Mathematics in Economics - lecture 4

1) Extreme of function

The second derivative may be used to determine local extrema of a function under certain conditions. If a function has a critical point for which $f^{\prime}(x)=0$ and
A) the second derivative is positive at this point, then f has a local minimum here.
B) the second derivative is negative at this point, then f has a local maximum here.

$$
\begin{aligned}
& f(x)=x^{2}-8 x+4 \\
& f(x)=-2 x^{2}+12 x \\
& f(x)=x^{3}+3 x^{2}+1
\end{aligned}
$$

Find the maximum of total revenue function

$$
T R(Q)=-1400+80 Q-Q^{2}
$$

Find the minimum of total cost function:

$$
T C(Q)=100-60 Q+Q^{2}
$$

Find the maximum of the profit function:

$$
P R(Q)=100+64 Q-4 Q^{2}
$$

Find the maximum of total revenue function:

$$
T R(Q)=-80 Q^{2}+160 Q+200
$$

