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Outline of the lecture

 Fractional Factorial Design: Motivation & Introduction
* One half (7%2) fraction design

* One quarter (%4) fraction design

* One eight (V&) fraction design

 For specialists in algebra: The general 277 fraction design



Fractional Factorial Design: Motivation & Introduction

Consider an observed quantity (such as a measure of quality, filtration rate
in chemistry or production, the lifespan of a product, etc.); we conjecture that
the observed quantity may depend upon the levels of many factors (such as

the day of the week, temperature, material, and so on).
Our purpose is to carry out just a few experiments and to identify those factors
that influence the observed quantity most. (In other words, we wish to identify

the factors with the most dominant effect on the quantity.)

Once the effects are identified, we analyse them in greater detail then.



Fractional Factorial Design: Motivation & Introduction

Denote the observed quantity by Y and consider up to k& two-level faciors
about which we conjecture that they might influence the value of the quantity Y.

A possibility to explore the most significant factors consists in setting up

the full factorial design of the experiment, which is denoted by

Zk
and to run the experiment 2*-times, i.e. once for each of the 2* combinations
of the levels of the factors.

More generally, the experiment is run (K x 2%)-times if the experiment is



Fractional Factorial Design: Motivation & Introduction

Performing the full factorial design of the experiment, the number of the runs

may soon become infeasible because the number grows exponentially.
For K =1, we have:

k=1 = 2= 2runs k=5 = 2= 32runs
k=2 = 2%= 4runs k=6 = 2= 64runs
k=3 = 23= 8runs k=7 = 27=128runs
k=4 = 2*=16runs k=8 = 2%=256runs

and so on.



Fractional Factorial Design: Motivation & Introduction

Performing the full factorial design of the experiment, the number
of the runs may soon become infeasible due to limited resources

(time, financial, material, etc.).
Moreover, such a high number (2¥) of the runs will be unnecessary
(inefficient) in fact as the number k of the factors increases:

The gain of the knowledge will not be adequate to the effort.

Recall that the purpose is just to identify quickly those few faciors



Fractional Factorial Design: Motivation & Introduction

We actually assume the following three principles:

« Hierarchical Ordering Principle

— effects of lower orders are more likely to be important than
effects of higher orders; and
— effects of the same order are equally likely to be important

- Effect Sparsity Principle (Pareto Principle)

— the number of relatively important effects in a factorial experiment is small

- Effect Heredity Principle

— if an interaction is significant,

then at least one of its parent factors is significant



Fractional Factorial Design: Motivation & Introduction

In particular,if k=7 and K =1, say, then there are:

* ()= 7 degrees of freedom for the main effects,
« (7} =21 degrees of freedom for 2-factor interactions

« D+ + D)+ () + () =99 di.forall the other interactions of higher order
(i.e. interactions of orders 3,4, 5,6, 7)

Then, performing the full factorial design of the experiment when the number k
of the factors is high, the gain of the knowledge will not be adequate to the effort

put into the experiments due to the three aforementioned principles.



Fractional Factorial Design: Motivation & Introduction

Thanks fo the three aforementioned principles, which we assume,

it is often sufficient to run a fraction of the original full factorial plan.

The fractional factorial design of the experiment is denoted by
2k=p

where

* k isthe number of the factors

« p isthe fraction index

Moreover, since our purpose is to carry our as few experiments as possible,
we assume that the experiments are not replicated; that is, we assume



Fractional Factorial Design: Motivation & Introduction 5&%

Setting up the fractional factorial design of the experiment, which is denoted by

2F-P
where
* k isthe number of the factors
 p Iisthe fractlon Index
the experiment is run
2K
k=p — __
2%7P = 5P

times, i.e.
once for each of the 27 selected combinations of the levels of the factors.



