Statistics

Lecture 11

ANOVA: Analysis of Variance (for a single factor)

David Bartl Statistics INM/BASTA

- Analysis of Variance (ANOVA) for a single factor
- Bartlett's test

First of all, recall the <u>two-sample *t*-test for the difference of the population means</u> (assuming the same variance):

Let $X \sim \mathcal{N}(\mu_X, \sigma^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma^2)$ be two unknown random variables. We assume that both random variables X and Y are normally distributed, but we do not know their population means μ_X and μ_Y nor their variance, but we do assume that the variance σ^2 of both variables X and Y is the same.

We sample the variable X m-times, so we have the sample $x_1, x_2, ..., x_m$. We sample the variable Y n-times, so we have the sample $y_1, y_2, ..., y_n$.

Having the *m* observations $x_1, x_2, ..., x_m$ of the random variable $X \sim \mathcal{N}(\mu_X, \sigma^2)$ and having the *n* observations $y_1, y_2, ..., y_n$ of the random variable $Y \sim \mathcal{N}(\mu_Y, \sigma^2)$, we test the null hypothesis that both population means are the same $(H_0: \mu_X = \mu_Y)$ against the two-sided alternative hypothesis $(H_1: \mu_X \neq \mu_Y)$.

Calculate the statistic

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}}} \sim t_{m+n-2}$$

Finish the two-sample *t*-test for the difference of the population means as follows:

• choose the level of significance, a small number $\alpha > 0$, a very

popular value is $\alpha = 5$ %, other popular values are 10 % or 1 % or 0.1 % etc.

• find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x + \int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with m + n - 2 degrees of freedom

- if $T \in (-\infty, -c] \cup [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

One-Way ANOVA

One-way ANOVA

Motivation:

Let $Y_1 \sim \mathcal{N}(\mu_1, \sigma^2)$, $Y_2 \sim \mathcal{N}(\mu_2, \sigma^2)$, etc., $Y_k \sim \mathcal{N}(\mu_k, \sigma^2)$ be unknown random variables.

We assume that the random variables $Y_1, Y_2, ..., Y_k$ are normally distributed, but we do not know their population means $\mu_1, \mu_2, ..., \mu_k$ nor their variance, but we do assume that the variance σ^2 of all variables $Y_1, Y_2, ..., Y_k$ is the same.

We sample the variable Y_1 n_1 -times, so we have the sample $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$ We sample the variable Y_2 n_2 -times, so we have the sample $y_{21}, y_{22}, \dots, y_{2n_2}$ We sample the variable Y_3 n_3 -times, so we have the sample $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_2}$

Etc.

We sample the variable Y_k n_k -times, so we have the sample $y_{k1}, y_{k2}, \dots, y_{kn_k}$

Having the samples $y_{11}, y_{12}, ..., y_{1n_1}, y_{21}, y_{22}, ..., y_{2n_2}$, etc., $y_{k1}, y_{k2}, ..., y_{kn_k}$ of the random variables $Y_1 \sim \mathcal{N}(\mu_1, \sigma^2)$, $Y_2 \sim \mathcal{N}(\mu_2, \sigma^2)$, etc., $Y_k \sim \mathcal{N}(\mu_k, \sigma^2)$, respectively, we formulate the <u>null hypothesis</u>:

> all samples come from the same population: the values of the population means are the same

> > $H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_k$

Recall that we do not know the true population means $\mu_1, \mu_2, ..., \mu_k$.

We only test the hypothesis by means of the samples of the measurements.

秋

Example I:

We have got a gross sample of n patients cured for some disease. The patients were divided into k groups of sizes $n_1, n_2, ..., n_k$ so that

 $n = n_1 + n_2 + \dots + n_k$

The 1st group has been treated by the 1st method.

The 2nd group has been treated by the 2nd method.

Etc.

The k^{th} group has been treated by the k^{th} method.

Example I:

Then $y_{11}, y_{12}, \dots, y_{1n_1}, y_{21}, y_{22}, \dots, y_{2n_2}$, etc., $y_{k1}, y_{k2}, \dots, y_{kn_k}$ are the results of a medical test after the treatment.

Based on the samples, we test the null hypothesis that

the results of all the treatments are (on average) the same.

Example II:

We test k distinct cars. We test the 1st car n_1 times, we test the 2nd car n_2 times, etc., and we test the k^{th} car n_k times for mileage.

Then $y_{11}, y_{12}, \dots, y_{1n_1}, y_{21}, y_{22}, \dots, y_{2n_2}$, etc., $y_{k1}, y_{k2}, \dots, y_{kn_k}$ are the results of the measurements, i.e. the mileages.

We test the null hypothesis that

the average mileage of each car is the same.

<u>Remark:</u>

If k = 2, then we can equivalently use the <u>two-sample *t*-test</u> for the difference of the means (with the assumption of the same variance) to test the null hypothesis.

