SILESIAN
 UNIVERSITY

SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

Mathematics in Economics

Lecture 2

Mgr. Jiří Mazurek, Ph.D.
Mathematics in Economics/PMAT

Introduction to differential calculus of one real variable The derivative of a function

Let $y=f(x)$ be a function of one real variable. Then the derivative of the function f is defined as follows:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

The derivative is usually denoted $f^{\prime}(x)$ or y^{\prime}. The process of finding a derivative is called differentiation.

Geometric interpretation: the derivative of a function f at a point x is equal to the slope of a tangent line to the curve at the point x.

Geometric interpretation of a derivative

The rules of differentiation

Let $f(x)$ and $g(x)$ be functions with the derivative in the interval $J \subseteq R \quad$ Then:
i) $[c \cdot f(x)]^{\prime}=c \cdot f^{\prime}(x)$
ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
iv) $\left[\frac{f(x)}{g(x)}\right],=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}, g(x) \neq 0$
v) $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Derivatives of elementary functions

$f(x)$	$f(x)$	$\sin x$	$\cos x$	
konstanta	0	$\cos x$	$\operatorname{tg} x$	$\frac{-\sin x}{1}$
x	1	$n x^{n-1}$	$\operatorname{cotg} x$	$\frac{c^{2}}{\cos ^{2} x}$
x^{n}	$\frac{1}{x}$		$\arcsin x$	$-\frac{1}{\sin ^{2} x}$
e^{x}	$a^{x} \cdot \ln a$	$\arccos x$	$\frac{1}{\sqrt{1-x^{2}}}$	
$\ln x$	$\frac{1}{x \ln a}$		$\operatorname{arctg} x$	$-\frac{1}{\sqrt{1-x^{2}}}$
a^{x}			$\operatorname{arccotg} x$	$\frac{1}{1+x^{2}}$
$\log _{a} x$			$-\frac{1}{1+x^{2}}$	

Examples

$$
\begin{aligned}
& y=x^{2} \Rightarrow y^{\prime}=2 \cdot 1=2 \\
& y=6 x^{3}-5 x+4 \Rightarrow y^{\prime}=18 x^{2}-5 \\
& y=\frac{1}{x^{2}} \Rightarrow y^{\prime}=-\frac{2}{x^{3}} \\
& y=5^{x} \Rightarrow y^{\prime}=5^{x} \cdot \ln 5 \\
& y=\ln \left(x^{2}-4\right) \Rightarrow y^{\prime}=\frac{1}{x^{2}-4} \cdot(2 x) \\
& y=x \cdot e^{x} \Rightarrow y^{\prime}=1 \cdot e^{x}+x \cdot e^{x}
\end{aligned}
$$

Derivatives of higher orders

If a function $f^{\prime}(x)$ can be differentiated, we obtain the second derivative of $f(x)$, denoted as $f^{\prime \prime}(x)$, and so on.

First derivatives are used to find monotonicity and extremas of functions. The second derivative is useful in finding concavity and coorlicavity or $\boldsymbol{r}^{\frac{1}{2}}$ inflexion points. The use of derivatives of the order 3 and higher are rather rare.

Example: $\quad y=\ln x \Rightarrow y^{\prime}=\frac{1}{x}, y^{\prime \prime}=-\frac{1}{x^{2}}$

Differential of a function

The differential of a function $y=f(x)$ is denoted as $d y$, and is defined as follows: $d y=f^{\prime}(x) d x$.
The differential expresses an increment of the dependent variable dy in respect to the increment of independent variable dx. Also, the differential isused to linearization of more complex functions.

Example: Find the the differential of the function $y=x^{2}$ at a point $x=4$.

Solution: $d y=2 x d x$, and substituting $x=4$ we obtain: $d y=8 d x$.

The logarithmic differentiation

For functions of the type $y=f(x)^{g(x)}$ we use the so called logarithmic differentiation:

$$
\begin{aligned}
& y=f(x)^{g(x)} \\
& \ln y=\ln f(x)^{g(x)} \\
& \ln y=g(x) \ln f(x) /^{\prime} \\
& \frac{1}{y} y^{\prime}=g^{\prime}(x) \cdot \ln f(x)+g(x) \cdot \frac{1}{f(x)} \cdot f^{\prime}(x) \\
& y^{\prime}=y\left[g^{\prime}(x) \cdot \ln f(x)+g(x) \cdot \frac{1}{f(x)} \cdot f^{\prime}(x)\right] \\
& y^{\prime}=f(x)^{g(x)}\left[g^{\prime}(x) \cdot \ln f(x)+g(x) \cdot \frac{1}{f(x)} \cdot f^{\prime}(x)\right]
\end{aligned}
$$

Taylor and Maclaurin series

Let a function $y=f(x)$ be differentiable of the order n at a point a, then it can be approximated by the Taylor series of the form:

$$
T_{n}(f, a, x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n+1}(x)
$$

- If a = 0, we obtain a special case of the Taylor series, called Maclaurin series:

$$
T_{n}(f, 0, x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+R_{n+1}(x)
$$

Maclaurin series of selected functions

Function	Maclaurin series	Range of convergence
$\sin x$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$	$(-\infty, \infty)$
$\cos x$	$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$	$(-\infty, \infty)$
$\exp (x)$	$1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	$(-\infty, \infty)$
$\ln (x+1)$	$x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\ldots$	$(-1,1\rangle$

Taylor and Maclaurin series

Example: Find the Maclaurin series of the function $y=e^{x}$.
Solution:

$$
\begin{aligned}
& f(0)=e^{0}=1 \\
& f^{\prime}(x)=e^{x} \Rightarrow f^{\prime}(0)=e^{0}=1 \\
& f^{\prime \prime}(x)=e^{x} \Rightarrow f^{\prime \prime}(0)=e^{0}=1 \\
& f^{\prime \prime \prime}(x)=e^{x} \Rightarrow f^{\prime \prime \prime}(0)=e^{0}=1
\end{aligned}
$$

Therefore, we obtain:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Economic applications of derivatives

The elasticity of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$:

$$
E(x)=\lim _{\Delta x \rightarrow 0} \frac{x}{y} \frac{\Delta y}{\Delta x}=\frac{x}{y} \frac{d y}{d x}=\frac{x}{y} y^{\prime}
$$

The price elasticity of demand:

$$
E(P)=-\frac{P}{Q} \frac{d \varphi}{d P}
$$

The price elasticity of supply:

$$
E(P)=\frac{P}{Q} \frac{d Q}{d P}
$$

Economic applications of derivatives - cont.

Marginal product of labour:

$$
M P_{I}=\frac{d Q}{d L}=Q^{\prime}(L)
$$

Marginal revenue:

$$
M R=\frac{d T R(Q)}{d Q}
$$

Marginal cost:

$$
M C=\frac{d T C}{d Q}
$$

Solved problems 1

Find the derivative of the function $y=x^{2} \cdot \ln x$
Solution: The given function is a product of two elementary functions, so we must use the product rule.
We obtain:

$$
\begin{aligned}
& y^{\prime}=2 x \cdot \ln x+x^{2} \cdot \frac{1}{x} \\
& y^{\prime}=2 x \cdot \ln x+x
\end{aligned}
$$

Solved problems 2

Find the differential of the function $y=x^{3}+1$. Also, find the increment $d y$ for $x=2$ and $d x=0.1$

Solution: $y^{\prime}=3 x^{2}$ and the differential is: $d y=3 x^{2} d x$
The increment dy: $d y=3 \cdot 2^{2} \cdot 0.1=1.2$

Solved problems 3

Find the Taylor series of the function $y=\sqrt{x}$ at the point $\mathrm{a}=1$.
Solution:

$$
\begin{aligned}
& f(1)=\sqrt{1}=1 \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \Rightarrow f^{\prime}(1)=\frac{1}{2 \sqrt{1}}=\frac{1}{2} \\
& f^{\prime \prime}(x)=-\frac{1}{4 \sqrt{x^{3}}} \Rightarrow f^{\prime}(1)=-\frac{1}{4 \sqrt{1^{3}}}=-\frac{1}{4}
\end{aligned}
$$

Therefore, the Taylor series is given as follows:

$$
\sqrt{x}=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\ldots
$$

Solved problems 4

Find the Maclaurin series of the function $y=\sqrt{x+1}$.
Solution:

$$
\begin{aligned}
& f(0)=\sqrt{0+1}=1 \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}} \Rightarrow f^{\prime}(1)=\frac{1}{2 \sqrt{0+1}}=\frac{1}{2} \\
& f^{\prime \prime}(x)=-\frac{1}{4 \sqrt{(x+1)^{3}}} \Rightarrow f^{\prime}(1)=-\frac{1}{4 \sqrt{(0+1)^{3}}}=-\frac{1}{4}
\end{aligned}
$$

Therefore, the Taylor series is given as follows:

$$
\sqrt{x}=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\ldots
$$

Solved problems 5

Find the derivative of the function $y=x^{x}$.
Solution:

$$
\begin{aligned}
& y=x^{x} \\
& \ln y=\ln x^{x} \\
& \ln y=x \cdot \ln x /^{\prime} \\
& \frac{1}{y} y^{\prime}=\ln x+x \cdot \frac{1}{x} \\
& \frac{1}{y} y^{\prime}=\ln x+1 \\
& y^{\prime}=y[\ln x+1] \\
& y^{\prime}=x^{x}[\ln x+1]
\end{aligned}
$$

Solved problems 6

Find the derivative of the function $y=x^{\ln x}$.
Solution:

$$
\begin{aligned}
& y=x^{\ln x} \\
& \ln y=\ln x^{\ln x} \\
& \ln y=\ln x \cdot \ln x /^{\prime} \\
& \frac{1}{y} y^{\prime}=\frac{1}{x} \ln x+\ln x \cdot \frac{1}{x} \\
& \frac{1}{y} y^{\prime}=\frac{2}{x} \ln x \\
& y^{\prime}=y\left[\frac{2}{x} \ln x\right] \\
& y^{\prime}=x^{\ln x} \frac{2}{x} \ln x
\end{aligned}
$$

Solved problems 7

Find marginal revenue MR (x) of the total revenue $\operatorname{TR}(x)=x^{3}-2 x^{2}+5 x+5$ and marginal costs of the total costs $T C(x)=120 x^{4}-\ln x$.

Solution: $\quad \operatorname{MR}(x)=\frac{d T R(x)}{d x}=3 x^{2}-4 x+5$

$$
M C(x)=\frac{d T C(x)}{d x}=480 x^{3}-\frac{1}{x}
$$

Problems to solve 1

Differentiate:

$$
\begin{aligned}
& y=1+x+x^{2}+x^{3}+x^{4} \\
& y=24 x^{3}-3 x^{2}+8 x-4 \\
& y=\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}} \\
& y=\frac{3}{x^{4}}-2 \sqrt[2]{x}+\frac{4}{\sqrt[4]{x^{3}}} \\
& y=3^{3}-2 \log x+\sqrt{\sqrt{x^{2}}} \\
& y=4 \pi g-\cot g x
\end{aligned}
$$

Problems to solve 2

Differentiate:

$$
\begin{aligned}
& y=\left(x^{2}+1\right) \cdot e^{x} \\
& y=\left(x^{2}+4\right) \cdot \sin x \\
& y=\frac{2 x^{2}-3 x+1}{x} \\
& y=\frac{x}{\ln x} \\
& y=\frac{x^{2}-1}{x^{2}+1} \\
& y=\sqrt{x^{2}+4 x} \\
& y=\ln (4 x+1)
\end{aligned}
$$

Problems to solve 3

Find the Maclaurin series of the following functions:

$$
\begin{aligned}
& y=\sin x \\
& y=\cos x \\
& y=e^{2 x} \\
& y=e^{3 x} \\
& y=\sqrt{x+4} \\
& y=\ln (x+3)
\end{aligned}
$$

Thank you for your attention!