Fractional Factorial Design: Motivation & Introduction

The fraction index p should satisfy the relations
0<p<k and 2P > k

1/2P = k /2"
2P < 2" /k

p<n-logk

« For p=1, we obtainone half (27! =1/,) fraction design.
« For p =2, we obtain one guarter (22 = 1/,) fraction design.
* And so on.



One half (%)
fraction design




"2 fraction design

« Consider k& main two-level factors in the experiment.

« For example, consider k = 4 factors A, B, C, D in the experiment.
« Consider first the full-factorial design; that is,
* make up a table consisting of & columns corresponding
to the factors (such as A, B, C, D) and consisting of 2* rows
(such as 2* = 16 rows) listing all the possible combinations
of the signs “=" and “+* (the levels of the factors).
* The columns of the table are also called contrasts

because the number of the “=" signs and "+” signs is the same in each column.



"2 fraction design

» Add vet the zeroth column consisting of 2% “+" signs only,

and denote this column by “I” (the intercept term).
 The columns (such as |, A, B, C, D) of the table can be multiplied

each other component-wise (i.e. the comresponding signs are mulfiplied together)

by using the rules:

—— =+ +- = - -+ = - ++ = +
* Notice that “I” is a neutral element:
IL=L=1LI for any column L € {A4,B,C,D,],..}

* Notice that any column is self-inverse:



Full design

We thus have No. A B C
1 - - - -

In our example 12 + - _ _
13 - + - -

with k = 4 factors: 14 + + _ _
15 - - + -
16 + - + -~
7 - + + -
18 + + + —~
19 - - - +
10 + - - +
11 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +




"2 fraction design

* We do not wish to run the full factorial experiment, i.e.

to carry out the experiment for each of the 2¥ combinations of the factors.
» Letting the fraction index p = 1, we Iinstead wish to run 'z fraction
of the full factorial design of the experiment.
» To this end, select some k — 1 main factors (suchas A, B,C if k =4)
and confound the remaining factor (such as D) with the interaction
of the k — 1 selected factors by introducing the equaftion, e.g.
D = ABC

* This equation is called the generating equation of the alias structure.



"2 fraction design

Consider the above table with the 2* rows of the full factorial design.
* |n the table, keep every row that fulfils the generating equation
D = ABC

* And drop every row that does not fulfil the generating equation.

All in all, there 251 rows remain in the table

and the other 2*~1 rows have been dropped.



2 fraction design

In our example with No. A B C D =ABC

1 - - - -
k = 4 factors and 5 . . . .
with the generating 3 - + - +

4 + + - -
equation D = ABC, 5 - - + +

5) + - + -
we have: 7 - + + _

8 + + + +




"2 fraction design

* Observe that — considering the k¥ — 1 selected main factors (suchas A, B, C

in our example) — we have got a full factorial design 2*~1 of the experiment
with respect fo those k — 1 selected main factors (such as those A, B, C).

» We then carry outthe 2%~ runs of the experiment with the levels
of all the &k factors set up according to the list in the table, that is
with the levels of the factors fulfilling the generating equation

D = ABC

{The experiment is replicated K = 1 times for each combination because we wish



"2 fraction design

Multiplying both sides of the generating equation
D = ABC
by the column-contrast “D”, we obtain:
DD = ABCD
I =ABCD

This equation is called the deflning equation of the fractional design,
and its right-hand side ("“ABCD") is the defining word of the fractional design.



"2 fraction design

The defining equation

I =ABCD

induces the following alias structure of the fractional factorial design 2*-1:

I = ABCD A =BCD AB =CD
B = ACD AC =BD
C = ABD AD = BC
D = ABC

All in all, in our example, we have:



2 fraction design

Here the defining equation is 1 =ABCD
No. |I=ABCD A=BCD B=ACD C=ABD AB=CD AC=BD BC =
1 + - - - + + + -
2 + + - - - - + +
3 + - + - — + — +
4 + + + - + - - -
5 + - - + + - - +
6 + + - + — + — -
7 + - + + - - -
8 + + + + + + +

The generating equation is D = ABC



"2 fraction design

« Wethen carry out the 2%~ runs of the experiment with the levels
of all the k factors set up according to the list in the table.

* [tis, essentially, a full factorial design forthe k — 1 selected main factors
(such as A, B, C in our example).

« We then evaluate the results, 1.e. the significance of the main factors and
the significance of their interactions, in the precisely the same way as in the

case of a full factorial design — see the previous lecture.



2 fraction design

* Here, however, some factors and interactions are confounded; that is,
we cannot distinguish between them.

« The respective estimate “b”, which we calculate, of the coefficient “g"
is always the sum of the true coefficients of the confounded factors.

» We thus have in our example:

I=ABCD — I+ ABCD D=ABC — D+ ABC
A=BCD — A+BCD AB=CD — AB+CD
B=ACD — B+ ACD AC=BD — AC+BD
C=ABD — C(C+ABD AD=BC — AD+BC



2 fraction design

Here the generating equation is D = ABC

No. |+ABCD A+BCD B+ACD C+ABD AB+CD AC+BD BC+AD ABC+D

1 + - - - + + + -
2 + + - - - - + +
3 + - + - — + — +
4 + + + - + - - -
5 + - - + + - - +
6 + + - + — + — -
7 + - + + - - -
8 + + + + + + +

We then use the three aforementioned principles

to decide which factors and interactions are significant.



Fractional Factorial Design: The Three Principles

We assume the following three principles:

« Hierarchical Ordering Principle

— effects of lower orders are more likely to be important than
effects of higher orders; and
— effects of the same order are equally likely to be important

- Effect Sparsity Principle (Pareto Principle)

— the number of relatively important effects in a factorial experiment is small

- Effect Heredity Principle

— if an interaction is significant,

then at least one of its parent factors is significant



2 fraction design: Remarks

« We used the defining equation
I = ABCD

in our example above.

» We could use the defining equation
I =—ABCD

equally well.




2 fraction design: Remarks

« We used the defining equation
I = ABCD

in our example above.

 We could also use
C =AB I =ABC

but the design would not be so good.



Fractional Factorial Design: Resolution of the design

Recall that the right-hand side of the defining equation, such as
I =ABCD or I =ABC

is called the defining word.

The length of the defining word is the number of the letters it consists of.

(Here the length is 4 or 3, respectively.)

The resolution of a fractional factorial design is
the minimum length of the defining words.



Fractional Factorial Design: Resolution of the design

The defining word is the right-hand side of the defining equation, such as
I = ABCD or I=ABC

The resolution of a fractional factorial design is
the minimum length of the defining words.

The resolution is usually denoted by Roman numerals (I, Il, lll, IV, V, etc.).

Here the resolution of the fractional design is

IV or I11
respectively.



Fractional Factorial Design: Resolution of the design

In our example, the defining equation I = ABCD yields one half fraction

factorial design denoted by
2y

The defining equation I = ABC would yield one half fraction factorial design
i
and we would get the following alias structure:
I = ABC A=BC
B = AC

C =AB



Fractional Factorial Design: Resolution of the design

Here the generating equation is C =AB

N[o}

1

2 +

3 +

4 +

) + - -
6 +

7 +

8 +

+ + + +

+ +

Here the interactions of the 2" order are confounded with

the main factors as well as with some interactions of the 3 order.



Fractional Factorial Design: Resolution of the design

Maximal Resolution Principle:

The higher the resolution is

the better the fractional factorial design is.



One quarter (%)
fraction design




4 fraction design

« Consider k& main two-level factors In the experiment.

* Forexample, consider k =5 factors A, B, C, D, E in the experiment.
« We wish to have a one quarter fraction factorial design, i.e. p = 2,
i.e. the factorial design 252
« Since 5 -2 =3, we have fo choose 3 main factors, suchas A, B, C
 We then add the generating equations
D=AB and E=BC
* Notice that wriling
D=ABC and E=BC..?



4 fraction design

Having the generating equations
D=AB and E=BC
We get the defining equations
I =ABD and I =BCE

« RULE:
The collection of the defining equations must be closed under multiplication.

* We thus multiply the equations together:
I =ACDE



4 fraction design

* Now, the collection of the equations
I =ABD and I =BCE and I =ACDE

is closed under multiplication.

* The defining contrast subgroup is

{1, ABD, BCE, ACDE}
» Nofice that there are always 2P = 22 = 4 elements in the subgroup.
* The resolutionis 3 =Ill.

» The resulting fractional design is

23



s fraction design

Given the defining equations
I =ABD and I =BCE and I =ACDE

the resulting alias structure is:

I = ABD = BCE = ACDE D = AB = BCDE = ACE
A =BD = ABCE = CDE E = ABDE = BC = ACD
B =AD = CE = ABCDE AC = BCD = ABE = DE

C = ABCD = BE = ADE AE = BDE = ABC = CD



One eight ("s)
fraction design




s fraction design

« Consider k& main two-level factors In the experiment.

* For example, consider k =7 factors A, B, C, D, E, F, G in the experiment.
« We wish to have a one eight fraction factorial design, i.e. p = 3,
i.e. the factorial design 2773
* Since 7 — 3 = 4, we have to choose 4 main factors, suchas A, B,C, D
« We then add the generating equations
E = ABC and F =ABD and G =ACD

for example.
» QOther possibilities of the choice of the generating equations



s fraction design

* Having the generating equations
E = ABC and F = ABD and G = ACD
We get the defining equations
I=ABCE and I=ABDF and [I=ACDG
And the collection of defining equations closed under multiplication
I =ABCE and I =ABDF and I =ACDG
I = CDEF and I = BCFG and I = BDEG
I = AEFG
The resulting fractional design is




For specialists
in algebra:

The general 277
fraction design




The general 27P fraction design

« Assume k factors.
« Wewishtosetupa 277 fractional design.
« Consider the index set
$={x}={+-)
Notice that, in the set S, there are 2* elements of the form

S =(81,52.,5,) €S

where s4,s,..,5; € {+, —} are signs “+” or “-".



The general 27P fraction design

» Consider now the "main” group
M = {:I:]'S = {+r _}S

« The group M consists of all the 2¢-component columns of signs “+” and “~".

* The operation of multiplication of the elements of M is defined componentwise,
that is, given two elements
M=(mg)ses€M and N=(nglses€M
where mg € {+,—} and ng € {+,—} aresigns“+’ or"-"for S€ s
* we have

M X N = (mg)ses X (ns)ses = (ng X ng)ses



The general 27P fraction design

Given

M=(mg)ses€M and N=(nglses€M
we have

M X N = (mg)ses X (ns)ses = (Mg X ng)ses
by using the rules

+X+ =+ +X—=— - X+ =- - x— =+

Nofice that the column
I=()ses €M

which corresponds to the intercept term and consists of 2¥ plus ("+") signs,
is neutral with respect to the multiplication (i.e., it is the neutral element).



The general 27P fraction design

Notice that it holds

(MXN)XO0=Mx(Nx0) (associativity)
MXN=NXM (commutativity)
MxI=M=IxM (neutral element)
MxM=I] (self-inverse)

for every
M= (ms)_geg EM and N = (?15)555 EM and 0= (Os)geg eEM

which implies that M is a commutative group (of a special form).



The general 27P fraction design

« Recallthatanindex S€S§ is
S= (S']_J 52w, Sk)

where s,,5,,...,Sx € {+,—} are signs “+” or “~".

 Consider now the k columns

(S1)ses (52)ses (s3)ses (Sk)ses
each consisting of 2¥ components.

* These columns correspond to the k main factors:

A B C K



The general 27P fraction design

« The k columns

(S1)ses (52)ses (53)ses (sk)ses

generaie a subgroup
G of M

 The subgroup G contains the neutral element I = (+)qes, i.e. the intercept,
as well as other columns corresponding to the interactions of the main factors,

such as

(S1)ses X (S2)ses (51)ses X (s3)ses (51)ses X (s2)ses X (53)ses etc.
- ~ /) - ~ /) - ~ /
AB AC ABC




The general 27P fraction design

* Notice that the subgroup § corresponds fo the full factorial design

of the experiment.

» Consideringthe & main columns
(S1)ses (s2)ses (s3)ses (sx)ses
the full factorial experiment will be carried out for each combination

51,52, 53, s, Sk

of the levels of the main factors \A, B,C, ..., IS
foreach § = (-5'1, 52,53, ---:Sk) EJ. \k/factors




The general 27P fraction design

 There is also the column

—[=(=)ses €M
which consists of 2* minus (“—*) signs, in the “main” group M.

+ Having the subgroup G <« M of 2¥ elements, extend the subgroup G
to the subgroup G <« M defined as follows:

G=GU{-IXG:GEG}

* Notice that there are 2 x 2* = 2*+1 elements in the group .



The general 27P fraction design

 Now, let a fraction index p = 0 be given.

« Choose any subgroup
H of §
such that

there are 2P elements in the subgroup H
and
—1¢H

« The subgroup ¥ is the deflning equations subgroup.



The general 27P fraction design

» Now, let a fraction index p = 0 be given.

+ Let the defining equations subgroup # < §
be such that —I ¢ # and |#|= 2*.

« If p =0, then the subgroup H contains the element I only (% = {I}).

» If p=1, then there are 2! = 2 elements in the group #, i.e. the intercept I

and yet another element.

« If p =2, thenthere are 22 = 4 elements in the group ¥, i.e. the intercept I
and yet three other elements.



The general 27P fraction design

 Now, let a fraction index p = 0 be given.

« Given the defining equations subgroup H < G such that
—-I1¢H and |H|=2F

introduce the defining contrast subgroup as follows:

Forevery H € H,
— if H € g, then let Hexw
— if Heg, thenlet —IxHeH



The general 27P fraction design

« The defining contrast subgroup H, which we have chosen,

induces the alias structure.

« The alias structure is set up according to the factor group
g
[3¢

* Notice that there are

Ig%:ﬂrl = Zpp = 27

elements in the factor group g/H.



The general 27P fraction design: Example

Consider 4 main factors A, B, C, D.

Choosing the defining equations subgroup
H ={I, ABCD} or H=1{I,—ABCD}
we obtain the defining contrast subgroup

H ={I, ABCD}
and the alias structure
{I, ABCD},
9/ = {{A, BCD), {B, ACD}, {C, ABD}, {D, ABC},}
{AB, CD}, {AC, BD}, {AD, BC}



The general 27P fraction design: Example

Consider 4 main factors A, B, C, D.

Choosing the defining equations subgroup
H={A4ABC} or H={I,—-ABC}
we obtain the defining contrast subgroup

H = {I, ABC}
and the alias structure

{1, ABC),
S/:,.=1 {4 BC), (B, AC), {C, 4B), (D),
{AD, BCD}, {BD, ACD}, {CD, ABD}



The general 27P fraction design: Example

Consider 5 main factors A, B, C, D, E.

Choosing the defining equations subgroup

# = {I, ABD, BCE, ACDE}

or f = {1, —~ABD, —BCE, ACDE}
or f = {1, —ABD, BCE, —ACDE}
or

H = {1, ABD, —BCE, —ACDE}

we obtain the defining contrast subgroup
H = {I, ABD, BCE, ACDE}



The general 27P fraction design: Example

Consider 5 main factors A, B, C, D, E.

Given the defining contrast subgroup

H ={I, ABD, BCE, ACDE}
we obtain the alias structure

{1, ABD, BCE, ACDE},
6/ - {4, BD, ABCE, CDE}, {B, AD, CE, ABCDE}, {C, ABCD, BE, ADE)},
- {D, AB, BCDE, ACE}, {E, ABDE, BCDE, ACD},
{AC, BCD, ABE, DE}, {AE, BDE, ABC, CD}



The general 27P fraction design: Example

Consider 7 main factors A,B,C,D,E, F, G.

Choosing the defining equations subgroup

H = {1, ABCE, ABDF, ACDG, CDEF, BCFG, BDEG, AEFG)
v H = {I, ABCE, ABDF, —ACDG, CDEF, —BCFG, —BDEG, —AEFG}
v H = {I, ABCE, —ABDF, ACDG, —CDEF, —BCFG, BDEG, —AEFG}
v H = {I, ABCE, —ABDF, —ACDG, —CDEF, BCFG, —BDEG, AEFG}
or



The general 27P fraction design: Example

Consider 7 main factors A,B,C,D,E, F, G.

Choosing the defining equations subgroup

or
H

{I, —ABCE, ABDF, ACDG, —CDEF, BCFG, —BDEG, —AEFG}
or

H = {I, —ABCE, ABDF, —ACDG, —CDEF, —BCFG, BDEG, AEFG}

or

# = {I, —ABCE, —ABDF, ACDG, CDEF, —BCFG, —BDEG, AEFG}
or

# = {I, —ABCE, —ABDF, —ACDG, CDEF, BCFG, BDEG, —AEFG}



The general 27P fraction design: Example

Consider 7 main factors A,B,C,D,E, F, G.

Choosing the defining equations subgroup as above,
we obtain the defining contrast subgroup

H ={I, ABCE, ABDF, ACDG, CDEF, BCFG, BDEG, AEFG}
and the alias structure

(see the next slide)



The general 27P fraction design: Example

{1, ABCE, ABDF, ACDG, CDEF, BCFG, BDEG, AEFG})
{A, BCE, BDF, CDG, ACDEF, ABCFG, ABDEG, EFG)},
{B, ACE, ADF, ABCDG, BCDEF, CFG, DEG, ABEFG},
{C, ABE, ABCDF, ADG, DEF, BFG, BCDEG, ACEFG},
{D, ABCDE, ABF, ACG, CEF, BCDEF, BEG, ADEFG},
{E, ABC, ABDEF, ACDEG, CDF, BCEFG, BDG, AFG},
{F, ABCEF, ABD, ACDFG, CDE, BCG, BDEFG, AEG),
G op =4 {G, ABCEG, ABDFG, ACD, CDEFG, BCF, BDE, AEF},
H {AB, CE, DF, BCDG, ABCDEF, ACFG, ADEG, BEFG),
{AC, BE, BCDF, DG, ADEF, ABFG, ABCDEG, CEFG},
{AD, BCDE, BF, CG, ACEF, ABCDFG, ABEG, DEFG},
{AE, BC, BDEF, CDEG, ACDF, ABCEFG, ABDG, FG},
{AF, BCEF, BD, CDFG, ACDE, ABCG, ABDEFG, EG},
{AG, BCEG, BDFG, CD, ACDEFG, ABCF, ABDE, EF},
{BG, ACEG, ADFG, ABCD, BCDEFG, CF, DE, ABEF},
. {ABCDEFG, DFG, CEG, BEF, ABG, ADE, ACF, BCD} J




The general 27P fraction design

Since the subgroup G < M is generated by the columns

A B C K

and K isasubgroupof G, L.e. H < g a M, itfollows that each element of H
can be generated by these columns. That is,
— for every element H € H, we have

H= H(sj) Ses for some Jy €{1,2,..,k}

The empty set J; = @ yields the infercept 1.



The general 27P fraction design

The resolution of the defining contrast subgroup H is
the minimum length of a word in it (not counting the element “I”).

The resolution is wriften as a Roman number (I, II, lll, IV, V, ...).

For example, the resolution of the defining contrast subgroup
H = {I, ABD, BCE, ACDE}
is 3=IIl.
For example, the resolution of the defining contrast subgroup
H ={I, ABCE, ABDF, ACDG, CDEF, BCFG, BDEG, AEFG}



The general 27P fraction design

The resolution of the defining contrast subgroup # is
the minimum length of a word in it (not counting the element “I”).
The resolution is written as a Roman number (I, II, lIl, IV, V, ...).

For example, the resolution of both the defining contrast subgroups
# = {I, ABCF, ABDEG, CDEFG)}

H = {I, ABCF, ADEG, BCDEFG)
is 4=1IV.



The general 27P fraction design

The resolution of the defining contrast subgroup ¥ is
the minimum length of a word in it (not counting the element “I”).
The aberration of the defining contrast subgroup H is

the count of the distinct minimum length words in the subgroup.

For example, the resolution of the defining contrast subgroup
H ={I, ABD, BCE, ACDE}
is 3=Ill and its aberrationis 2.



The general 27P fraction design

The resolution of the defining contrast subgroup ¥ is
the minimum length of a word in it (not counting the element “I”).
The aberration of the defining contrast subgroup H is

the count of the distinct minimum length words in the subgroup.

For example, the resolution of the defining contrast subgroup

H ={I, ABCE, ABDF, ACDG, CDEF, BCFG, BDEG, AEFG}
is 4 =1V and its aberration is 7.



The general 27P fraction design

 The purpose is to choose the defining equation subgroup # so that

the resolution of the defining contrast subgroup #H is maximized.

« |f there are several defining equation subgroups # such that the corresponding
defining contrast subgroups have the same maximum resolution,
then the purpose is to choose the defining equation subgroup # so that

the aberration of the defining contrast subgroup #H is minimized.



The general 27P fraction design

For example, if the defining contrast subgroup is
H ={I, ABCF, ABDEG, CDEFG}

the resolutionis 4 = IV and the aberrationis 1.

If the defining contrast subgroup is
H ={I, ABCF, ADEG, BCDEFG}

the resolutionis also 4 = IV, but the aberrationis 2.

The former subgroup is better because its aberration is less than that of the latter.



The general 27P fraction design

« [t remains to set up the fractional factorial design of the experiment.

« Qur purpose is to set up the 277 fraction design, denoted by
2k-p

The procedure is as follows
(see the following slides).



The general 27P fraction design

« Write everyword H € 5 (except the element “I")

of the defining equation subgroup # in the form

H= H(sf)ses or H=- 1_[(.::),-).5,5's for exactlyone Jy €{1,2,..,k}
JEIg JEIig

* Write the corresponding defining equation:

+=l_[s}- or +=—l_[5j (*)

JEIg JEIg
respectively, where “s;” are symbols (variables).



The general 27P fraction design

For example, if the defining equation subgroup is

# ={1, —ABD, —BCE, ACDE}
then the collection of the defining equations is

I =—-ABD I =—-BCE I = ACDE



The general 27P fraction design

The group § is generated by the columns

(51)ses (52)ses (53)ses (Sx)ses
A B c K

corresponding fo the & main factors A, B, C, ..., K,
and there are 2* elements in the group G.

« The group G can be seen a 2* x 2* table thus.
+ Arow with the index S = (s, 52, ..,8) € § is kept — and the experiment is

carried out for this combination of the levels of the main factors — if and only if

all the defining equations (x) are fulfilled.



The general 27P fraction design

 Finally, the effects of the factors and their interactions are confounded according

—
|

to the defining equations subgroup #H

To given an example, consider 5 main factors
A BCDE
and let the defining equations subgroup be
# = {I, ABD, —BCE, —ACDE}

The resolutionis 3 = lll and the aberrationis 2.



The general 27P fraction design: Example

Full factorial design 2°: the group G
-
| AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE ABCDE
11 + - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + -
12 + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + +
13 + - + - - - - + + + - - - + + + + + + - - - + + + - - - - + - +
14 + + + - - - + - - - - - - + + + - - - + + + + + + - + + + - - -
05 + - - + - - + - + + - + + - - + + - - + + - + + - + - - + - - +
[16: + + - + - - - + - - - + + - - + - + + - - + + + - + + + - + - -
07: + - + + - - - - + + + - - - - + - + + + + - - - + + + + - - + -
[18: + + + + - - + + - - + - - - - + + - - - - + - - + + - - + + + +
]9 + - - - + - + + - + + - + - + - - + - + - + + - + + - + - - - +
10 + + - - + - - - + - + - + - + - + - + - + - + - + + + - + + - -
11 + - + - + - - + - + - + - - + - + - + + - + - + - + + - + - + -
12 + + + - + - + - + - - + - - + - - + - - + - - + - + - + - + + +
13 + - - + + - + - - + - - + + - - + + - - + + - + + - + - - + + -
14 + + - + + - - + + - - - + + - - - - + + - - - + + - - + + - + +
15 + - + + + - - - - + + + - + - - - - + - + + + - - - - + + + - +
16 + + + + + - + + + - + + - + - - + + - + - - + - - - + - - - - -
17 + - - - - + + + + - + + - + - - - - + - + + - + + + + - - - - +
18 + + - - - + - - - + + + - + - - + + - + - - - + + + - + + + - -
19 + - + - - + - + + - - - + + - - + + - - + + + - - + - + + - + -
20 + + + - - + + - - + - - + + - - - - + + - - + - - + + - - + + +
21 + - - + - + + - + - - + - - + - + - + + - + + - + - - + - + + -
22 + + - + - + - + - + - + - - + - - + - - + - + - + - + - + - + +
23 + - + + - + - - + - + - + - + - - + - + - + - + - - + - + + - +
24 + + + + - + + + - + + - + - + - + - + - + - - + - - - + - - - -
25 + - - - + + + + - - + - - - - + - + + + + - + + - - - - + + + -
26 + + - - + + - - + + + - - - - + + - - - - + + + - - + + - - + +
27 + - + - + + - + - - - + + - - + + - - + + - - - + - + + - + - +
28 + + + - + + + - + + - + + - - + - + + - - + - - + - - - + - - -
29 + - - + + + + - - - - - - + + + + + + - - - - - - + + + + - - +
30 + + - + + + - + + + - - - + + + - - - + + + - - - + - - - + - -
31 + - + + + + - - - - + + + + + + - - - - - - + + + + - - - - + -
32 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +




The general 27P fraction design: Example

Given the defining equations subgroup
H = {1, ABD, —BCE, —ACDE}
the defining contrast subgroup is
H = {I, ABD, BCE, ACDE}

and the alias structure is

{I, ABD, BCE, ACDE},
G /= {A, BD, ABCE, CDE}, {B, AD, CE, ABCDE}, {C, ABCD, BE, ADE},
H™ {D, AB, BCDE, ACE}, {E, ABDE, BC, ACD},
{AC, BCD, ABE, DE}, {AE, BDE, ABC, CD}



The general 27P fraction design: Example

Fractional factorial design 2372

The defining equations:

I = ABD I = —BCE I =—-ACDE
_ | + ABD - BCE - ACDE A + BD - ABCE - CDE B + AD - CE - ABCDE C + ABCD - BE - ADE D + AB - BCDE - ACE E + ABDE - BC - ACD AC +BCD - ABE - DE AE + BDE - ABC - CD

T (

2 (07) + - + + - - - +
3 (9) + - - - + - + +
4 (16) + + + + - + -
5 (19) + - + - - + + -
6 (22) + + - + - + + +
7 (28) + + + - + - +
8 (29) + - - + + + = -




