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Lecture 11

Differential equations - continued

Now assume that q(x) is not zero:

Yo =

In such case we use the method called variation of
parameters. We assume the solution of the form:

Y=

But C is now a function:

b

~



Lecture 11

Differential equations - continued

Substituting the last formula into —  Yields
the solution.

Example: y-l- —

Solution: we search for a solution of the form }/__ a

Substituting into the equation:
V2 V2

2
C(XX_ 1 _ 4 -

o _
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Differential equations - continued

Rearranging of terms yields:

"

-

2
Now we integrate: C(X): f i

Solution of the given equation is:

Y1
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Differential equations — Problem 1

Solve: y’_ LZV:

Solution:
First, we solve corresponding homogenous equation by
the separation of variables method:

9L
dy dx
y=X, )
Iy _Inc,2

And finally: |
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Differential equations — Problem 1 — cont.

In the second step, we apply the variation of a constant
method:

YLy, x,
Substitution:
COE,D, WL HM 0,2
CQ.0x,2)_
Céc):x)i
) b Ldelemx2C

v, F—le+ -



Lecture 11

Linear differential equations of the second order with
constant coefficients

The last type of differential equation we will address.

It is of the form: a) ,0),C)_

A solution is assumed to be in the form y_
where lambda is a root of the so called characteristic

equation:

(7 bty >_
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Linear differential equations of the second order with
constant coefficients

In the aforementioned three cases, we yield following
solutions:

Case1:. y_ 22, @

Case2: V_

Case3: V_
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Linear differential equations of the second order with
constant coefficients

The characteristic equation is a quadratic equation,
which means we have three cases:

 Two real roots.
* One real root of the order two.

* Two imaginary roots.
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Linear differential equations of the second order with
constant coefficients - Problem 1

Solve: V_ . _

Solution: we start with the characteristic equation:

—~ — - —~

2 2 -
This equation has two real roots: A1 =2 and A2 = 3.

Therefore, th e solution is:

Vo e
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Linear differential equations of the second order with
constant coefficients - Problem 2

Solve: V_YV V_
Solution: we start with the characteristic equation:
y I R

This equation has two real roots: A1 =3 and A2 = -1.

Therefore, th e solution is:

y: E_—l— éx
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Linear differential equations of the second order with
constant coefficients - Problem 3

Solve: V_ | _

Solution: we start with the characteristic equation:

2-_ 1 —
This equation has two real roots: A1 = 3 and A2 = 3.

Therefore, th e solution is:

y: —+
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Linear differential equations of the second order with
constant coefficients - Problem 4

Solve: y"_l_ 1

Solution: we start with the characteristic equation:

71 1 —

This equation has two real roots: A1 = -2+i and A2 = -2-i.

Therefore, th e solution is:

Y= +
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Linear differential equations of the second order with
constant coefficients - Problem 5

Solve: ¥V _V _

Solution: we start with the characteristic equation:

~ - —~

y)

This equation has two real roots: A1 =1 and A2 = -1.

—— ——

Therefore, th e solutionis: y_ =, 2
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Linear differential equations of the second order with
constant coefficients - Problem 6

Solve: V|V _
Solution: we start with the characteristic equation:
P -
This equation has two real roots: A1 =i and A2 = -i.

Therefore, the solution is:
y_ SIx, COS¥
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Linear differential equations of the second order with
constant coefficients

Now we will focus on eqautions with non-zero right hand side:

ay, , — X

abc _Ka,

This type of equation is called non-homogenous.

Solution of this equation has the following form:
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Linear differential equations of the second order with
constant coefficients — cont.

The solution (1){ 1 W correspond to a homogenous case,
while [{X) is the so called particular integral, which solves
a nonhomogenous part of an equation.

A particular integral for the most common functions (polynomials,
exponentials, logarithms, etc.) can be easily “guessed".

We will illustrate the procedure by several examples.
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Linear differential equations of the second order with
constant coefficients — Problem 9

Solve: y’_ -

Solution: we begin with the homogenous case and its
characteristic polynom:

7 7 -
The roots are A1 =2 a A2 = -1, hence the solution is:
y: 1= 4 25_

Now we seek a particular integral in the form:

HY_—
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Linear differential equations of the second order with
constant coefficients — Problem 9 — cont.

Solve: y’_ -

Solution: we substitute y = P(x) into the given equation:
—_ - Z“—I— —
Which yields: a=-2, b = 2.

Therefore, the general solution to the equation is:

y_Cer Cer X,
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Linear differential equations of the second order with
constant coefficients — Problem 10

Solve: Vi1 — _

Solution: we begin with the homogenous case and its
characteristic polynom:

—~ - —

7 1

The roots are A1 = 0 a A2 = -4, hence the solution is:

Vo L&
Now we seek a particular integral in the form:

RO- 4 4 = + 4
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Linear differential equations of the second order with
constant coefficients — Problem 10 — cont.

Solve: y’_ -

Solution: we substitute y = P(x) into the given equation:

e, 4 4=

l . | i

Which yields: a_

Therefore, the general solution to the equation is:

¥ 2 A
Gy ey
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Problems to solve - 1
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Problems to solve - 2

Solve:

Yiyv_ y_
o
LT i
A
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Problems to solve -3

Solve:

y—l——l—:—l——l—

y—l——l—:‘

rr - -

y—l——:
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Final remarks

See the exam dates in STAG. Everybody has 2 attempits.

Also, see the older versions of exam tests on my public or
Moodle.

If you need consultations, write me (or Dr. Stoklasova) an e-
mail.

Good luck!
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Thank you for your attention!



