Statistics

Lecture 10

Hypothesis testing: Non-parametric tests

David Bartl Statistics INM/BASTA About statistical hypothesis testing:

Parametric and Non-parametric tests

- Sign test for the median
- Pearson's χ^2 -test for the goodness of fit
- χ^2 -test of independence of qualitative data items

About statistical hypothesis testing

• Parametric and Non-parametric tests

There are two large classes of statistical tests: parametric and non-parametric.

 The parametric tests make assumptions about the probability distributions of the random variables that are subject to the test. It is often assumed that the underlying distribution is normal (Gaussian).

• The **non-parametric** tests do not make such assumptions. The non-parametric tests can be used if the random variables are not normally distributed.

Sign test for the median

- Sign test for the median
- Paired sign test for

the difference of the medians

Motivation:

Let X be a random variable (of any distribution), but assume that its cumulative distribution function F is <u>continuous</u>.

Recall that the median \tilde{x} of the random variable X is the value such that $P(X < \tilde{x}) = \frac{1}{2} = P(\tilde{x} < X)$

We conjecture / we assume / we speculate / we ... / that the mean \tilde{x} of the random variable X is equal to some given value $\tilde{x}_0 \in \mathbb{R}$. We thus formulate the <u>null hypothesis</u>: H_0 : $\tilde{x} = \tilde{x}_0$

The sign test proceeds as follows:

- Let us have n observations x₁, x₂, ..., x_n of the random variable X,
 whose cumulative distribution function F is continuous.
- Considering the null hypothesis $(H_0: \tilde{x} = \tilde{x}_0)$ about the median, calculate the *n* differences

$$x_1 - \tilde{x}_0, \quad x_2 - \tilde{x}_0, \quad \dots, \quad x_n - \tilde{x}_0$$

- Drop any zero differences (i.e., if $x_i \tilde{x}_0 = 0$, then drop x_i from the sample).
- We have a sample of m non-zero differences

$$x_{j_1} - \tilde{x}_0, \quad x_{j_2} - \tilde{x}_0, \quad \dots, \quad x_{j_m} - \tilde{x}_0$$

Sign test for the median

Let

$$Z = |\{i : x_{j_i} - \tilde{x}_0 < 0\}|$$

be the number of the negative differences.

Theorem:

Under the null hypothesis (H_0 : $\tilde{x} = \tilde{x}_0$) that the median \tilde{x} of the random variable X is \tilde{x}_0

$$Z \sim \operatorname{Bi}(m, \frac{1}{2})$$

i.e. the random variable Z follows the binomial probability distribution.

<u>Remark</u>: We actually test the hypothesis that the probability $P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{1}{2}$

(We have $P(X < \tilde{x}_0) = P(X \le \tilde{x}_0)$ because we assume that the cumulative distribution function F is continuous at \tilde{x}_0 .)

Therefore, we could test in the same manner the null hypothesis that

 \tilde{x}_0 is the first quartile $(P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{1}{4}$, whence $Z \sim \operatorname{Bi}\left(m, \frac{1}{4}\right)$, or that \tilde{x}_0 is the third decile $(P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{3}{10}$, whence $Z \sim \operatorname{Bi}\left(m, \frac{3}{10}\right)$, etc.

4

Having stated the null hypothesis about the median

$$H_0: \ \tilde{x} = \tilde{x}_0 \quad \text{or} \quad H_0: \ P(X < \tilde{x}_0) = p_0 = \frac{1}{2}$$

we also state the alternative hypothesis:

- two-sided: $H_1: \tilde{x} \neq \tilde{x}_0$ or $H_1: P(X < \tilde{x}_0) \neq p_0$
- one-sided: H_1 : $\tilde{x} > \tilde{x}_0$ or H_1 : $P(X < \tilde{x}_0) < p_0$
- one-sided: $H_1: \tilde{x} < \tilde{x}_0$ or $H_1: P(X < \tilde{x}_0) > p_0$

The test then proceeds as the binomial test (or z-test approximately) for the

Consider the first case $(H_1: \tilde{x} \neq \tilde{x}_0)$ first. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) \neq p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical values $K, L \in \{0, 1, ..., m\}$ so that