If the number of the groups is larger (k > 2) and we apply the two sample *t*-test to all the pairs of the groups (1-2, 1-3, ..., 1-k, 2-3, ..., 2-k, etc., (k-1)-k) separately, then the probability of the error cumulates and is then much larger than the originally prescribed α =5% !!!

We have got k groups of observations of a quantitative (numerical) data item:

The values in the 1st group are: $y_{11}, y_{12}, y_{13}, ..., y_{1n_1}$

The values in the 2nd group are: $y_{21}, y_{22}, \dots, y_{2n_2}$

The values in the 3rd group are: $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_3}$

Etc.

The values in the k^{th} group are: $y_{k1}, y_{k2}, \dots, y_{kn_k}$

Recall our assumption that the samples come from normally distributed random variables $Y_1, Y_2, ..., Y_k$ with the same variance σ^2 .

The one-way analysis of variance (ANOVA) proceeds as follows:

Having the samples $y_{11}, y_{12}, ..., y_{1n_1}, y_{21}, y_{22}, ..., y_{2n_2}$, etc., $y_{k1}, y_{k2}, ..., y_{kn_k}$, calculate the

- sample variance between the groups
- sample variance within the groups

Sample variance (mean squares) between the groups:

- n_i is the size of the *i*-th group
- $\bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$ is the sample mean of the *i*-th group
- $\bar{y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}$ is the grand sample mean
- $n = \sum_{i=1}^{k} n_i$ is the size of the grand sample

Sample variance (mean squares) between the groups:

The traditional ANOVA terminology is used:

Sum of Squares (between):

$$SS_{B} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{y}_{i} - \bar{y})^{2} = \sum_{i=1}^{k} n_{i} \times (\bar{y}_{i} - \bar{y})^{2}$$

Degrees of Freedom (<u>between</u>):

$$DF_B = k - 1$$

Sample variance (mean squares) between the groups:

The traditional ANOVA terminology is used:

Mean Squares (between):

$$\mathsf{MS}_{\mathsf{B}} = \frac{\mathsf{SS}_{\mathsf{B}}}{\mathsf{DF}_{\mathsf{B}}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2}{k-1}$$

Observe intuitively:

The more the null hypothesis $(\mu_1 = \mu_2 = \dots = \mu_k)$ holds true,

the more the mean squares MS_B tend to zero: $MS_B \rightarrow 0$

Sample variance (mean squares) within the groups:

where

- n_i is the size of the *i*-th group
- $\bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$ is the sample mean of the *i*-th group
- $n = \sum_{i=1}^{k} n_i$ is the size of the grand sample

Sample variance (mean squares) within the groups:

The traditional ANOVA terminology is used:

Sum of Squares (within):

$$SS_W = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

Degrees of Freedom (<u>within</u>):

$$DF_W = \sum_{i=1}^k (n_i - 1) = n - k$$

Sample variance (mean squares) within the groups:

The traditional ANOVA terminology is used:

Mean Squares (within):

$$MS_{W} = \frac{SS_{W}}{DF_{W}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{i})^{2}}{n-k}$$

Observe intuitively:

The more the mean squares MS_W tend to zero $(MS_W \rightarrow 0)$, the less the null hypothesis $(\mu_1 = \mu_2 = \cdots = \mu_k)$ holds true.

Theorem:

If $Y_{11}, Y_{12}, \dots, Y_{1n_1}, Y_{21}, Y_{22}, \dots, Y_{2n_2}, \dots, Y_{k1}, Y_{k2}, \dots, Y_{kn_k} \sim \mathcal{N}(\mu, \sigma^2)$ are independent, then

$$\frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i})^{2}} / \frac{k-1}{n-k} \sim F_{k-1,n-k}$$

where $F_{k-1,n-k}$ denotes Fisher's *F*-distribution with k-1 and n-k d.f. (degrees of freedom).

The one-way ANOVA test proceeds as follows:

Given the samples y₁₁, y₁₂, ..., y_{1n1}, y₂₁, y₂₂, ..., y_{2n2}, etc., y_{k1}, y_{k2}, ..., y_{knk}
 of the random variables Y₁ ~ N(μ₁, σ²), Y₂ ~ N(μ₂, σ²), etc., Y_k ~ N(μ_k, σ²),
 respectively, formulate the null hypothesis:

$$H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_k$$

• The alternative hypothesis is $H_1: \neg H_0$, i.e. $\mu_{i'} \neq \mu_{i''}$ for some $i' \neq i''$

Calculate the statistic

$$F = \frac{MS_{B}}{MS_{W}} = \frac{SS_{B}}{SS_{W}} / \frac{DF_{B}}{DF_{W}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2}} / \frac{k-1}{n-k}$$

• If the null hypothesis is true, then we have by the Theorem

$$F \sim F_{k-1,n-k}$$

• Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.

• find the critical value c > 0 so that

$$\int_c^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the F-distribution with k-1 and n-1 d.f.

