

SCHOOL OF BUSINESS ADMINISTRATION IN KARVINA

Mathematics in economics

Mgr. Jiří Mazurek, Ph.D. Mathematics in Economics/PMAT

Definite integral

Newton s definite integral:

In the definition above, F is a primitive function to f, and *a* and *b* are the limits of the integral.

The result of definite integral is not a function, but a number!

Definite integral – elementary properties

Generally, when computing definite integral, we use the same table of elementary integrals as for an indefinite integral.

The elementary properties of the definite integral:

Definite integral – a use

The definite integral can be used to calculation of:

- The square under or above given function,
- The length of a curve,
- The volume of a 3D object,
- The area of a 3D object.

Definite integral – An area under/above a function

Find:
$$\int_{1}^{2} \frac{1}{2} = \frac{1}{2}$$

What does the number 7/3 mean?

It is the area below the function f(x) on the interval (1,2), See the next slide for a picture. Lecture 7

Definite integral – An area under/above a function

Definite integral – An area under/above a function

Find an area bounded by functions: $\mathcal{Y}_{=}$, axis x, x = -1 and x = 2.

Solution: We must divide the interval of integration (-1,2) into two intervals: (-1,0) and (0,2) (WHY?):

$$S_{=}^{0} \int_{1}^{2} \int_{1}^{1} \int_{1}^{1} \int_{1}^{2} \int_{1}^{1} \int_{1$$

Lecture 7

Definite integral – An area under/above a function

Definite integral – An area under/above a function Problem 2

This result means that the area under the function on the interval (0,3) is 9.

Important note: if a function is positive on the interval of integration, then the result will be a positive number. However, for a negative function the result will be negative! Lecture 7

Definite integral – An area under/above a function Problems 3 and 4

Lecture 7

Definite integral – per partes

Per partes method:

Definite integral – substitution

A substitution in an definite integral, example:

Lecture 7

Problems to solve - 1

An area between two curves

Let f(x) and h(x) be two curves, *S* an area between them And *a* and *b* their intersections. Then *S* is given as follows:

$$S_{=}^{b}$$

An area between two curves – Problem 1

Find an are between two curves: $\mathcal{Y}_{=}$ and $\mathcal{Y}_{=}$.

A picture:

An area between two curves – Problem 1 cont.

Find an are between two curves: $\mathcal{Y}_{=}$ and $\mathcal{Y}_{=}$.

Solution:

First, we find intersections: χ^2 , hence x = 0 and x = 1.

Now, we can use the integral formula for the area:

An area between two curves – Problem 2

Find an are between two curves: \mathcal{Y}_{\pm} and \mathcal{Y}_{\pm} .

Solution: First, we find intersections: χ^2 _____, hence x = 0 and x = 2.

Now, we can use the integral formula for the area:

$$S_{=}^{2} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \end{array} \\[1 \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \\ 1 \end{array} \left[\begin{array}{c} 1 \end{array} \\[1 \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \end{array} \\[1 \\ 1 \\[1 \end{array} \left[\begin{array}{c} 1 \end{array} \\[1 \\ 1 \end{array} \\[1 \\ \left[1 \end{array} \\]$$

An area between two curves – Problem 2 – cont.

Find an are between two curves: \mathcal{Y}_{\pm} and \mathcal{Y}_{\pm} .

A graph:

A volume of a solid of revolution

We assume that a solid is generated by rotating a plane curve around x axis.

In such a case, the volume of a solid is given as:

$$V_{\pm} \int^{b}$$

A volume of a solid of revolution – Problem 1

Find a volume of a solid generated by a curve $\mathcal{Y}_{=}$ \mathcal{C} , rotating around x axis on the interval (0,3).

Solution:

$$V = \int_{-\infty}^{3} \sqrt{x} dx = \int_{-\infty}^{3} dx = \int_{-\infty}^{-\infty} \sqrt{x} dx = \int_{-\infty}^{\infty} \sqrt{x} dx = \int_{-\infty}^$$

Note: the solid is called a rotational parabolloid.

A volume of a solid of revolution – Problem 2

Find a volume of a solid generated by a curve \mathcal{Y}_{\pm} , rotating around x axis on the interval (1,2).

Solution:

$$V_{=} \int_{-\infty}^{2} x^{2} dx = \int_{-\infty}^{2} x^{4} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{2} z^{1} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} z^{1} dx = \int_{-\infty}^{\infty} z^{1} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} z^{1} dx = \int_{-\infty}^{\infty} z^{$$

Note: the solid is also a rotational parabolloid.

A volume of a solid of revolution – Problem 3

Find a volume of a solid generated by a curve \mathcal{Y}_{\pm} rotating around x axis on the interval (1,4).

Solution:

$$V_{=} \int_{-\infty}^{4/2} \int_{-\infty}^{2} \int_{-\infty}^{-1/2} \int_{-\infty}^{-1/2$$

Note: the solid is called a rotational hyperbolloid.

Problems to solve - 1

Find an are under/above the curve $\mathcal{Y}_{=}^{-1}$ on the interval (1,3) Find an are under/above the curve: $\mathcal{Y}_{=}^{-1} \in \mathbb{Y}_{=}^{-1}$ Find an are under/above the curve: $\mathcal{Y}_{=}^{-1} + \in \mathbb{Y}_{=}^{-1}$ Find a volume of a solid generated by a curve $\mathcal{Y}_{=}^{-1}$, rotating around x axis on the interval (1,2).

Problems to solve - 2

Find an are under/above the curve: $y_{=}^{-} + e_{=}^{-}$

Find an are under/above the curve: $y_{=-}$ + c_{-}

Find an are under/above the curve: $y_{\pm} - + \epsilon$ Find an are under/above the curve: $y_{\pm} - \epsilon$

Problems to solve - 3

Find an are between two curves: \mathcal{Y}_{\pm}

Find an are between two curves: \mathcal{Y}_{\pm}

Find an are between two curves: $\mathcal{Y}_{\pm}^{3} = \hat{\mathcal{Y}}_{\pm}^{3}$

Find a volume of a rotational solid: \mathcal{Y}_{\pm} + on interval (0,1).

Thank you for your attention