K is the largest number and L is the least number such that

$$\sum_{k=0}^{K} \binom{m}{k} p_{0}^{k} q_{0}^{m-k} = \sum_{k=0}^{K} \binom{m}{k} \frac{1}{2^{m}} \le \frac{\alpha}{2} \quad \text{and} \quad \sum_{k=L}^{m} \binom{m}{k} p_{0}^{k} q_{0}^{n-k} = \sum_{k=L}^{m} \binom{m}{k} \frac{1}{2^{m}} \le \frac{\alpha}{2}$$

- if $Z \in \{0, ..., K\} \cup \{L, ..., n\}$, the critical region, then reject the null hypothesis
- if $Z \in \{K + 1, ..., L 1\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider now the second case $(H_1: \tilde{x} > \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) < p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %
- find the critical value $K \in \{0, 1, ..., m\}$ so that K is the largest number such that

$$\sum_{k=0}^{K} \binom{m}{k} p_{0}^{k} q_{0}^{m-k} = \sum_{k=0}^{K} \binom{m}{k} \frac{1}{2^{m}} \leq \alpha$$

- if $Z \in \{0, ..., K\}$, the critical region, then <u>reject</u> the null hypothesis
- if $Z \in \{K + 1, ..., m\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider finally the third case $(H_1: \tilde{x} < \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) > p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value $L \in \{0, 1, ..., m\}$ so that L is the least number such that

$$\sum_{k=L}^{m} \binom{m}{k} p_0^k q_0^{m-k} = \sum_{k=L}^{m} \binom{m}{k} \frac{1}{2^m} \leq \alpha$$

- if $Z \in \{L, ..., m\}$, the critical region, then <u>reject</u> the null hypothesis
- if $Z \in \{0, ..., L-1\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

It is inconvenient to calculate the sums $\sum_{k=0}^{K} {m \choose k} \frac{1}{2^m}$ and $\sum_{k=1}^{m} {m \choose k} \frac{1}{2^m}$ if *m* is large. It is more convenient then to approximate the sums by using

the de Moivre-Laplace Central Limit Theorem (for p = q = 1/2):

It holds, whenever $-\infty \le a < b \le +\infty$, that

$$\frac{\sum_{k=A_m}^{B_m} \binom{m}{k} \frac{2}{2^m} - n}{\sqrt{m}} \longrightarrow \underbrace{\int_a^b \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} dt}_{\Phi(b) - \Phi(a)} \quad \text{as} \quad m \to \infty$$

where $A_m = [(m + a\sqrt{m})/2] \ge 0$ and $B_m = [(m + b\sqrt{m})/2] \le m$ if $m \ge \max(a^2, b^2)$. Moreover, the convergence is uniform with respect to a and b.

De Moivre-Laplace Central Limit Theorem (reformulated):

If $X \sim Bi(m, 1/2)$, whenever $-\infty \le a < b \le +\infty$, it then holds

$$P\left(a < \frac{2X - m}{\sqrt{m}} < b\right) \rightarrow \underbrace{\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt}_{\Phi(b) - \Phi(a)} \quad \text{as} \quad m \to \infty$$

and the convergence is uniform with respect to a and b.

Consider the first case $(H_1: \tilde{x} \neq \tilde{x}_0)$ first. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) \neq p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{-\infty}^{-c} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\alpha}{2} \quad \text{and} \quad \int_{+c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\alpha}{2}$$

- if $Z \le (m c\sqrt{m})/2$ or $(m + c\sqrt{m})/2 \le Z$, the critical region, then reject the null hypothesis
- if $(m c\sqrt{m})/2 < Z < (m + c\sqrt{m})/2$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider now the second case $(H_1: \tilde{x} > \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) < p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{-\infty}^{-c} \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} dt = \alpha$$

- if $Z \le (m c\sqrt{m})/2$, the critical region, then relect the null hypothesis
- if $(m c\sqrt{m})/2 < Z$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider finally the third case $(H_1: \tilde{x} < \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) > p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{+c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \alpha$$

- if $(m + c\sqrt{m})/2 \le Z$, the critical region, then reject the null hypothesis
- if $Z < (m + c\sqrt{m})/2$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

<u>Remarks:</u>

• By using another probability (such as $p_0 = 0.25$, $p_0 = 0.3$, etc.) we can test the null hypothesis that \tilde{x}_0 is, e.g., the first quartile, the third decile, etc.

• If we know that the distribution of X is symmetric (F(x) = 1 - F(-x)), then the mean $\mu = E[X]$ and the median \tilde{x} of the random variable X coincide $(\tilde{x} = \mu)$. Then the sign test for the median can also be used as another test for the mean $(H_0: \mu = \tilde{x}_0)$.

Remarks:

• More generally, if we know that the mean $\mu = E[X]$ is the p_0 -quantile

 $(0 < p_0 < 1)$ of the distribution of the random variable X with a continuous cumulative distribution function, then the sign test can also be used as another test

for the mean
$$(H_0: \mu = \tilde{x}_0 \text{ with } Z = \left| \left\{ i : x_{j_i} < \tilde{x}_0 \right\} \right| \sim \operatorname{Bi}(m, p_0) \right).$$

• Exercise: Apply the procedure of the sign test to determine the confidence interval for the median, i.e. the interval of values \tilde{x}_0 such that the null hypothesis is not rejected for them.

Motivation:

Let us have a sample of n objects, e.g. n patients.

We do two measurements with each of the objects (patients)

- before some treatment
- after the treatment

The purpose it to learn whether the treatment has any effect. (Hence the null hypothesis: "The treatment has no effect.") Let $x_1, x_2, ..., x_n$ be the values measured before the treatment, and let $y_1, y_2, ..., y_n$ be the values measured after the treatment.

That is, the measurement x_i and y_i is done with the *i*-th object (patient)

before and after the treatment for i = 1, 2, ..., n.

FIRST, assume that only two outcomes are possible:

- $x_i < y_i$ (improvement)
- $x_i > y_i$ (worsening)

Objects with $x_i = y_i$ are dropped from the sample.

We then can test the null hypothesis that the treatment has no effect, i.e.

$$Z = |\{i : x_i < y_i\}| \sim \operatorname{Bi}(m, \frac{1}{2})$$

etc. (Finish the details of the test analogously as above as an exercise.)

That is, the measurement x_i and y_i is done with the *i*-th object (patient) before and after the treatment for i = 1, 2, ..., n.

SECOND, assume that $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ are the numerical outcomes of the random variable X and Y, respectively, with a continuous cumulative distribution function F_X and F_Y , respectively.

<u>Theorem</u>: The median \tilde{x}_0 of the difference X - Y of the random variables is

$$\tilde{x}_0 = \tilde{x} - \tilde{y}$$

Thus, we can test the null hypothesis that the median \tilde{x} of the random variable X (before the treatment) is the same as the median \tilde{y} of the random variable Y (after the treatment), i.e. their difference is $\tilde{x}_0 = \tilde{x} - \tilde{y} = 0$.

(More generally, we can test that the difference $\tilde{x} - \tilde{y}$ is equal to some prescribed value $\tilde{x}_0 \in \mathbb{R}$.)

(Complete the details of the test analogously as above as an exercise.)

χ^2 -test for goodness of fit

• Pearson's χ^2 -test for the goodness of fit

Let X be a random variable (discrete or continuous) and

let F be the cumulative distribution function of the random variable X.

We do not know the cumulative distribution function F.

We have the numerical results $x_1 = X(\omega_1)$, $x_2 = X(\omega_2)$, ..., $x_N = X(\omega_N)$ of *N* trials of the corresponding random experiment.

Let F_0 be some cumulative distribution function. We conjecture / we assume / we speculate / we ... / that $F = F_0$, i.e. the random variable X follows the probability distribution with the cumulative distribution function $F = F_0$.

秋

More generally, let \mathcal{F}_0 be a class of cumulative distribution functions (c.d.f.'s) of a certain type, such as

- the collection of all c.d.f.'s of $\mathcal{U}(a, b)$ for various $a, b \in \mathbb{R}$, a < b
- the collection of all c.d.f.'s of $\mathcal{N}(\mu, \sigma^2)$ for various $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}_0^+$
- the collection of all c.d.f.'s of $Exp(\lambda)$ for various $\lambda \in \mathbb{R}^+$
- etc.

Having the numerical results $x_1 = X(\omega_1), x_2 = X(\omega_2), ..., x_N = X(\omega_N)$

of N trials of a random experiment, we conjecture / we assume / we speculate /

we ... / that $F \in \mathcal{F}_0$, i.e. the random variable X follows the probability distribution

Having the numerical results $x_1 = X(\omega_1), x_2 = X(\omega_2), ..., x_N = X(\omega_N)$

of the *N* trials of the random experiment and having the class \mathcal{F}_0 of the cumulative distribution functions – <u>first of all</u> – find the cumulative distribution function $F_0 \in \mathcal{F}_0$ that best fits the experimental data:

- if $\mathcal{F}_0 = \{F_0\}$, then the c.d.f. F_0 is given; the number of parameters is v = 0
- if \mathcal{F}_0 is the collection of all c.d.f.'s of $\mathcal{N}(\mu, \sigma^2)$, then put

$$\mu = \bar{x}$$
 and $\sigma^2 = s^2$

(the sample mean and the sample variance); the number of parameters is $\nu = 2$

• if \mathcal{F}_0 is the collection of all c.d.f.'s of $Exp(\lambda)$, then put

either
$$\lambda = \frac{1}{\bar{x}}$$
 or $\lambda = \sqrt{\frac{1}{s^2}}$

the number of parameters is v = 1

(recall: if $X \sim \text{Exp}(\lambda)$, then $E[X] = 1/\lambda$ and $Var(X) = 1/\lambda^2$)

- if \mathcal{F}_0 is the collection of all c.d.f.'s of $\mathcal{U}(a, b)$, then consider the German Tank Problem (see previous lectures); the number of parameters is $\nu = 2$
- etc.

Having the sample data $x_1, x_2, ..., x_N$ of the random variable X and the cumulative distribution function $F_0 \in \mathcal{F}_0$ that best fits the sample.

Now – <u>as the second step</u> – choose *n* intervals $(t_0, t_1], (t_1, t_2], (t_2, t_3], ..., (t_{n-2}, t_{n-1}], (t_{n-1}, t_n]$ with $t_0 < t_1 < t_2 < t_3 < \cdots < t_{n-2} < t_{n-1} < t_n$

as well as

 $t_0 < \min\{x_1, \dots, x_N\}$ and $\max\{x_1, \dots, x_N\} \le t_n$

so that

- there are at least 5 outcomes in each of the intervals

Formulate the null hypothesis: The random variable X follows the probability

distribution with the cumulative distribution function $F = F_0$:

$$H_0: \quad F = F_0$$

Next – <u>as the third step</u> – assume the null hypothesis H_0 and calculate the theoretical probability that $t_{i-1} < X \leq t_i$, i.e.

$$p_{i} = P(t_{i-1} < X \le t_{i}) =$$

= $F_{0}(t_{i}) - F_{0}(t_{i-1})$ for $i = 1, 2, ..., n$

Since p_i is the expected probability (under the null hypothesis H_0) that $X \in (t_{i-1}, t_i]$ and we have a sample $x_1, x_2, ..., x_N$ of N observations, we should find about

 $E_i = N \times p_i$

observations in the interval $(t_{i-1}, t_i]$ for i = 1, 2, ..., n. Let

$$O_i = |\{j : x_j \in (t_{i-1}, t_i]\}|$$

be the true number of the observations found in the interval $(t_{i-1}, t_i]$ for i = 1, 2, ..., n.

<u>Theorem</u>: If the null hypothesis H_0 : $F = F_0$ is true, then the statistic

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{n-\nu-1} \quad approximately \quad \text{as} \quad N \to \infty$$

where

- *n* is the number of the intervals $(t_{i-1}, t_i]$
- ν is the number of the parameters that have been determined when finding the cumulative distribution function F_0 ($\nu = 0, 1, 2, ...$)
- O_i is the number of the results found (observed) in the *i*-th interval $(t_{i-1}, t_i]$
- E_i is the number of the results expected (if H_0 is true) in the interval $(t_{i-1}, t_i]$

Now, finish Pearson's χ^2 -test for the goodness of fit (H_0 : $F = F_0$) as follows:

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- find the critical value c > 0 so that

$$\int_{c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the χ^2 -distribution with $n - \nu - 1$ degrees of freedom

• if $X^2 \ge c$, the critical region, then <u>reject</u> the null hypothesis

Ľ

• if $X^2 < c$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Tossing a coin repeatedly, we ask whether the coin is fair.

More generally, we consider a Bernoulli trial, with the probability of the success being $p \in (0, 1)$, and with the probability of the failure being q = 1 - p. We do not know the true probability p.

We conjecture / We assume / We ... / that the probability $p = p_0$, i.e. the (unknown) probability p is equal to some prescribed value $p_0 \in (0, 1)$, e.g., in the case of the coin, conjecture that $p_0 = 50$ % (meaning the coin is fair).

No.

We now know three statistical tests to test the null hypothesis that $p = p_0$:

- the binomial test for the population proportion
- the z-test for the population proportion
- Pearson's χ^2 -test for the goodness of fit

The binomial test is exact and the z-test is an approximation of it.