- if $F \in [c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $F \in [0, c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Remark:

If k = 2, then the two-sample *t*-test for the difference of the means is equivalent.

Total sample variance (mean squares):

where

- n_i is the size of the *i*-th group
- $\bar{y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}$ is the grand sample mean
- $n = \sum_{i=1}^{k} n_i$ is the size of the grand sample

Total sample variance (mean squares):

The traditional ANOVA terminology is used:

Sum of Squares (total):

$$SS_{T} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y})^{2}$$

Degrees of Freedom (<u>total</u>):

$$\mathrm{DF}_\mathrm{T} = n - 1$$

Total sample variance (mean squares):

The traditional ANOVA terminology is used:

Mean Squares (total):

$$MS_{T} = \frac{SS_{T}}{DF_{T}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y})^{2}}{n-1}$$

Notice that it holds:

$$SS_T = SS_W + SS_B$$

or

Notice first:

$$\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i) = \sum_{j=1}^{n_i} y_{ij} - \sum_{j=1}^{n_i} \bar{y}_i = \sum_{j=1}^{n_i} y_{ij} - n_i \times \bar{y}_i =$$

$$= \sum_{j=1}^{n_i} y_{ij} - n_i \frac{\sum_{j=1}^{n_i} y_{ij}}{n_i} =$$

$$= \sum_{j=1}^{n_i} y_{ij} - \sum_{j=1}^{n_i} y_{ij} = 0$$

Notice now:

Bartlett's test

Motivation: Recall the assumptions of the one-way ANOVA method:

Given random variables $Y_1 \sim \mathcal{N}(\mu_1, \sigma^2)$, $Y_2 \sim \mathcal{N}(\mu_2, \sigma^2)$, etc., $Y_k \sim \mathcal{N}(\mu_k, \sigma^2)$, we assume that

- the random variables Y_1, Y_2, \dots, Y_k are normally distributed
- the variance σ^2 of all variables Y_1, Y_2, \dots, Y_k is the same

Given the samples $y_{11}, y_{12}, \dots, y_{1n_1}, y_{21}, y_{22}, \dots, y_{2n_2}, \dots, y_{k1}, y_{k2}, \dots, y_{kn_k}$ of the random variables Y_1, Y_2, \dots, Y_k , respectively,

Theorem: If

$$Y_{11}, Y_{12}, \dots, Y_{1n_1} \sim \mathcal{N}(\mu_1, \sigma^2), Y_{21}, Y_{22}, \dots, Y_{2n_2} \sim \mathcal{N}(\mu_2, \sigma^2), \dots, Y_{k1}, Y_{k2}, \dots, Y_{kn_k} \sim \mathcal{N}(\mu_k, \sigma^2)$$
 are independent, then

$$\frac{(n-k)\ln\frac{\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(Y_{ij}-\bar{Y}_{i})^{2}}{n-k} - \sum_{i=1}^{k}(n_{i}-1)\ln\frac{\sum_{j=1}^{n_{i}}(Y_{ij}-\bar{Y}_{i})^{2}}{n_{i}-1}}{1 + \frac{1}{3(k-1)}\left(\sum_{i=1}^{k}\frac{1}{n_{i}-1} - \frac{1}{n-k}\right)} \sim \chi_{k-1}^{2}$$
approximately

(if all $n_l \geq 7$)

Given unknown random variables $Y_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad Y_2 \sim \mathcal{N}(\mu_2, \sigma_2^2), \quad \dots, \quad Y_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$

Sampling the variable Y_1 n_1 -times yields the sample $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$ Sampling the variable Y_2 n_2 -times yields the sample $y_{21}, y_{22}, \dots, y_{2n_2}$ Sampling the variable Y_3 n_3 -times yields the sample $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_3}$ Etc.

Sampling the variable Y_k n_k -times yields the sample $y_{k1}, y_{k2}, \dots, y_{kn_k}$

Null hypothesis:

$$H_0: \quad \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$$

Calculate the statistic

$$X^{2} = \frac{(n-k)\ln\frac{\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(Y_{ij}-\bar{Y}_{i})^{2}}{n-k} - \sum_{i=1}^{k}(n_{i}-1)\ln\frac{\sum_{j=1}^{n_{i}}(Y_{ij}-\bar{Y}_{i})^{2}}{n_{i}-1}}{1 + \frac{1}{3(k-1)}\left(\sum_{i=1}^{k}\frac{1}{n_{i}-1} - \frac{1}{n-k}\right)}$$

• If the null hypothesis is true, then we have by the Theorem

 $X^2 \sim \chi^2_{k-1}$ approximately

• Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.

• find the **critical value** c > 0 so that

$$\int_c^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the χ^2 -distribution with k-1 degrees of freedom

- if X² ∈ [c, +∞), the critical region, then reject the null hypothesis (the ANOVA should not be used)
- if $X^2 \in [0, c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis