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Simple Linear Regression: Motivation

Motivation:
Assume a dataset (y;, xp)j=, of n statistical units, i.e. we are given n pairs

(v xy), (Yo, x2), ..., Omxy) of quantitative variables (x;,y; € R), such as

* x; = investments and y; = the resulting revenues
« x; =particulartimes and y; = the price of a stock at the given time
* x; = the quantity of some goods supplied t0 a market

and y; = the resulting unit price for the goods

« efc.



Simple Linear Regression: Motivation

Given the n pairs (v1,x1), (¥2,%2), ..., (3, %) Of the measurements,

we assume that there is a simple linear relationship between the values
of x and Y of the form

Y =+ fx forsome S5, fER

or rather
Y=F+Bx+¢ forsome Sy, ER

where ¢ is a random deviation.

We do not know the parameters f, and £, however...



Simple Linear Regression: Motivation

Based onthe n pairs (vq,x1), (32,%3), ..., (V%) Of the measurements,
it is our purpose to find

the estimates by and b
of

the unknown Bo and B

The estimates b, and b are also denoted by 8, and 8, respectively,

sometimses, i.e. the estimates are
bp=f, and b=§



Simple Linear Regression: Example

Wae have got a sample of n = 10 observations:

L Xi Vi

1 8.01 7.24
12 7.81 6.62
13 4.38 5.53
14 3.54 4.47
15 6.17 6.35
16 6.64 6.56
7 7.58 6.68
18 8.98 7.46
19 1.01 3.53
10 5.88 5.56

E.g.. x; = temperature & y; = the length of a metal rod



Simple Linear Regression: Example




Simple Linear Regression: Least Squares Method

We have gotthe n pairs (yy,x1), (32,x2), ..., (Fn,x,) of the observations.
For any by, b € R, the i-th predicted (estimated) value is

Vi1 = by + bx; for i=12,..,n

The i-th residual is the difference
S=e=yi— W for i=1,2,..,n

The residual sum of squares is

n n n
RSS = Z ef = Z(ﬁi - ¥)? = Z(bu + bx; — y;)*
=1 =1 =1



Simple Linear Regression: Least Squares Method

Giventhe n pairs (yy,x;5), (72,x2), --., (. xy) of the observations,

find by, b € R so that the residual sum of squares

T
RSS = Z(bu + bx; —y;)*> — min
i=1
is minimized.
The first-order optimality conditions are

dRSS JdRSS
= and —={

T ab




Simple Linear Regression: Least Squares Method

Given RSS = X1, (bo + bx; — y;)*, we obtain the system of two equations
of two unknowns:

JRSS - =

dRSS
= ) 2(bg+bx;—y) =0 and ——= ) 2(bp+bx;—y)x; =0
dby = ab =

or

n n \
nbo +ng b=zyi

=1 i=1 :
>— the normal equation

i 1
X; bo + Zx b= XiVi
i=1 i=1 i=1 /




Simple Linear Regression: Least Squares Method

Hence, given the observations (v, x3), (32,%x2), .... (3%, Xx,), the estimates are:

1 T n
Bo=by = ;(ZJ& —thb) =
= =

_ i1 XXy E?:l Yj — Xi=1 X z}l=1 wid
n Xl XXy — Xy X z:'fi‘=1 %

and

ﬁ —p= n2?=1xi3’i - ?=1xi }"=13’.i
nE% g XiXi — Nieq Xi X jeq X



An application:
the trend
of a time series




The trend of a time series

Assume a series of observations (such as the GDP, a stock price, etc.)

Y. ¥2 - ¥Vn attimes t =1,2,...,n. Assuming that the observed quantity
y follows the linear trend
y = fig + Bt for t=1,2,..,n

put
X; =1 for i=1,2,..,n
and apply the least squares method (the linear regression) to find

the (linear) trend of the time series.



The trend of a time series: Example

Wae have got a sample of n = 10 observations:

L X; Vi

1 1 3.42
12 12 4.30
13 13 4.53
14 14 4.94
15 15 5.52
16 16 5.68
7 7 6.28
18 18 7.16
19 19 7.49
10 10 8.18

Here, e.g.: x; =year & y;=the wealth



The trend of a time series: Example




Summary &
Background




Simple Linear Regression: Summary & Background

We have got the sample of the n pairs (yy,x1), (72,%3), oo, (W Xp)

of the observations.

The sample could have been obtained in either of the following two ways:

(1) Asample of n statistical units was selected from a larger population.
Next, each of the statistical units was measured and we have obtained
the pairs (y,x;) for i =1,2,..,n thus. The values x; € R were
measured exactly. (!) Assuming y; = By + Bx;, we have y; = By + Bx; + &,
where ¢; is a random deviation (error); the random deviation is caused by
the intrinsic properties of the statistical unit (further unknown / “random” /



Simple Linear Regression: Summary & Background

We have got the sample of the n pairs (yy,x1), (72,%3), oo, (W Xp)

of the observations.

The sample could have been obtained in either of the following two ways:

(2) We have prepared the values x,,x,,...,x, first, and these values
(x4, x5, ..., x;,) are assumed to be known exactly. When doing the i-th
measurement, we first set up the system (adjust the system’s setting,
e.g. the temperature, to x; exactly) and we measure the value y; of
the dependent variable then. The random deviation & here is caused

either by the intrinsic properties of the system (further unknown / “random” /



Simple Linear Regression: Summary & Background

Remarks:
* |In practice, the data may be obtained in either way, (1) or (2).

* |n either case, (1) or (2), the independent values x,,x,, ...,x, are assumed

to be known exactly, i.e. without any measurement errors.

« Assuming y; = By + fx;, even the dependent values y; may be
measured exactly, i.e. without any measurement error, the random deviation
g = y; — Bo — Bx; being caused by the intrinsic properties (other unknown /
“random” / unconsidered factors).

 For the purpose of the mathematical analysis, we assume the case (2) only.



Simple Linear Regression: Summary & Background

Terminology:

The intercept term

\ Regression coefficients

Parameters

/Y=ﬁu+ﬁ':$:+s\

Regressand
Predicand
Explained variable
Dependent variable
Endogenous variable
Controlled variable
Response
Outcome
Predicted variable

Measured variable

Regressor
Predictor
Explanatory variable
Independent variable
Exogenous variable
Control variable
Stimulus

Covariate

Deviation
Error term
Disturbance

Noise




Simple Linear Regression: Summary & Background

Assumptions:
* The n values x;,x5,..,x, € R are known exactly, fixed,

given before the measurements.
» We have n random variables Y;,Ys, ..., Y,

and n random variables £, &5, ..., &,.

 We assume that the random variables Y,,Y, ..., ¥, are independent

and the random variables &, &,, ..., &, are independent.



Simple Linear Regression: Summary & Background

Simple (jnot exact!) assumptions:
« Let (), F,P) be the underlying probability space.

e Fori=1,2..,n let w; € 1 be the outcome of the random experiment.

» We assume that it holds
yi = Yi{w;)) = Bo + fx; + g{w;)

and the expected value
E[Y:] = Bo + B

or, equivalently,
Elg] =0 for i=1,2..,1



Simple Linear Regression: Summary & Background

Recall:

y; = Yi(wy) = Bo + Bx; + £(wy)
In other words:

 The measured
value y; is the numerical outcome Y;(w;) of the random experiment.

+ The numerical outcome Y;(w;) is obtained so that the numerical outcome
&;(w;) of the random experiment is added to the given value f, + Sx;

iii The regressor values x,,x»,..,x, are known exactly !!!
iii But the values of the parameters £, and 8 are unknown !l



Simple Linear Regression: Summary & Background

Notation — notice that:

— the unknown quantities (unknown parameters 8, and g with deviations &;)

are denoted by Greek letters

— the estimates of the parameters are denoted by the respective Latin letters
(b, and b) or by the hat “* (8, and §), so that by =8, and b= f arethe

estimates of the parameters 8, and f, respectively

We shall mainly use the Latin letters by, and b 1o denote the esiimates

of the parameters S, and g, respectively, here.



Simple Linear Regression: Summary & Background

Notation — notice that:

— the unknown quantities (unknown parameters £, and g with deviations &)

are denoted by Greek letters

— the estimates of the parameters are denoted by the respective Latin letters
(o and b) or by the hat “*" (8, and £), so that by =, and b=§ arethe

estimates of the parameters £, and g, respectively

— the predicted values of the dependent variable are denoted by the hat "
¥; = by + bx;



Simple Linear Regression: Summary & Background

Notation — notice that:

— the unknown quantities (unknown parameters £, and £ with deviations &;)

are denoted by Greek letters

— the i-th residual is denoted by the respective Latin letter (e;)
or by the hat “*” (§;), so that

eg=&=y;i— i
is the i-th residual.

We shall mainly use the Latin letter ¢; to denote the residual here.



The Classical
Assumptions




Simple Linear Regression: Assumptions

The classical assumptions of the simple linear regression model:

 Assume n fixed values x4,x3,..,x, € R, which are known exactly.

 Assume n independent & hormally distributed random variables
Y1, Y5, ..., Y, such that
Y; ~N(By+ Bx5,0%) for i=1,2,..,n
for some parameters B,, 8 € R and for some ¢% € R*.
That is

ElYil=8,+8x; for i=1,2,...n = linearity

and

Var(Y;) = o2 for i=1,2,..,n <~— homoskedasticity




Simple Linear Regression: Assumptions

By introducing new random variables &,, &, ..., &,, itis equivalent to assume that

Yi =B+ Bx;+ & for i=1,2,..,n
for some parameters £, ff € R,
g ~N(@0,6%2) for i=12,..,n
for some ¢% € R*, and

the deviations g, &;, ..., &, are independent.



Further Theorems,
Tests

of Hypotheses
and

Confidence

Intervals




Simple Linear Regression: The Normal Equation

Given the n pairs (v, x1), (¥2,%2), ..., (%) of the observations,

recall that the Residual Sum of Squares for the estimates bg, b €R Is

T n
RSS = Z(yi —§1)? = Z(J’i — by — bx;)?
=1 i=1

By letting %is =0 and 255 = 0, we obtain the system

ab
n n
nby, +in b =Zyi
i=1 i=1
n n n
inbo +2xizb = me
=1 =1 =1

—1 the normal equation




Simple Linear Regression: The Normal Equation

Notice that by letting

1 x 41
X = 1 *2 and ¥=|"?
1 x, n

the normal equation is written as:

XTx (l;;)) = XTy <—— the normal equation

Under the assumption that x; # x; forat |leastone i # j,
notice that the rank(X) = 2 and the matrix X*X of the system is non-singular.



Simple Linear Regression: The Normal Equation

Assume therefore, for simplicity, that x; # x; for some i # j in the following.

Then the normal equation is
XTx (bﬂ) = XTy

b
We then know the matrix XTX is non-singular.
Let
c=(x"x)"

Then the solution is:

bo)= T
(b cxTy



Simple Linear Regression: The Normal Equation

Since the normal equation is nbg+Xi—ixi b= 21y
X7y Xy by + Efoy xf b = Ti, xiy;

n
Y
i=1

the matrix of the system is

X'X = n n
Xi Z xiz
i=1 i=
and its inverse is
eixi X%

-1 Coo Co1 A A
(X7X) (Cm 011) _ n X n
A A



Simple Linear Regression: The Normal Equation

The solution to the normal equation is (l;;,) = (XTX)"'X'Y = cX"Y,
hence

n
xi Zj 1)’; i=1 X Z}'—;l_ Xi¥i
by =c¢ Z + ¢ Z X {1
0=%C0 / ViTCn Vi = x —3" % 23—1
and
n n
1—1 Xi¥i — Die1 X }3'=1 Yi
b=cy ) yitcu ) xyi = X%
= = a1 Xf — Xieg X; j=1%j

(as we already know, see above).



Simple Linear Regression

Recalling that the values x,,x,,...,x, € R are given, that we assume
Yi=Fo+Px;i+ ¢ for i=1,2,..,n
with
ElY;]=8,+fx; and Var(Y))=o0? for i=12,..,n
or
E[]]=0 and  Var(s;) = o2 for i=1,2..,n

where the random variables Y4, Y, ..., Y,, Or &, &, ..., &,, respectively,
are independent, and that y4, v, ..., 3, are some observations of the

random variables Y;,Y;, ..., Y, it follows that all the estimates
bo=Py b=B $.92..5» RSS et




Simple Linear Regression: Theorem 1

Theorem 1: It holds
El$;] = E[bo + bx;] = By + Bx; = E[Y;]

and

2 n n 2
o NX{ = 2% DNmq Xg + XReq X

Var(ﬁi) — 0'2 XCXT =0
( )tt nX%=1XF — Xit=1 Xi Lieg Xi

Remark:
Recall that the variance of the random variable ¥; is

Var($;) = E[(§; — E[$:])?]



Simple Linear Regression

Remark: We actually have

o XX — (21 + xj) Yk=1 Xk + Ti=1 Xi
nYr—1 x.% — k=1 Xk X1 Xy

cov(9, 9;) = o%(XCXT )ij. =g

where

cov($, 9;) = E|@: — E[H:D(F; — El5;])]
is the covarlance of the random variables ¥; and j;

Observe that
Var($;) = cov(9;, $;)



Simple Linear Regression: Theorem 2

Theorem 2: It holds
E[e;] =E[Y;—#:]1=0

and

nxf — 2x; N0y X + NPy x2
Var(e;) = Var(Y; — ) = 0*(I - XCXT),, = o2 (1 _nxy ( Lh=1% + k=1 k)

n ZE=1 x% - 22=1 xk Z?:l x!

Remark:

Notice that the first equation follows by Theorem 1 (E[¥;] = E[Y;]) above too.



Simple Linear Regression

Remark: For i # j, we actually have
cov(es e;) = cov(Y; — 9, Y; — ;) = o*(I - XCXT),, =

o NXiXj — (ox; + xj) Ek—:L Xx + Lk=1 xk
nXk=1%k — Li=1 %k Di=1 X1

— —COV(?i,ﬁj) if i#j

= —g*



Simple Linear Regression

Recall the Residual Sum of Squares is

n
RSS = Z(bu + bx; — y;)?
=1

The resldual varlance or the Mean Square Error is

2 _ RSS _ BRi( = bo = bxp)?
n—2 n—2

Remark:
The “2” in the denominator is the rank of the matrix X.

(Recall that we assume rank(X) = 2, whence X'X is non-singular.)



Simple Linear Regression: Theorem 3

Theorem 3:
E[s?] = o?

where the residual variance or the Mean Square Error is

_ RSS  ¥1,(y; — by — bxp)?
Tn—-2 n—2

5.2

Remark: Theorem 3 provides an estimate of the unknown variance:
6% =~ 52
Notice that the residual variance is also denoted by 6%, i.e. 6% = s?,

and it is an estimate of the variance: we have ¢? =~ ¢ = 52,



Simple Linear Regression: Theorem 4

Theorem 4: It holds
E[bo] =5 and E[b]=§

with
21—1 x:
1"12:1—13" Et—lxl j=1 Xj

Val'(bu) = 0'2('.-'00

and
n

Var(b) — O'ZC11
nz;-f" — L X 2:?=15"7J'




Simple Linear Regression

Remark: We also have

n
i=1Xi

o2 =
n _xm s ]
n X, X i=1%Xi Zij=1%f

cov(by, b) = 0%cy; = —



Simple Linear Regression: Theorem 5

Theorem 5: Forany p,,p € R, suchthat p, #0 or p # 0, it holds
(poby + rb) — (oo + vB)
5 0
VsZ J (Po P)C@)

~ Ip—2

where t,_, denofes Student’s &-distribution with n —rank(X) =n -2 d.f.

Remark:
Notice the mairix XTX is positive definite.

Therefore, its inverse € is positive definite too,




Simple Linear Regression: Corollaries

Corollary 0: By considering p, =1 and p = 0, we obtain:

Remark: Use the corollaries of Theorem 5
— for t-tests about the parameters £, and g of the model,



Tests of hypotheses about the parameters g, and f3

* Choose any p,,p €R suchthat p, #0 or p #0,

and let by € R be a prescribed number.

We can then use Theorem 5 to test the null hyp. H, that (pgfe + pB8) = bgo.

+ Choosing p, =1 with p = 0 in particular, we can use Corollary 0

"°;§T° ~ t,_5) to test the null hypothesis H, that B = by OF So =0

(if we put bye = 0 In particular).
« Choosing p, =0 with p =1 iIn particular, we ¢can use Corollary 1

o= f_ ~ tn—p) totest the null hypothesis H, that g =byy or =0

(if we put bog = 0 in particular).



t-test for the parameter B, or S8

Notation: Let
tn—z (P)

denote the quantile function of Student’s f-distribution with n—2 d.f.

The quantile function t,,_.(p) is the function inverse to the cumulative
distribution function F(x) of Student’s f-distribution with n — 2 degrees

of freedom, i.e.
th2(@)=F'(p) for pe(0,1)



t-test for the parameter B, or S8

Notation: Let
tn—z (P)

denote the quantile function of Student’s f-distribution with n—2 d.f.

In other words, if 0 <p < 1, then x = t,_,(p) is the unique value such that

tn—2(P) x
[Trwa=] rou=p

- Q0

where f(t) is the density of Student’s i-distribution with n—2 d.f.



t-test for the parameter S,

Choosing a value b,y € R, formulate the null hypothesis

Hy:  Bo = bgo

formulate the alternative hypothesis

» two-sided: Hy: Bo # by
« one-sided: Hi: By < by
» one-sided: Hi: Bo > by

and use aforementioned Corollary 0 to conduct the test.



t-test for the parameter f,

Having chosen the value byy € R, such as by = 0, and assuming
the null hypothesis H,: o = by is frue, calculate the statistic

—Bo _bo—beo __ bo

R e e R

bo

JZ (J’i — bo — bx;)? P Xf
nXli- 1-"! f=1 X1 z}t=1x}




t-test for the parameter S,

The f-test for B8, with two-sided alternative hypothesis (fy # byg):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a=10% or a=1% or a = 0.1 % efc.

+ the critical valueis c=t, , (1 — %)

¢ if T € (—o0,—c]V[+c, +0), the critical region, then reject the null hypothesis

« if T € (—c,+c), then do not reject (or fail fo reject) the null hypothesis



t-test for the parameter S,

The f-test for B, with one-sided alternative hypothesis (8, < bg):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a =10% or a=1% or ¢ =0.1% efc.

* the critical valueis ¢ = ¢, »(1—a)

o if T € (—,—c], the critical region, then reject the null hypothesis

« if T € (—c, +), then do not reject (or fail to reject) the null hypothesis




t-test for the parameter S,

The f-test for B, with one-sided alternative hypothesis (8, > bgy):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a =10% or a=1% or ¢ =0.1% efc.

* the critical valueis ¢ = ¢, »(1—a)

o if T €[+c, +0), the critical region, then reject the null hypothesis

« if T € (—o,+c), then do not reject (or fail to reject) the null hypothesis




t-test for the parameter S,

iHWARNINGI! Do not use the aforementioned test unless you know

what and why you are doing.

Given the model (Y = £, + X + €), the testfor S, = 0 actually means the test

whether Y is directly proportional to x, i.e.

Y = Bx forsome S eER

or rather
Y=8x+¢ forsome BER



Confidence interval for the parameter S,

Let x,¥ € R be any humbers such that x < y and let F(x) be the cumulative
distribution function of Student’s &distribution with n — 2 degrees of freedom.
Then, by the definition of the cumulative distribution function and by Corollary 0,

the probability

B0 _ N v
p( rm )—F(y) F(x)

Therefore

52\/Cge < bo — Bo < yVs%Tas) = F() — F(x)
P(bo—y/s?En< Bo < bo—xys?Ex) = F(y) — F()



Confidence interval for the parameter S,

We have:
P (Bo — yV/s?Eao < Bo < by — x/s%/Eg0) = F(y) — F(x)

Choose the level of significance, a small number a > 0, suchas a =5 %.
1 4
Let y=t,,_2(1—5 andlet x =—-y=—t,_ 2(1—— =t,_ 2( )
Recall that ¢,,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown ﬁoelbo—tn_ (1——)\/_\/?..,, Bo + £, 2(1——)\/_\/ﬁ]



Confidence interval for the parameter S,

We have:
P (bo — Y52 fCop S o< by —x 521{.:00) = F(y) — F(x)

Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y=1t, ,(1—a) and let x = —. Recall that t,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown £, € [bg —t,—2(1— a:)\/s_zdﬂou, +oo)

is about 1—-a =95 %.



Confidence interval for the parameter S,

We have:
P (bo — Y52 fCop S o< by —x 521{.:00) = F(y) — F(x)

Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y = +o0 andlet x =t,,_,(a). Recall that t,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown B, € (—00, by +t,_o(1— ﬂ)\/s_zm]

is about 1—-a =95 %.



t-test for the parameter B

Choosing a value b,y € R, formulate the null hypothesis

Hy: B =bgy

formulate the alternative hypothesis

» two-sided: Hy: B #by
« one-sided: Hi: B <by
» one-sided: Hi: B> by

and use aforementioned Corollary 1 to conduct the test.



t-test for the parameter

Having chosen the value by, € R, such as by = 0, and assuming

the null hypothesis H,: f = byg IS true, calculate the statistic

b—8  b—by b

N Ve Vtyen  Neiyem

b

L1 (v — bg — bx;)?
n-—2 nXk, xf z:—1x: F=1%;




t-test for the parameter B

The f-test for 8 with two-sided alternative hypothesis (f # byg):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a=10% or a=1% or a = 0.1 % efc.

+ the critical valueis c=t, , (1 — %)

¢ if T € (—o0,—c]V[+c, +0), the critical region, then reject the null hypothesis

« if T € (—c,+c), then do not reject (or fail fo reject) the null hypothesis



t-test for the parameter B

The f-test for 8 with one-sided alternative hypothesis {f < byg):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a =10% or a=1% or ¢ =0.1% efc.

* the critical valueis ¢ = ¢, »(1—a)

o if T € (—,—c], the critical region, then reject the null hypothesis

« if T € (—c, +), then do not reject (or fail to reject) the null hypothesis




t-test for the parameter B

The f-test for 8 with one-sided alternative hypothesis {f > byg):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a =10% or a=1% or ¢ =0.1% efc.

* the critical valueis ¢ = ¢, »(1—a)

o if T €[+c, +0), the critical region, then reject the null hypothesis

« if T € (—o,+c), then do not reject (or fail to reject) the null hypothesis




t-test for the parameter B

[iiREMARK!!

Given the model (Y = S, + X + &), the testfor g =0 actually means the test
whether Y is completely random and independent of x, I.e.

Y = f forsome By €R

or rather
Y=pFy+& forsome BzER

l.e.
Y ~ N(By,062) forsome f,€R and a? € R{

consequently, whether there is no correlation between the variables x and Y.



Confidence interval for the parameter B

Let x,¥ € R be any humbers such that x < y and let F(x) be the cumulative
distribution function of Student’s &distribution with n — 2 degrees of freedom.
Then, by the definition of the cumulative distribution function and by Corollary 1,

the probability

b—p _ B
P(x<1fs_2ﬁ *Sy)—F(y) F(x)

Therefore

P (xVs2ye < b— B < ysyeg) = F(y) — F(x)
P(b-ys?yos B <b-x/s?ya) = F() - F(x)



Confidence interval for the parameter B

We have:
P (b — ys2yes < B < b— x/s?yerr) = F(y) — F(x)

Choose the level of significance, a small number a > 0, suchas a =5 %.
1 4
Let y=t,,_2(1—5 andlet x =—-y=—t,_ 2(1—— =t,_ 2( )
Recall that ¢,,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown ﬁE[b , 2(1——)J_@, b+t, (1——)\/_@]



Confidence interval for the parameter B

We have:
P(b - yVs?verr < B < b—xs2yer1) = FG) — F(x)

Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y=1t, ,(1—a) and let x = —. Recall that t,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown g € [b —ty—2(1— a:)\/s_zﬁ, +m)

is about 1—-a=95 %.



Confidence interval for the parameter B

We have:
P(b - yVs?verr < B < b—xs2yer1) = FG) — F(x)

Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y = +o0 andlet x =t,,_,(a). Recall that t,_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probability that

the unknown £ € (—00, b+ty, (11— C!)\/S_Z\/E]

is about 1—-a =95 %.



Simple Linear Regression: Theorem 6

Theorem 6: The random vectors
(3)ie1 = (by + bx)l,

(e)iz1 = i — )iy

and

are independent.



Simple Linear Regression: Theorem 7

Theorem 7:

RSS — ZEL'].(},i — ?f)z y
gl - a2 ~ Xn-2

where y2_, denotes Pearson’s y2-distribution with n — 2 degrees of freedom
where we subtract the 2 = rank(X).



Test of hypothesis about the variance 06?2

Remark:
Theorem 7 (RSS/62 ~ x2_,) can be used to conduct the x2-test for the variance.

* Let of € R} be a prescribed number.
« Formulate the null hypothesis:
Hy: 0% = o
« Formulate the alternative hypothesis
— two-sided: Hi: o*+*of
— one-sided: H,: o?%<cf

— one-sided:  Hy: 02> of



x2-test for the variance o2

Notation: Let
X-.-Z:.—z (P)

denote the quantile function of Pearson’s y2-distribution with n —2 d.f.

The quantile function x2_,(p) is the function inverse to the cumulative
distribution function F(x) of Pearson’s y2-distribution with n — 2 degrees

of freedom, i.e.
Xe,@)=Fp) for pe(0,1)



x2-test for the variance o2

Notation: Let
X-.-Z:.—z (P)

denote the quantile function of Pearson’s y2-distribution with n —2 d.f.

In other words, if 0 <p <1, then x = y2_,(p) is the unique value such that

szt-z(P) X
[Troe=] rea=p

el +.7

where £(t) is the density of Pearson’s y-distribution with n — 2 d.f.



x2-test for the variance o?

Having chosen the value ¢f € R and assuming the null hypothesis H,: 6% = ¢¢

is true, calculate the stafistic

_RSS _RSS _ 3, (3 —9)°

- 2 2

2 T —
X o2 g, 0,
0 0




x2-test for the variance o2

The y2-test for o2 with two-sided alternative hypothesis (62 * 63):

« choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a=10% or a=1% or a =0.1% efc.

+ the critical values are ¢ = y2_, (%) and d = x3_, (1 - %)

« if X% €[0,c]V[d,+), the critical reglon, then relect the null hypothesis

« if X? € (c,d), then do not reject (or fail to reject) the null hypothesis



x2-test for the variance o2

The y2-test for o2 with one-sided alterative hypothesis (62 < o¢):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofher popularvaluesare a=10% or a=1% or a = 0.1 % efc.

* the critical value is ¢ = y2_,(a)

« if X% €[0,c], the critical region, then reject the null hypothesis

¢ if X% € (c,+), then do not reject (or fail to reject) the null hypothesis



x2-test for the variance o2

The y2-test for o2 with one-sided alterative hypothesis (62 > o¢):

* choose the level of significance, a small number a > 0, suchas a =5%,

ofher popularvaluesare a=10% or a=1% or a = 0.1 % efc.

* the critical value is d = y2 (1 —a)

« if X% € [d,+), the critical reglon, then relect the null hypothesis

+ if X% € [0,d), then do not reject (or fail to reject) the null hypothesis



Confidence interval for the variance 0?2

Let x,¥ € Rt be any numbers such that x <y and let F(x) be the cumulative
distribution function of Pearson’s y2-distribution with n — 2 degrees of freedom.
Then, by the definition of the cumulative distribution function and by Theorem 7,

the probability

RSS
P(x-(FSJ’) =F(y) = F(x)
Therefore

P(?Saz <$)=F(y)—fr(x)



Confidence interval for the variance o3

We have:
RSS RSS
P(?-(cr <T) F(y)—F(x)
Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y=x3_, (1 -% and let x = y2_, ( ) Recall that y2_,(p) = F~1(p).

Then, by the continuity of the cumulative distribution function, the probability that

RSS RSS

ra(1-3) 2-2(5)

the unknown o2 €

is about 1—-a =95 %.



Confidence interval for the variance o3

We have:

Choose the level of significance, a small number a > 0, suchas a =5 %.
Let vy =x% ,(1—a) andlet x v 0. Recall that y2_,(p) = F~1(p).
Then, by the continuity of the cumulative distribution function, the probabllity that

RSS
the unknown ¢? € ’ 5 : +oo)
Xn—z(l - GI'.')

is about 1—-a =95 %.



Confidence interval for the variance o3

We have:

P(% < o2 <$) =F(y) — F(x)
Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y =400 andlet x = y2_,(a). Recall that y2_,(p) = F~1(p).

Then, by the continuity of the cumulative distribution function, the probability that

RSS
the unknown ¢2 € ’ 0, = ]
Xn—z(a)

is about 1—-a =95 %.



Simple Linear Regression: Theorem 8

Theorem 8:

=B b-Xx(D°5) /
RSS / n

where F,, » denotes Fisher's Fdistributionwith 2 and n—2 d.f.



Hypotheses about all the parameters

Remark: The theorem can be used to test the null hypothesis that
Hy: Po=Pp and B=8
where £, € R are some prescribed values, suchas £, =8 =0, i.e.
Hoy: Po=p=0

« Be cautious because this test actually means the test whether Y is just
arandom error, i.e. Y =¢, i.e. Y ~ ¥ (0,0%) for some o% € R} (see above).

* To conduct the test, find the critical value ¢ > 0 so that | :m f(x)dx = a,

where f(x) is the density of Fisher’s Fdistribution with 2 and n—2 d.f. The
critical region is [c, +o0), i.e. reject the hypothesis if the statistic F € [¢, +0).



The Coefficient of
Determination (R?)




The Coefficient of Determination (R?)

Theorem:

>
I-I
L1

Py
]
=y
Py
ll
=y

Proof — to see that:

z 9 = Z(bo + bx;) = nby + Z b, =

i=1 =1

T mn n n Fi 3
—n—(Zyi Zx;b)+bei =Zyi—bei+bei =Zyi
i=1

i=1 i=1 i=1

i=1

i=1

i=1



The Coefficient of Determination (R?)

Recall the Residual Sum of Squares:

RSS = Z(yi %
=1

Infroduce the Regression Sum of Squares:

RegSS = ) (5 —7)?

i=1
Introduce the Total Sum of Squares:

TSS = Z(}’i — y)?
=1



The Coefficient of Determination (R?)

Theorem:
TSS = RSS + RegSS

or

Z(J’i -y = Z(J?i - 9% + Z@i -y



The Coefficient of Determination (R?)

Notice first:
Yi = bg + bx;
n f {1 n
ZJ’i = Z?ﬁ = nby +bzxi
i=1 i=1 i=1
¥, pZha%
n n
Therefore:

¥i— ¥ =bx;—bX



The Coefficient of Determination (R?)

Notice second:

‘? _ b _ n2?=1xiyi - ?=1xi2}1=1yj _
n Xl Xixi — Ll g X Z?=1 Xj

X XY = X X Xy Yy — e X X ¥y F g X X Yy
Xl x] — 2N X Xl X + By X 2Ty X

XAy Xiqx XX XY
_nZ}‘=1(xiyi—xs—j,,:—j——nLjys+—jn1 j—‘ini j)_ i (i =)y —y)
- Yie1%j | Ljmy Xf Dgm1 X X (x - %)?

T o 0B B ErT) =z




The Coefficient of Determination (R?)

Notice third:

Zn:(yi—ﬁi)@i—?) =Zn:0’i—37+37—?i)@i—37) =

i=1 i=1

= Z(y; = 3_7 + bx — bxi)(bxi — bf’) = Z(yl —_ J_’)b(xi —_ .'f) _ bz(.'f _ xi)z —
i=1

i=1

=bZ@i—7)(xf—f)- gt - 2R~ ”)Zc- %)? =0
=1

1—1(xl



The Coefficient of Determination (R?)

Notice how:

Tss = Z(va - ) = Z(@i -5+ G- )’ =

= i(yi — 9% + Zi@i - 9@ —y) + i(ﬁi — )2 =

i=1 i=1 =1

= Zm ~9,)? +Z(ﬁ- — 5)? = RSS + RegS$
=1 =1



The Coefficient of Determination (R?)

Recall:
Residual Sum of Squares: RSS = X7, (y; — #)?
Regression Sum of Squares: RegSS = X2, (9; — ¥)?
Total Sum of Squares: TSS =30 (y; — )2
and

RSS + RegSS = TSS

Then the Coefficient of Determination is




The Coefficient of Determination (R?)

The coefficient of determination

RZ2=1— RSS _ 1— 2i=1 (v — 9)° _RegSS _ X1 — y)?
155 == TS X0 —¥)

is a measure how well the regression line y = by + bx fits the observed data

(xlvyl)n (xZJyZ)s nany (xmyn)-
It holds
0<R?<1

If R? 71, the fitis good.
If R? N 0, the fitis poor.



The Coefficient of Determination (R?)

R? = 0.00001 f R% =1




The Coefficient of Determination (R?): Theorem 9

Theorem 9: Under the hypothesis

it holds
RegSS; 1 R?

RSS /n—2  1—RZ2

where F, ,,_, denotes Fisher's F-distribution with 1 and n — 2 degrees of freedom.

Remark: Since, except the intercept term £,, we have only one
regression coefficient £, this F-test is equivalent with the f-test

for the coefficient § (see Corollary 1 above).



F-test for the null hypothesis H,: =0 5&%

« Choose the level of significance, a small number a > 0, suchas a =5 %.
* Find the critlcal value ¢ > 0 so that f:m f(x)dx = a, where f is the density

of the F-distribution with 1 and n—2 degrees of freedom.

o Calculate the statistic

— R2 ( 2) — Regss 1 21_1 I J_’)z
~1—Rpz V" ~ RSS/n-2 1P — y1)?

« If F € |[c,+0), the critical reglon, then relect the null hypothesis.
« If Fe€[0,c), then do not reject (or fail to reject) the null hypothesis.




Two-sample t-test
for the difference

of the population

means // o,=0,




Two-sample t-test for the diff. of the pop. means // o,=0,

Motivation:
We have two unknown random variables Y’ and Y. We ask (test the

hypothesis) whether the population means of both random variables are the same.

We assume that both random variables are normal, i.e. Y/ ~ X (', ¢'%) and
Y' ~ N, 6"%), forsome u',u” € R and forsome ¢'4,¢6'% € R}.

Although we do not know the means p',u”" nor the variances ¢'%, 02,

we assume that

sms wzm mms 2 . N2
i i fii o0°=0 I



Two-sample t-test for the diff. of the pop. means // o,=0,

Having the m observations vi,y3,..,¥, of the random variable Y’ ~ ¥ (¢',a?) and
having the n observations y{,v5,...,yY of the random variable Y ~ ¥ (u",02),
we formulate the null hypothesis:
both samples come from the same population:
the values of the population means are the same
Ho: p' =p"
Recall that we do not know the true population means g’ and up”. We only
fest the hypothesis by means of two samples of m and n measurements

with the same variance.



Two-sample t-test for the diff. of the pop. means // o,=0,

Now, transform the problem into the problem of linear regression: Put

N=m+n
and
x=0 and y;=y; for i=1,2,...m
with
xx=1 and y=y., for j=m+Lm+2 .,m+n
Consider now the model

Yo=p+@W —p'lxe+e, for £=1,2,..,N
i.e.the modelwith B =4 and g=u" —4'.
Finally, conduct the i-test that § =0 (see above).



Simple linear
regression without
the intercept term




Simple linear regression without the intercept term

Let n pairs (y1,x1), (¥2,x2), ..., (3, x,) of some observations be given.
We sometimes know that the dependent variable Y should be directly proportional
fo the independent variable x, i.e. the relationship between the values

of x and Y is of the form

Y = fx forsome FER

or rather
Y=8x+¢ forsome FER

where ¢ is a random deviation.

Notice there is no interceptterm £, now.



Simple linear regression without the intercept term

We then proceed as before. Having gotthe n pairs (y4,x1), (72,%3), ..., (¥, %)

of the observations, and given an estimate b € R, the i-th predicted value is
V: = bx; for i=1,2,..,n
the i-th residual is
ey =vy; — Vi for i=1,2,..,n

and the residual sum of squares is

n n n
RSS =) ef = Y Gr—y0? = ) (b — y)?
i=1 i=1

i=1



Simple linear regression without the intercept term

Giventhe n pairs (yy,x;5), (72,x2), --., (. xy) of the observations,

find b € R so that the residual sum of squares

n
RSS = Z(bxi —y;)* — min
i=1
is minimized.
The first-order optimality condition is

n

= ) 2(bx; = y)x; =0

dRSS
db



Simple linear regression without the intercept term

We have hence the equation

n n
b Z Xi = Z XiVi <— the normal equation
i=1 i=1
and its solution is
n
ﬁ — b — i=1xiyl".

z:'_l=']_ xi



