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Lecture 5 

Extremes of a function of two real variables  

  

 

  

 

  

 

  

 

 

    
 

Local vs global extremes. 

 

Bounded vs unbounded extremes. 

 

Necessary condition for the extreme: 
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A point satisfying equalities above is called a stationary 

 (critical) point. However, this condition is not sufficient 
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Extremes of a function of two real variables 
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In a critical point can be maximum, minimum or an inflection 

 point. To decide which situation occurrs, we use the second  

derivatives and a matrix called hessian:  

Hf(x,y) =  
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Then we use Sylvester s theorem. 
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Extremes of a function of two real variables 
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We denote: D1 =               and D2 = Hf(C). Then: 

 

If D2>0, then we have an extreme. Moreover,  

If D1>0, we have a minimum, if D1<0, we have a 

maximum. 

 

IF D2<0, we have an inflection point. 

 

If D2 = 0, we cannot decide. 
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Extremes of a function of two real variables 

 - Problem 1 

  

 

  

 

  

 

  

 

 

    
 

Find extremes of the function                        . 

 

Solution: 

We start with the first derivatives: 

 

 

 

Both derivatives must be 0, which yields the critical point 

C [0,0]. 
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Extremes of a function of two real variables 

 - Problem 1 – cont. 

   

 

  

 

  

 

  

 

 

    
 

Now we compute all second derivatives and hessian: 

 

 

 

 

 

 

 

We substitute point C into hessian:  Hf(0,0) =                 . 

 

Because D2<0, the point C is an inflection point.   
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Extremes of a function of two real variables 

 - Problem 2 

  

 

  

 

  

 

  

 

 

    
 

Find extremes of the function                             . 

 

Solution: 

We start with the first derivatives: 

 

 

 

Both derivatives must be 0, which yields the critical point 

 C [1/2,1/2].  
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Extremes of a function of two real variables 

 - Problem 2 – cont. 

   

 

  

 

  

 

  

 

 

    
 

Now we compute all second derivatives and hessian: 

 

 

 

 

 

 

Substituting point C into hessian yields the same result. 

 

Because D2 < 0, the point C is an inflection point.   

Hf(x,y) =  
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Extremes of a function of two real variables 

 - Problem 3 

  

 

  

 

  

 

  

 

 

    
 

Find extremes of the function                             . 

 

Solution: 

We start with the first derivatives: 

 

 

 

Both derivatives must be 0, which yields the critical point 

 C [0,0].  
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Extremes of a function of two real variables 

 - Problem 3 – cont. 

   

 

  

 

  

 

  

 

 

    
 

Now we compute all second derivatives and hessian: 

 

 

 

 

 

 

Because D2 = 0, We cannot decide the nature of C.  

But how do we know it is certainly a minimum?   

Hf(x,y) =  
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Problem 4 

  

 

  

 

  

 

 

  

 

 

    
 

Find the maximum of the revenue function:                              

 

 

 

Solution: 

We start with the first derivatives: 

 

 

 

Both derivatives must be 0, which yields the critical point 

 C [12.5,2].  
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Problem 4 – cont. 

 

  

 

  

 

  

 

  

 

 

    
 

Now we compute all second derivatives and hessian: 

 

 

 

 

 

Because D2 > 0, we have an extreme.  

Because D1 <0, we have a maximum. 

 

Hf(x,y) =  
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Hf(C) =  
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Problems to solve – 1 (Assignment 7) 

 

 Find extremes of the following functions: 
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Indefinite integral 

 

 Integration is a reverse procedure to differentiation.  

 

Notation:  

 

 

 

Legend: 

 

          …. Integration sign 

 f(x)    …. Integrated function 

   C     …. Integration constant 
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Indefinite integral - cont 

 

 Indefinite integral is a linear operator:  
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( ) ( )kf xdx k f xdx
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We compute integrals with the use of formulas above, and  

with the use of the table of elementary integrals, see 

the next slide. 
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Indefinite integral – elementary integrals 
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Indefinite integral – elementary integrals 
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Indefinite integral - examples 
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Indefinite integral - examples 
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Indefinite integral – integration methods 
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For more complicated integration we use sutitable  

integration methods: 

 

• Method per partes 

 

• Partial fractions 

 

• Substitutions 

 

 

All these methods will be demonstrated on examples. 
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Indefinite integral – rational functions 
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By a rational function we mean the function of the form: 

 

 

 

 

where P(x) and Q(x) are polynomials. 

 

In the first step we find the roots xi of the denominator in order 

to rearrange the denominator into a product. 
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Indefinite integral – rational functions – cont. 
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Then, the situation splits into three possible cases: 

 

1. All roots of a denominator are single. Then we obtain the 

following partial fractions: 

 

 

 

 

2. Some root, for example x1, is of order higher than 1: 
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Indefinite integral – rational functions – cont. 
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3. A denominator or its part given as a quadratic polynomial  

has no roots: 

 

 

 

 

 

Coeffcients in numerators are unknown and must be computed 

by clearing a denomiantor and solving a subsequent equation. 
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Integration of rational functions – Problem 1 
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x xSolve:                      . 

 

Solution: The rational function is of case 1, with roots -2 and 1. 

Therefore, we obtain the following division into partial fractions: 

 

 

 

 

Now we clear the denominator: 

 

 

 

And we get two equations: 
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Integration of rational functions – Problem 1-cont. 
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1, 2A BSolving the equation yields:                    . 

 

Hence:  

 

Now, we can integrate: 
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We will continue in Lecture 6. 
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Thank you for your attention! 
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