Mathematics in Economics – lecture 2

- 1) Domain of a function of the form: (function with <u>linear</u> expression)
- a) $f(x) = \frac{1}{2x-8}$
- b) f(x) = log(4x 8)
- c) $f(x) = \sqrt{-3x+4}$
- 2) Domain of a function of the form: (function with <u>quadratic</u> expression)

Firstly, we must decompose this expression into a product.

We can use the formula $a^2 - b^2 = (a - b)(a + b)$.

 $9 - x^2 =$

$$x^2 - 16 =$$

We can factor out: $x^2 - 5x =$

$$4x - x^2 =$$

Solving the quadratic equation: $x^2 - 7x + 10 =$

$$x^2 + 10x + 21 =$$

Than we are going to solve quadratic inequation:

1) decomposition of expression into product

2) find zero points

3) find out what sign it takes in given interval (We choose number from interval and substitute it into the expression)

 $x^2 - 36 \ge 0$

 $7x - x^2 < 0$

 $x^2 + 8x + 15 \le 0$

Solve the domain of functions:

d)
$$f(x) = \frac{1}{x^2 - 25}$$

e)
$$f(x) = log(6x - x^2)$$

f)
$$f(x) = \sqrt{x^2 - 5x + 4}$$

The derivative of a function (Derivatives of elementary functions)

f(x)	f(x)
konstanta	0
x	1
x^n	nx^{n-1}
e ^x	e ^x
$\ln x$	$\frac{1}{x}$
a^{x}	$a^x \cdot \ln a$
$\log_a x$	$\frac{1}{x \ln a}$
sinx	cosx
cosx	-sinx
tgx	$\frac{1}{\cos^2 x}$
cotgx	$-\frac{1}{\sin^2 x}$
arcsinx	$\frac{1}{\sqrt{1-x^2}}$
arccosx	$-\frac{1}{\sqrt{1-x^2}}$
arctgx	$\frac{1}{1+x^2}$
arccotgx	$-\frac{1}{1+x^2}$

The basic rule is to put the exponent before the expression and then reduce the exponent by one.

$$(2x^{5})' =$$

$$(5x^{4} - 3x^{2} + 7x - 11)' =$$

$$(3x^{-4} - 2x^{-3} + 8x + 5)' =$$

$$(3sinx + 4cosx + 5lnx + 6e^{x})' =$$

The rules of differentiation

i)
$$[c \cdot f(x)]' = c \cdot f'(x)$$

ii) $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
iii) $[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
iv) $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}, g(x) \neq 0$
v) $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

(multiplication, dividing, composite function)

$$y = \left(x^2 + 1\right) \cdot e^x$$

$$y = \left(x^2 + 4\right) \cdot \sin x$$

$$y = \frac{2x^2 - 3x + 1}{x}$$

$$y = \frac{x}{\ln x}$$

$$y = \ln(4x+1)$$