frac{1}{1+x^{2}}$	$\operatorname{cotg} x+\mathrm{C}$
$\frac{1}{a^{2}+x^{2}}$	$\operatorname{arctg} x+\mathrm{C}$
$\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{a} \operatorname{arctg} \frac{x}{a}+C$
$-\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin x+\mathrm{C}$
$\frac{1}{\sqrt{1 \pm x^{2}}}$	$\arccos x+\mathrm{C}\left\|x+\sqrt{1 \pm x^{2}}\right\|+\mathrm{C}$

Lecture 5
Indefinite integral - examples

$$
\begin{aligned}
& \int=\frac{\mathfrak{x}^{3}}{3}+ \\
& \iiint \int \frac{x^{4}-2^{-2}}{4}++^{-\imath^{2}}+ \\
& \iint^{1}+ \\
& \int^{1} \int^{-}
\end{aligned}
$$

Indefinite integral - examples

$$
\begin{aligned}
& \int_{i}^{-} \quad-+^{-} \\
& \varlimsup^{2} \int^{1^{2}} \int^{1} \int^{1}+ \\
& \int^{1} \quad \int^{1} \quad 1 r^{-}+
\end{aligned}
$$

Indefinite integral - integration methods

For more complicated integration we use sutitable integration methods:

- Method per partes
- Partial fractions
- Substitutions

All these methods will be demonstrated on examples.

Indefinite integral - rational functions

By a rational function we mean the function of the form:

where $P(x)$ and $Q(x)$ are polynomials.
In the first step we find the roots x_{i} of the denominator in order to rearrange the denominator into a product.

$$
\frac{H(x)}{\partial(x)}=-\frac{H(x)}{-\quad-\quad-}
$$

Indefinite integral - rational functions - cont.

Then, the situation splits into three possible cases:

1. All roots of a denominator are single. Then we obtain the following partial fractions:

2. Some root, for example x_{1}, is of order higher than 1 :

$H(x)$	Her	Δ	Δ	Δ	μ	κ
$Q(x)=$	-	-		-	-	

Indefinite integral - rational functions - cont.

3. A denominator or its part given as a quadratic polynomial has no roots:

Coeffcients in numerators are unknown and must be computed by clearing a denomiantor and solving a subsequent equation.

Integration of rational functions - Problem 1

Solve: \lceil
Solution: The rational function is of case 1 , with roots -2 and 1.
Therefore, we obtain the following division into partial fractions:

Now we clear the denominator:

$$
3 x_{+}=-+\quad+
$$

And we get two equations: $\quad 3_{-}=+$

Integration of rational functions - Problem 1-cont.

Solving the equation yields: $A==$.
Hence: $\frac{3 x}{x_{+}}-{ }^{\prime}{ }^{\prime}{ }^{\prime}$
Now, we can integrate:

We will continue in Lecture 6.

Thank you for your attention!

