

SCHOOL OF BUSINESS ADMINISTRATION IN KARVINA

Mathematics in economics

Mgr. Jiří Mazurek, Ph.D. Mathematics in Economics/PMAT

Geometric function series

Geometric function series is defined as follows:

The series is convergent if $|q| < \bar{x}$, where q = f(x). The sum is given as: $S(x) = \bar{x}$

Geometric function series – Problem 1

Geometric function series – Problem 2

Geometric function series – Problem 3

Find the range of convergence and a sum of the series:

Problems to solve

Find the range of convergence and a sum of the series:

Differential equations

Differential equation (DE) is an equation that includes given function y = f(x) and its derivatives.

Examples:

 \dot{y}_{+} is a DE of the first order and degree 1.

 $V^2_6y_1_5y_0$ is a DE of the first order and degree 2.

 N_{1}^{3} $N_{2}^{5}x^{2}$ V_{3}^{8} $5x_{0}^{0}$ is a DE of the second order and degree 3.

Differential equations – Types of a solution

DE can have three types of solutions:

- General solution
- Particular solution
- Singular solution

Differential equations – Types of a solution Example 1

Find general solution of DE \mathcal{Y}_{\pm} and particular solution for a condition \mathcal{Y}_{\pm} .

General solution: v^2 We simply integrate DE: $\mathcal{Y}_{=}$ +

Particular solution for the initial condition: we substitute x = 0 and y = 2 into general solution:

$$2 = 4$$

Which yields C = 2. Thus, particular solution is $y = 4$

Differential equations – Types of a solution Example 2

Find general solution of DE $\mathcal{Y}_{=}$ + and particular solution for a condition y(1) = 2.

General solution: We integrate DE: \mathcal{Y}_{\pm} + +

Particular solution for the initial condition: we substitute x = 1 and y = 2 into general solution:

Which yields C = -2. Thus, particular solution is

$$\mathcal{Y}_{\pm}$$
 + -

Differential equations – Types of a solution Example 3

Find general solution of DE $\dot{y}_{=}^{r}$ and particular solution for a conditions $y_{=}^{r}$ and $\dot{y}_{=}^{r}$ and $\dot{y}_{=}^{r}$.

General solution: $y_{\pm} + + +$

Particular solution for the initial condition:

$$\dot{y}(0)_{==++}$$
 $y(0)_{==++}$

Which yields $C_1 = 0$, $C_2 = 1$. Thus, particular solution is:

$$\mathcal{Y}_{\pm}$$
 + +

Differential equations – Separation of variables

One of the most used method for solving DE is separation of variables. In this method x and y variables are separated on the different sides of an equation before integration takes place.

It can be used when DE is separable:

$$P_{x_+} \xrightarrow{2} y_{y_+} \stackrel{c}{=} 0$$
 or $P_{x_+} \xrightarrow{2} y_{y_+} \xrightarrow{0} 0$

Differential equations – Separation of variables Example 1

Find a general solution of \mathcal{W} _ . The equation is separable: \mathcal{Y}_{dx}^{dy} , so we separate both variables: VAV_ And integrate: $\frac{y^2}{2} = +$ Which yields:

Differential equations – Separation of variables Example 2

Find a general solution of $\mathcal{Y}_{\perp}\mathcal{X}_{-}\mathcal{Y}_{=}$.

The equation is separable, so we separate and integrate:

$$\frac{dy}{dx+}x_{-}y_{=}$$

$$\frac{dy}{dx+}x_{-}y_{=}$$

$$\frac{dy}{dx-}-v$$

$$\frac{dy}{dx-}-iz$$

$$\int_{y=}^{y}\int_{z-+}^{y}\int_{z-+}^{z}\int_{z-+}^{z}$$

Differential equations – Separation of variables Example 3

Find a general solution of

$$\frac{y}{x_{+}} xy^{-}.$$

The equation is separable, so we separate and integrate:

$$\frac{dy}{x_{+}} \frac{xy}{dx_{-}} \frac{dy}{y_{-}} \frac{xy}{x_{+}} \frac{dy}{dx_{-}} \frac{xy}{dx_{-}} \frac{dy}{dx_{-}} \frac{x}{dx_{+}} \frac{dy}{dx_{-}} \frac{x}{dx_{+}} \frac{dy}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{+}} \frac{y}{dx_{-}} \frac{y}{dx_{-$$

Differential equations – Homogenous differential equations

A DE of the form $\dot{y}_{=}$ such that $f(tx,ty)_{=}$) is called homogenous differential equation. It is solved via substitution: $\dot{y}_{=}$ and $\dot{y}_{=}$ + · Example: $x^2\dot{y}_{=}$ is homogenous, because: $f(tx,ty)_{=}$ $\hat{f}(tx,ty)_{=}$ \hat{f}

Differential equations – Homogenous differential equations – Example 1

Find a general solution of a homogenous DE:

$$x^2 y_{\pm}$$

We start with the substitution $\mathcal{Y}_{=}$:

$$\begin{array}{c}
\dot{u}x_{\perp} & - \\
\dot{u}x_{\perp} & - \\
\dot{d}u_{x}_{\perp} & - \\
\dot{d}u_{x}_{\perp} & - \\
\dot{d}u_{\perp} & \dot{d}u_{\perp} \\
\dot{d}u_{\perp} & \dot{d}u_{\perp}
\end{array}$$

Differential equations – Homogenous differential equations – Example 1 – cont.

And at the end we integratate:

Differential equations – Logistic equation and function

In economics, demographics and other disciplines appears a function called a logistic function.

This function arises as a solution to the following logistic equation: \underline{g}_{1}

For an initial condition
$$f(0)_{\pm}$$
 the solution is:

$$f(t) = \int_{\perp}^{1}$$

Differential equations – Logistic equation and function

Differential equations Linear differential equations of the first order

By a linear differential equations of the first order we mean an equation of the form:

$$\dot{\mathcal{Y}}_{+}$$
 =

Assume that
$$q(x) = 0$$
: $\dot{y}_{+} =$

This special equation is called homogenous, and is solved by separation of variables:

$$\frac{dy}{dx} = -$$

Differential equations

Linear differential equations of the first order – cont.

$$\frac{dy}{y} = -\int_{x} \frac{dy}{y} = -\int_{y} \frac{dy}{y} =$$

^

And finally we obtain:

Differential equations

Linear differential equations of the first order – Example 1

Find the general solution: $\dot{\mathcal{Y}}_{+}$ = .

Solution:

We follow the procedure from the previous slide:

$$\begin{array}{c}
\frac{dy}{dx} = -\\
\frac{dy}{dx} = -\\
\frac{dy}{y} = -\\
\frac{dy}{$$

Linear differential equations of the first order Problems to solve

Find the general solution:

Thank you for your attention