Both binomial test and z-test allow one-sided or two-sided alternative hypothesis.

Pearson's χ^2 -test for the goodness of fit allows two-sided alternative hypothesis $(H_1: F \neq F_0)$ only.

Pearson's χ^2 -test for the goodness of fit proceeds as follows:

- there are two intervals (1 = "success" and 0 = "failure")
- having N observations of the random variable X, we expect (under the null hypothesis that $p = p_0$) that $E_1 = N \times p_0$ and $E_0 = N \times (1 p_0)$
- let O_1 and O_0 be the observed number of successes and failures, respectively
- the statistic

$$X^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{0} - E_{0})^{2}}{E_{0}} \sim \chi_{1}^{2} \quad approximately \quad \text{as} \quad N \to \infty$$

(we have n = 2 and $\nu = 0$, therefore $n - \nu - 1 = 1$)

<u>Remark:</u> In Pearson's χ^2 -test for the goodness of fit, we have

$$X^2 \sim \chi^2_{n-\nu-1}$$

where

- *n* is the number of the intervals $(t_{i-1}, t_i]$
- ν is the number of the parameters that have been determined when finding the cumulative distribution function F_0 ($\nu = 0, 1, 2, ...$)

Notice that one degree of freedom ("-1") must always be subtracted

because the observed counts O_1, O_2, \dots, O_n are bound by the equation

 $O_1 + O_2 + \dots + O_n = N$

therefore only n-1 of the counts (such as O_1, O_2, \dots, O_{n-1} , say) are free,

*x*²-test of independence of qualitative data items

• χ^2 -test of independence of

qualitative data items

Consider a dataset where each data unit has two qualitative data items

(i.e. two qualitative variables).

Let the qualitative variables under the consideration be denoted by A and B. Let the variable A can attain up to r ("rows") distinct categories

Let the variable B can attain up to s ("columns") distinct categories

$$B_1, B_2, \dots, B_s$$

The counts of the occurrences of all the $r \times s$ combinations of the categories are easily summarized by a contingency table.

the observed counts of the combinations of the categories $A_i \& B_j$ for i=1,...,r & j=1,...,s

B TOTAL B_1 B_2 B_{s} A \ . . . A_1 n_{11} n_{12} *n*₁. n_{1s} ... marginal totals A_2 n_2 . n_{21} n_{22} n_{2s} ... : ÷ : ł A_r n_{r1} n_{r2} nrs n_r TOTAL *n*.₁ $n_{\cdot 2}$ $n_{\cdot s}$ n.... marginal totals the grand total

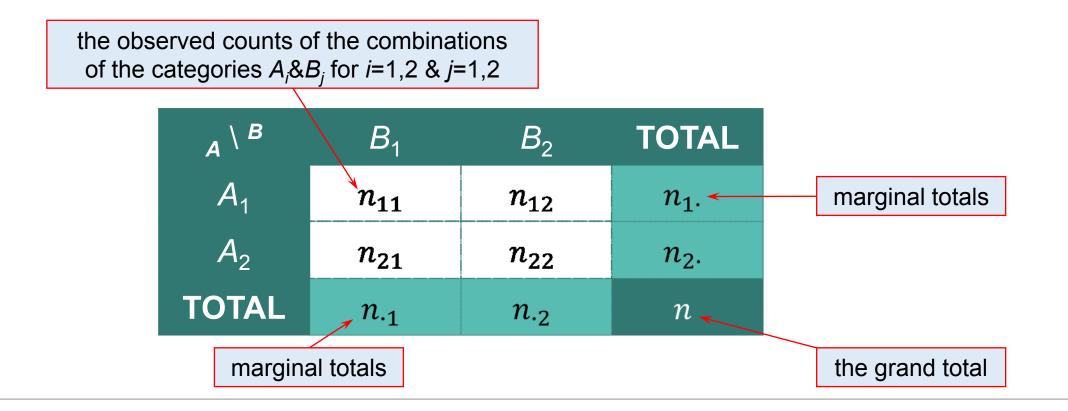
Contingency table

N.

2 2 contingency table

The 2 2 contingency table is popular.

It is a contingency table with r=2 rows and s=2 columns.



Having all the observed counts of the combinations of the categories $A_i \& B_j$ summarized in the contingency table for i=1,...,r and for j=1,...,s, we ask whether the category of the data item (variable) **B** depends upon the category of the data item (variable) **A**, or whether the categories of both data items (variables) **A** and **B** are independent of each other.

