

SCHOOL OF BUSINESS ADMINISTRATION IN KARVINA

Mathematics in economics

Definite integral

Newton s definite integral:

In the definition above, F is a primitive function to f, and *a* and *b* are the limits of the integral.

The result of definite integral is not a function, but a number!

Definite integral – elementary properties

Generally, when computing definite integral, we use the same table of elementary integrals as for an indefinite integral.

The elementary properties of the definite integral:

Definite integral – a use

The definite integral can be used to calculation of:

- The square under or above given function,
- The area of a 2D object,
- The length of a curve,
- The volume of a 3D object,
- The area of a 3D object.

Definite integral – An area under/above a function

Find:
$$\int_{1}^{2}$$

Solution: \int_{1}^{2} \neg_{1}^{2} \neg_{2}^{2} \neg_{2}^{2} \neg_{3}^{2} \neg_{4}^{2} \neg_{5}^{2} \neg_{7}^{2} \rightarrow_{7}^{2} \rightarrow_{7}^{2}

What does the number 7/3 mean?

It is the area below the function f(x) on the interval (1,2), See the next slide for a picture.

Definite integral – An area under/above a function

Definite integral – An area under/above a function

Find an area bounded by functions: $\mathcal{Y}_{=}$, axis x, x = -1 and x = 2.

Solution: We must divide the interval of integration (-1,2) into two intervals: (-1,0) and (0,2) (WHY?):

$$S_{=}^{0} \int_{0}^{2} \int_{0}^{|r_{-}|} \int_{0}^{r_{+}|} \int_{0}^{r_{+}|$$

Definite integral – An area under/above a function

Definite integral – An area under/above a function Problem 2

This result means that the area under the function on the interval (0,3) is 9.

Important note: if a function is positive on the interval of integration, then the result will be a positive number. However, for a negative function the result will be negative!

Definite integral – An area under/above a function Problems 3 and 4

Problems to solve - 1

An area between two curves

Let f(x) and h(x) be two curves, *S* an area between them And *a* and *b* their intersections. Then *S* is given as follows:

$$S_{=}^{b}$$

An area between two curves – Problem 1

Find an are between two curves: $\mathcal{Y}_{=}$ and $\mathcal{Y}_{=}$.

A picture:

An area between two curves – Problem 1 cont.

Find an are between two curves: $\mathcal{Y}_{=}$ and $\mathcal{Y}_{=}$.

Solution:

First, we find intersections: χ^2 , hence x = 0 and x = 1.

Now, we can use the integral formula for the area:

$$S_{=}^{1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

An area between two curves – Problem 2

Find an are between two curves: \mathcal{Y}_{\pm} and \mathcal{Y}_{\pm} .

Solution: First, we find intersections: χ^2 _____, hence x = 0 and x = 2.

Now, we can use the integral formula for the area:

An area between two curves – Problem 2 – cont.

Find an are between two curves: \mathcal{Y}_{\pm} and \mathcal{Y}_{\pm} .

A graph:

