Statistics

Lecture 6

SILESIAN

 UNIVERSITYSCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

Discrete probability distributions

David BartI
Statistics
INM/BASTA

Outline of the lecture

- Discrete probability distributions
- Discrete uniform distribution
- Bernoulli Trials
- Binomial distribution
- Poisson distribution
- Some other discrete probability distributions

Experiment - Trial - Random variable

An experiment is any physical procedure which can end up with a result from a set of possible outcomes, and the experiment can be repeated (up to) infinitely many times. Each individual repetition of the experiment is called a trial.
The final result ω of (each trial of) the experiment is called an outcome. The set Ω of all the outcomes is called the sample space. An event E is a set of outcomes (i.e. $E \subseteq \Omega$). The event space \mathcal{F} is the collection of all events. The event space is a σ-algebra, the probabllity $P: \mathcal{F} \rightarrow \mathbb{R}$ is a non-negative and σ-additive function. The triple (Ω, \mathcal{F}, P) is a probability space and a random varlable is any measurable function $X: \Omega \rightarrow \mathbb{R}$.

Random variable - Dataset

To conclude, the random variable assigns a numerical value to each outcome of the random experiment.

Now, a dataset is a collection of measurements and observations, i.e.
it is a collection of data. A data unit is an entity of the population under study, and a data item or a variable is a characteristics of each data unit.

We are considering numerical (quantitative) variables now.
We assume the hypothesis that the data items in the dataset are realizations of the random variable, i.e. the random variable (via the trials of the random experiment) generates the data.

Examples of discrete random variables

- There are 100 rooms in some hotel. The number of rooms booked on the $1^{\text {st }}$ of July is a random variable X whose value is $X \in\{0,1,2, \ldots, 100\}$.
- The number of customers in a supermarket between 12 and 18 o'clock is a random variable X which (in theory) can attain any non-negative integer value $X \in\{0,1,2,3, \ldots\}$.
- The difference between the number of customers in two supermarkets (e.g. Kaufland and Tesco) during a day is a random variable X which (in theory)

Discrete probability distributions

The purpose of this lecture, however, is to present the most important, yet elementary, discrete probability distributions.

We shall present:

- the uniform distribution
- Bernoulli's experiment
- the binomial distribution
- Poisson's distribution

Discrete
uniform distribution

Uniform distribution (discrete)

The discrete uniform distribution relates closely to the classical definition of probability: Considering N distinct outcomes of a random experiment, each of the N outcomes is equally likely to happen.

The classic examples experiments with uniform distribution include:
— tossing a fair coin "heads" or "tails"
— rolling a fair dice
— playing a fair roulette

Uniform distribution (discrete)

Consider a probability space (Ω, \mathcal{F}, P) where the sample space $\Omega=\{1,2, \ldots, N\}$ is finite, the event space $\mathcal{F}=2^{\Omega}=\{E: E \subseteq \Omega\}$ consists of all subsets of the sample space Ω, and the probability P is given by its probability mass function p which is

$$
p(\omega)=\frac{1}{N} \quad \text { for every } \quad \omega \in \Omega
$$

Then the identity random variable $X: \Omega \rightarrow \mathbb{R}$

$$
X(\omega)=\omega \quad \text { for } \quad \omega=1,2, \ldots, N \in \Omega
$$

follows the discrete uniform distribution.

Uniform distribution (discrete)

More generally, let $a, b \in \mathbb{R}$ be real numbers such that $a<b$. Then the random variable $X: \Omega \rightarrow \mathbb{R}$ such that

$$
X(\omega)=\frac{b-a}{N-1} \omega+\frac{N a-b}{N-1} \quad \text { for } \quad \omega=1,2, \ldots, N \in \Omega
$$

follows the discrete uniform distribution.
Note that the distribution of the identity random variable $(X(\omega)=\omega)$ above is a special case of this distribution for $a=1$ and $b=N$.

We then say that X is a discrete uniform random variable and write

$$
X \sim \operatorname{Unif}(N) \quad \text { or } \quad X \sim \operatorname{Unif}(N, a, b) \quad \text { in general }
$$

Uniform distribution (discrete)

The graph of the probability mass function
of a discrete uniform random variable $X \sim \operatorname{Unif}(N)$:

Uniform distribution (discrete)

The graph of the probability mass function of the result of rolling a dice (which is a discrete uniform random variable $X \sim \operatorname{Unif}(6)$):

Uniform distribution (discrete)

Let the random variable X follow the discrete uniform distribution, i.e. $X \sim \operatorname{Unif}(N)$.
Calculate as an exercise:

- Mean value:

$$
\begin{aligned}
& \mu=\mathrm{E}[X]=\frac{N+1}{2} \\
& \sigma^{2}=\operatorname{Var}(X)=\frac{N^{2}-1}{12}
\end{aligned}
$$

- Variance:
- Mode:
\hat{X} is any element $\omega=1,2, \ldots, N \in \Omega$
- Median:

$$
\tilde{X}=\frac{N+1}{2}
$$

An application: the German Tank Problem

A sample of k elements $x_{1}, x_{2}, \ldots, x_{k}$ is selected without repetition out of the set $\Omega=\{1,2, \ldots, N\}$. That is, $x_{1} \in \Omega, x_{2} \in \Omega \backslash\left\{x_{1}\right\}$, etc., $x_{k} \in \Omega \backslash\left\{x_{1}, \ldots, x_{k-1}\right\}$. When selecting an element x_{i+1} each element of the set $\Omega \backslash\left\{x_{1} \ldots, x_{i}\right\}$ is equally probable to be selected (i.e. the uniform distribution is assumed). The number N exists, but is not known, however.

The goal: Based on the sample $x_{1}, x_{2}, \ldots, x_{k}$, find an estimate of the number N.

- let $m=\max \left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the maximum in the sample
— the estimate is $N^{\approx}=\frac{k+1}{k} m-1=m+\frac{m}{k}-1$

Binomial distribution

- Bernoulli Trials
- Binomial distribution

Bernoulli Trials

A Bernoulli trial is a random experiment with exactly two possible outcomes:
"success" and "failure". Each repetition of the experiment is called a trial.
The probability p of the success is given in advance and is the same in each trial.
(In particular, the probability of the success in a trial does not depend on the results
in the previous trials.) The probability of the failure is then $q=1-p$.
We have $p, q \geq 0$ and $p+q=1$.

Examples of Bernoulli Trials

Tossing a coin:
— outcomes: "heads" (success) or "tails" (failure)

- probabilities: $p=\frac{1}{2}$ and $q=\frac{1}{2}$

Rolling a dice:
— outcomes: "6" (success) or "not 6" (failure)

- probabilities: $p=\frac{1}{6}$ and $q=\frac{5}{6}$

Mathematical model of the Bernoulli Trial

To model the Bernoulli trial mathematically, consider a probability space (Ω, \mathcal{F}, P) with $\Omega=\{0,1\}$ (where " 1 " and " 0 " means "success" and "failure", respectively), with $\mathcal{F}=\{\emptyset,\{0\},\{1\}, \Omega\}$ and with the probability P such that $P(\varnothing)=0, P(\Omega)=1$, and

$$
\begin{aligned}
& P(\{1\})=p \\
& P(\{0\})=q
\end{aligned}
$$

Binomial distribution

Assume that the Bernoulli trial, with the probability of the success being p, is repeated n times where n is a given natural number.
Let X be the random variable whose value is the number of successes in the series of the n Bernoulli trials.

Obviously, the range of the random variable X is the set $\{0,1,2,3, \ldots, n\}$. The probability that X attains the value k is

$$
\binom{n}{k} p^{k} q^{n-k} \quad \text { for } \quad k=0,1,2,3, \ldots, n
$$

Binomial distribution

Formally, let p be the probability of the success in the Bernoulli trial, let $q=1-p$, and let n be the given natural number. Consider the probability space (Ω, \mathcal{F}, P) where $\Omega=\{0,1\}^{n}$ is the collection of all ordered n-tuples of 0 's and 1 's, moreover $\mathcal{F}=2^{\Omega}$, and the probability mass function \bar{p} of the probability P is such that

$$
\begin{aligned}
& \bar{p}(\omega)=\binom{n}{k} p^{k} q^{n-k} \text { for every } \omega \in \Omega \text { such that } \\
& \text { there are exactly } k \text { 's in the } \omega \\
& \text { for } k=0,1,2,3, \ldots, n
\end{aligned}
$$

Binomial distribution

Considering the just introduced probability space (Ω, \mathcal{F}, P) with $\Omega=\{0,1\}^{n}$ etc., the random variable $X: \Omega \rightarrow \mathbb{R}$ such that

$$
X(\omega)=\text { the number of } 1 \text { 's in the } \omega \quad \text { for every } \omega \in \Omega
$$

follows the binomial distribution.

We then say that X is a discrete binomial random variable and write

$$
X \sim \operatorname{Bi}(n, p)
$$

Binomial distribution

The graph of the probability mass function of an $X \sim \operatorname{Bi}(6,0.5)$:

Binomial distribution

The graph of the probability mass function of an $X \sim \operatorname{Bi}(4,0.2)$:

Binomial distribution

Let the random variable $X \sim \operatorname{Bi}(n, p)$.
Calculate as an exercise:

- Mean value:

$$
\mu=\mathrm{E}[X]=n p
$$

- Variance:

$$
\sigma^{2}=\operatorname{Var}(X)=n p(1-p)
$$

- Mode:
\hat{X}

Binomial distribution in Excel

In Excel, use the functions:
=BINOM.DIST ($n ; k ; p ;$ TRUE) to get the value of the cumulative distribution function of the random variable $X \sim \operatorname{Bi}(n, p)$
$=$ BINOM.DIST $n ; k ; p ;$ FALSE) to get the value of the probability mass function of the random variable $X \sim \operatorname{Bi}(n, p)$
$=\operatorname{BINOM} . \operatorname{INV}(n ; p ; \alpha)$
to get the quantile of the random variable $X \sim \operatorname{Bi}(n ; p) \quad(0<\alpha \leq 1)$

Binomial distribution in Excel

In Excel, use the functions:
$=$ BINOM.DIST.RANGE $\left(n ; p ; k_{1} ; k_{2}\right)$
to get the probability that the result of the random variable $X \sim \operatorname{Bi}(n, p)$ is between k_{1} and k_{2}
=BINOMDIST()
the same as =BINOM.DIST(), deprecated

Poisson

distribution

Poisson distribution

There are some events, such as

- customers coming to a shop during one hour (between 10:00 and 11:00, say)
- telephone calls incoming during one hour (between 10:00 and 11:00, say)
- requests incoming to a server during one minute (between 10:00 and 10:01)
- meteorites of diameter ≥ 1 meter hitting the Earth during a year
- decay events from a radioactive source
that (as we suppose) have some properties in common.

Poisson distribution

Suppose that a random event occurs repeatedly and satisfies
the following assumptions:

- the event can occur at any time
- the average number of occurrences of the event during an interval of time of a fixed length is constant; the number does not depend on the beginning of the interval, and does not depend on the number of occurrences of the event before the beginning of the time interval
- the average number of occurrences of the event during an interval of time is proportional to the length of the interval

Poisson distribution

Suppose that a random event occurs repeatedly and satisfies the following assumptions:

- if the length of the interval is very small, then there is no more than one occurrence of the event in the interval; in other words, denoting by p_{t}^{22} the probability that the event occurs at least two times during a time interval of length $t>0$, it holds $p_{t}^{22} \times t \rightarrow 0$ as $t \rightarrow 0$

Poisson distribution

Now, consider a time interval of length $t>0$, where the length t is fixed.
Divide the interval into n subintervals of the length t / n.
Let $p_{t / n}^{1}$ and $p_{t / n}^{22}$ denote the probability that the event occurs exactly once and at least two times, respectively, during the interval of the length t / n. Since we have $p_{t / n}^{22} \times t / n \rightarrow 0$ as $n \rightarrow \infty$ by our assumptions, it follows that

$$
p_{t / n}^{1} \times n \rightarrow \lambda \quad \text { as } \quad n \rightarrow \infty
$$

where λ is the average number of occurrences of the event during any interval of the given length $t>0$.

Poisson distribution

Choose a non-negative natural number $k \in \mathbb{N}_{\mathbf{0}}$. Consider a sufficiently large natural number $n \in \mathbb{N}$ so that $p_{t / n}^{\geq 2} \times t / n$ is near zero (and $n \geq k$).
Now, letting the probability of the success be $p_{t / n}^{1}$, repeat the Bernoulli trial n times. Then the probability that the success occurs exactly k times is

$$
\binom{n}{k}\left(p_{t / n}^{1}\right)^{k}\left(1-p_{t / n}^{1}\right)^{n-k}
$$

which (approximately) is also the probability that the event occurs exactly k times during the time interval of the given length $t>0$.
As $n \rightarrow \infty$, the above probability converges to the (exact) probability that the event occurs exactly k times during the time interval of the given length $t>0$.

Poisson's Theorem

Under the above assumptions it holds that

$$
\binom{n}{k}\left(p_{t / n}^{1}\right)^{k}\left(1-p_{t / n}^{1}\right)^{n-k} \rightarrow \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} \quad \text { as } \quad n \rightarrow \infty
$$

which (approximately) is also the probability that the event occurs exactly k times during the time interval of the given length $t>0$.

To see that, notice that, as $p_{t / n}^{1} \times n \rightarrow \lambda$, we have $p_{t / n}^{1} \approx \frac{\lambda}{n}$.
Then $\binom{n}{k}\left(p_{t / n}^{1}\right)^{k} \approx\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} \frac{\lambda^{k}}{n^{k}} \rightarrow \frac{\lambda^{k}}{k l}$
and $\left(1-p_{t / n}^{1}\right)^{n-k} \approx\left(1-\frac{\lambda}{n}\right)^{n-k} \rightarrow \mathrm{e}^{-\lambda}$.

Poisson distribution

Consider a probability space (Ω, \mathcal{F}, P) with the sample space $\Omega=\mathbb{N}_{0}=$ $=\{0,1,2,3,4,5, \ldots\}$, the event space $\mathcal{F}=2^{\Omega}=\{E: E \subseteq \Omega\}$ consisting of all subsets of the sample space Ω, and the probability P given by its probability mass function p which is

$$
p(k)=\frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} \quad \text { for every } \quad k \in \Omega
$$

where $\lambda>0$ is a fixed parameter (the average number of the events occurring during a time interval of the given length).

Poisson distribution

Having the above probability space (Ω, \mathcal{F}, P) with $\Omega=\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ etc. and

$$
p(k)=\frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} \quad \text { for every } \quad k=0,1,2,3, \ldots \in \Omega
$$

then the identity random variable $X: \Omega \rightarrow \mathbb{R}$

$$
X(k)=k \quad \text { for } \quad k=0,1,2,3 \ldots \in \Omega
$$

follows the Poisson distribution.

We then say that X is a Polsson random varlable and write

$$
X \sim \operatorname{Po}(\lambda)
$$

Poisson distribution

The graph of the probability mass function of an $X \sim \operatorname{Po}(0.5)$:

Poisson distribution

The graph of the probability mass function of an $X \sim \operatorname{Po}(1)$:

Poisson distribution

The graph of the probability mass function of an $X \sim \operatorname{Po}(5)$:

Poisson distribution

Let the random variable $X \sim \operatorname{Po}(\lambda)$.
Calculate as an exercise:

- Mean value:

$$
\mu=\mathrm{E}[X]=\lambda
$$

- Variance:
$\sigma^{2}=\operatorname{Var}(X)=\lambda$
- Mode:
\hat{X}

Poisson distribution in Excel

In Excel, use the functions:
$=$ POISSON.DIST $(n ; \lambda ;$ TRUE $)$ to get the value of the cumulative distribution function of the random variable $X \sim \operatorname{Po}(\lambda)$
$=$ POISSON.DIST $(n ; \lambda ;$ FALSE $)$ to get the value of the probability mass function of the random variable $X \sim \operatorname{Po}(\lambda)$
=POISSONDIST()
the same as =POISSON.DIST(), deprecated

Poisson distribution: Examples

- The number of telephone calls received by a call centre per hour.
- The number of customers coming to the shop per hour.
- The number of radioactive decay events per second from a radioactive source.
- The number of clicks per second of a Geiger-Müller counter.
- The number of defaults per year in risk modelling.
- The number of some failures / accidents / ... per year.

Some other
 discrete probability distributions

- Negative binomial distribution
- Lady tasting the tea
- Hypergeometric distribution

Negative binomial distribution

Assume that the Bernoulli trial, with the probability of the success being p, is repeated until we encounter n successes where n is a given natural number. Let X be the random variable whose value is the number of failures until we encountered n successes in the series of the Bernoulli trials.

The probability that X attains the value k is

$$
\binom{k+n-1}{k} p^{n}(1-p)^{k} \quad \text { for } \quad k=0,1,2,3, \ldots
$$

Then X is a negative binomial random variable and we write

$$
X \sim \mathrm{NB}(n, p)
$$

Negative binomial distribution

Let the random variable $X \sim \mathrm{NB}(n, p)$.
Calculate as an exercise:

- Mean value: $\quad \mu=\mathrm{E}[X]=\frac{n(1-p)}{p}$
- Variance:

$$
\sigma^{2}=\operatorname{Var}(X)=\frac{n(1-p)}{p^{2}}
$$

- Mode:

$$
\hat{X}=\left\{\begin{aligned}
\left\lfloor\frac{(n-1)(1-p)}{p}\right], & n=2,3,4, \ldots \\
0, & n=1
\end{aligned}\right.
$$

Hypergeometric distribution

A Lady Tasting the Tea: We prepare a cup of tea with milk.
There are two ways to prepare the cup:

- pour the tea into the cup first and then add the milk,
- pour the milk into the cup first and then add the tea.

A lady says that she can recognize by the taste of the tea how the cup was prepared.

Hypergeometric distribution

A Lady Tasting the Tea: We prepare 8 cups of tea with milk.
We prepare:

- 4 cups so that we pour the tea first and then add the milk,
- 4 cups so that we pour the milk first and then add the tea.

We are to choose 4 cups out of the 8 cups. What is the probability - if one selects the cups randomly - that we choose the 4 cups where the tea was first correctly? (I.e., we correctly recognize whether the tea was first in the cup?)

- By the way, the Lady recognized the cups correctly.

Hypergeometric distribution

In general, we have a total of N objects, out of which K objects have some specific feature ("success", say).

Out of the population of the N objects, we are selecting a sample of n objects (without replacement). What is the probability that there are exactly k object with the feature in the sample?
The probability is

$$
\frac{\binom{K}{k}\left(\begin{array}{l}
N-K
\end{array}\right)}{\binom{N}{n}}
$$

Hypergeometric distribution

Consider the probability space (Ω, \mathcal{F}, P) where the sample space is

$$
\Omega=\{\max (0, K+n-N), \ldots, \min (n, K)\}
$$

the event space is $\mathcal{F}=2^{\Omega}$ and the probability P is given by its probability mass function

$$
p(k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \quad \text { for } \quad k \in \Omega
$$

Then the identity random variable $X: \Omega \rightarrow \mathbb{R}$

$$
X(k)=k \quad \text { for } \quad k \in \Omega
$$

follows the hypergeometric distribution.

Hypergeometric distribution

Let the random variable X follow the hypergeometric distribution with N, K, n.
Calculate as an exercise:

- Mean value:

$$
\mu=\mathrm{E}[X]=n \frac{K}{N}
$$

- Variance:

$$
\sigma^{2}=\operatorname{Var}(X)=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}
$$

The binomial coefficient in Excel

In Excel, use the function:
$=\operatorname{COMBIN}(n ; k)$
to get the value of the binomial coefficient
$\binom{n}{k}$