Assume therefore the null hypothesis H_0 :

the categories of both data items (variables) **A** and **B** are independent of each other

Having all the observed counts of the combinations of the categories $A_i \& B_j$ summarized in the contingency table for i=1,...,r and for j=1,...,s, assume <u>the null hypothesis</u> H_0 that the categories of both data items (variables) **A** and **B** are independent of each other.

Now – if we choose a data unit randomly:

- What is the probability that the data item **A** of the chosen data unit is of category A_i for some i=1,...,r?
- What is the probability that the data item **B** of the chosen data unit is of category B_j for some j=1,...,s?

The total number of all data units is n.

The count of the data units of category A_i is n_i .

Therefore, the probability that a randomly selected data unit is of category A_i is

$$p_{i\cdot} = \frac{n_{i\cdot}}{n}$$

The count of the data units of category B_j is $n_{.j}$

Therefore, the probability that a randomly selected data unit is of category B_i is

$$p_{\cdot j} = \frac{n_{\cdot j}}{n}$$

Recall that the probability that a randomly selected data unit is of category A_i and B_j is

$$p_{i.} = \frac{n_{i.}}{n}$$
 and $p_{.j} = \frac{n_{.j}}{n}$

respectively. If the null hypothesis H_0 (that the categories of A and B are independent of each other) is true, then the (cumulative) probability that a randomly selected data unit is of category A_i and B_j should be

$$p_{ij} = p_{i.} \times p_{.j} = \frac{n_{i.} \times n_{.j}}{n^2}$$

for i = 1, 2, ..., r and for j = 1, 2, ..., s.

Once the probability that a randomly selected data unit is of category A_i and B_j is

$$p_{ij} = p_{i.} \times p_{.j} = \frac{n_{i.} \times n_{.j}}{n^2}$$

then we should expect

$$E_{ij} = p_{ij} \times n = \frac{n_{i} \times n_{j}}{n}$$

data units of category A_i and B_j for i = 1, 2, ..., r and for j = 1, 2, ..., sif the null hypothesis H_0 (that the categories of **A** and **B** are independent of each other) is true.

χ^2 -test of independence of qualitative data items

Expecting

$$E_{ij} = p_{ij} \times n = \frac{n_{i} \times n_{j}}{n}$$

 $O_{ii} = n_{ii}$

and observing

data units of category A_i and B_j for i = 1, 2, ..., r and for j = 1, 2, ..., s, we apply Pearson's χ^2 -test for the goodness of fit to see if the observed counts agree with the expected counts, i.e. if the null hypothesis H_0 (that the categories of **A** and **B** are independent of each other) is true.

χ^2 -test of independence of qualitative data items

Calculate

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(n \times n_{ij} - n_{i} \times n_{j}\right)^{2}}{n_{i} \times n_{j}}$$

Theorem:

If the null hypothesis is true, then

$$X^2 \sim \chi^2_{(r-1)(s-1)}$$
 approximately as $n \to \infty$

Notice the number of the degrees of freedom

(see below)

The number of the degrees of freedom:

The observed counts O_{ij} for i = 1, ..., r and for j = 1, ..., s

are bound by the system of r + s equations:

$$\sum_{j=1}^{s} O_{ij} = \sum_{j=1}^{s} n_{ij} = n_i. \quad \text{for} \quad i = 1, 2, ..., r$$
$$\sum_{i=1}^{r} O_{ij} = \sum_{i=1}^{r} n_{ij} = n_{j} \quad \text{for} \quad j = 1, 2, ..., s$$

of which only r + s - 1 are linearly independent, i.e. one of the equations depends on the others.

The number of the degrees of freedom:

We thus have $r \times s$ observed counts O_{ij} for i = 1, ..., r and for j = 1, ..., sbound by r + s - 1 linearly independent equations, i.e. only $r \times s - r - s + 1 = (r - 1) \times (s - 1)$

of the observed counts are free.

Therefore, the number of the degrees of freedom is

$$(r-1)(s-1)$$

Now, finish the χ^2 -test of independence of qualitative data items

(H_0 : the categories of **A** and **B** are independent of each other) as follows:

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_c^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the χ^2 -distribution with (r-1)(s-1) d.f.

- if $X^2 \ge c$, the critical region, then <u>reject</u> the null hypothesis
- if $X^2 < c$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis