Mathematics in Economics - lecture 6

Extremes of a function of two real variables

Necessary condition for the extreme

$$
\frac{\partial f(x, y)}{\partial x}=\frac{\partial f(x, y)}{\partial y}=0
$$

A point satisfying equalities above is called a stationary (critical) point. However, this condition is not sufficient.

In a critical point can be maximum, minimum or an inflection point. To decide which situation occurs, we use the second derivatives and a matrix called hessian $\mathrm{H}(C)$

$$
\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

Determinant calculation:

we multiply the numbers on the main diagonal and subtract the product of the numbers on the secondary diagonal.

Then we use Sylvester's theorem.
We denote: $\mathrm{D} 1=f^{\prime \prime}{ }_{x x}(C)$ and $\mathrm{D} 2=\mathrm{H}(C)$. Then:
If D2 >0, then we have an extreme.
Moreover, If $\mathrm{D} 1>0$, we have a minimum, if $\mathrm{D} 1<0$, we have a maximum.
IF $\mathrm{D} 2<0$, we have an inflection point. If $\mathrm{D} 2=0$, we cannot decide.

Problem 1

Find extremes of the function $f(x, y)=x^{3}-2 x y$
Solution: We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point $\mathrm{C}[0,0]$.
Now we compute all second derivatives and hessian:

We substitute point C into hessian: $\operatorname{Hf}(0,0)=$
Because $\mathrm{D} 2<0$, the point C is an inflection point.

Problem 2

Find extremes of the function $f(x, y)=x^{2}-2 x y+y$
Solution: We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point $C[1 / 2,1 / 2]$.

Now we compute all second derivatives and hessian:

We substitute point C into hessian: $H f(1 / 2 ; 1 / 2)=$

Because $\mathrm{D} 2<0$, the point C is an inflection point.

Problem 3

Find extremes of the function $f(x, y)=-3 x^{2}+2 x y-2 y^{2}-10$
Solution: We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point $C[0,0]$.

Now we compute all second derivatives and hessian:

We substitute point C into hessian: $H f(0 ; 0)=$

Because $\mathrm{D} 2>0$, we have extreme at the point C ; because $\mathrm{D} 1<0$, we have a maximum.

Problem 4

Find extremes of the function $f(x, y)=x^{2}+4 x y+6 y^{2}-2 x+8 y-5$
Solution: We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point $C[7,-3]$.

Now we compute all second derivatives and hessian:

We substitute point C into hessian: $H f(7 ;-3)=$
Because $\mathrm{D} 2>0$, we have extreme at the point C ; because $\mathrm{D} 1>0$, we have a minimum.

Problem 5

Find the maximum of the revenue function: $T R\left(Q_{1}, Q_{2}\right)=50 Q_{1}+20 Q_{2}-2 Q_{1}^{2}-5 Q_{2}^{2}$
Solution: We start with the first derivatives:

Both derivatives must be 0 , which yields the critical point $C[12.5,2]$.

Now we compute all second derivatives and hessian:

We substitute point C into hessian: $H f(12.5 ; 2)=$
Because $\mathrm{D} 2>0$, we have extreme at the point C ; because $\mathrm{D} 1<0$, we have a maximum.

HOMEWORK

A] $f(x, y)=x^{2}+2 y^{2}-6 x+8$
B] $f(x, y)=x^{3}-x y+y$
C] $f(x, y)=2 x y-3 x^{2}-2 y^{2}+10$
D] $f(x, y)=y-\frac{x^{3}}{3}+\ln (x-y)$

