SILESIAN

 UNIVERSITYSCHOOL OF BUSINESS
administration in karvina

Mathematics in economics

Lecture 10

Definite integral

Newton s definite integral:

In the definition above, F is a primitive function to f, and a and b are the limits of the integral.

The result of definite integral is not a function, but a number!

Definite integral - elementary properties

Generally, when computing definite integral, we use the same table of elementary integrals as for an indefinite integral.

The elementary properties of the definite integral:

Definite integral - a use

The definite integral can be used to calculation of:

- The square under or above given function,
- The area of a 2D object,
- The length of a curve,
- The volume of a 3D object,
- The area of a 3D object.

Definite integral - An area under/above a function

Find: \int^{2}

What does the number $7 / 3$ mean?
It is the area below the function $f(x)$ on the interval $(1,2)$, See the next slide for a picture.

Definite integral - An area under/above a function

Definite integral - An area under/above a function

Find an area bounded by functions: $y_{=}$, axis x, $x=-1$ and $x=2$.

Solution: We must divide the interval of integration $(-1,2)$ into two intervals: $(-1,0)$ and (0,2) (WHY?):

$$
S_{=} \int^{0} \int^{2} \mid>\cdot \neg^{\wedge}+\cdots=+=
$$

Definite integral - An area under/above a function

Definite integral - An area under/above a function Problem 2

This result means that the area under the function on the interval $(0,3)$ is 9 .

Important note: if a function is positive on the interval of integration, then the result will be a positive number. However, for a negative function the result will be negative!

Definite integral - An area under/above a function Problems 3 and 4

Find: $\int^{\bar{p}}=-\quad=-{ }^{-}=-$

Find: ${ }^{\top}$
Solution: $\left\lceil=\left\lfloor^{\cdots}\right\rfloor^{\cdots}-\cdots\right.$

Problems to solve - 1

An area between two curves

Let $f(x)$ and $h(x)$ be two curves, S an area between them And a and b their intersections.
Then S is given as follows:

$$
S_{=1}^{n}
$$

An area between two curves - Problem 1

Find an are between two curves: $y_{=}$and $y_{=}$.
A picture:

An area between two curves - Problem 1 cont.

Find an are between two curves: $y_{=}$and $y_{=}$.
Solution:
First, we find intersections: $x^{2} \quad$, hence $x=0$ and $x=1$.
Now, we can use the integral formula for the area:

An area between two curves - Problem 2

Find an are between two curves: $y_{=}$and $y_{=}{ }^{-}$.
Solution:
First, we find intersections: $x^{2}-{ }^{-}$, hence $x=0$ and $x=2$.
Now, we can use the integral formula for the area:

$$
S_{=}^{2} \quad i \quad i \quad i \quad i \quad i, \quad \hat{\imath} \cdot
$$

An area between two curves - Problem 2 - cont.

Find an are between two curves: $y_{=}$and $y_{=}{ }^{-}$.
A graph:

