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Taguchi methods

Taguchi's methods — statistical methods developed by
Dr. Genichi Taguchi (*1st January 1924 12"d June 2012)

to improve the quality of manufactured goods.

There are two classes of Taguchi’'s methods:
* online methods used in the production process

 offline methods used in the pre-production phases

The fundamental concept used of the online methods is the Loss Function.




Taguchi methods: Taguchi Loss Function

Assume that we manufacture some product.

We adopt the following assumptions:

1. The quality of a piece of the product is assessed according to the
(numerical) value Y of some characteristic — such as the size, weight;
mechanical, chemical, aesthetical or other characteristics.

2. The Target Value T of the above characteristics is given.

3. The lack of quality of the piece of the product is characterized
by deviations of the characteristic from its target value T.

4. Every deviation of the characteristic from its farget value T vyields a financial

etc.



Taguchi methods: Taguchi Loss Function

The first three assumptions are usual. The fourth assumption, however, was new:

Until then, it was usual to consider that
+ the pieces of product such that the characteristic is within
some tolerance interval are considered acceptable (like the binary value “1”),
« the pieces of product such that the characteristic is out
of the tolerance interval are considered inacceptable (like the binary value “07),

 and there are no states in between.

The purpose of Taguchi’s Loss Function is to evaluate every loss caused by



Taguchi methods: Taguchi Loss Function: Remarks

Taguchi’s Loss Function evaluates every loss caused to the customer

by the supplier due to the (physical) impossibility to keep the absolute precision.
The link between the quality and the Loss Function

Is the main contribution to the Quality Engineering;

it also allows to plan the costs.

The Loss Function measures the decreased quality within the tolerance interval.



The Loss Function

« Symmetric N-tolerance
* Non-symmetric N-tolerance
« S-type tolerance (small)

 L-type tolerance (large)




Taguchi Loss Function: Symmetric N-tolerance

Let
Y denote the actual value of the characteristics of the quality;

this is a random variable
T denote the targef value of the characteristics of the quality
d Dbe the tolerance limit
* k be aconstant
A

be the loss if the value of Y is out of the tolerance interval (T —d, T+ d)

Wethen write T+ d and
(T—d, T+d)



Taguchi Loss Function: Symmetric N-tolerance

Woae then postulate that the Loss Function is continuous and of the form:

L(Y) = k(Y —T)? if T—d< Y <T+d
A if ¥ <T—d or TH+d< Y

L(¥)

T-d I T+d r



Taguchi Loss Function: Symmetric N-tolerance

Woae then postulate that the Loss Function is continuous and of the form:

L(Y) = k(Y —T)? if T—d< Y <T+d
A if ¥ <T—d or TH+d< Y

It follows:
A=k(T-d)-T)
A = kd?

A

k=ﬁ



Taguchi Loss Function: Non-symmetric N-tolerance

Let
« Y denote the actual value of the characteristics of the quality;

this Is a random variable

T denote the target value of the characteristics of the quality
e ki, ks be constants
e dy,ds be tolerance limits

« A4, A, be the losses outside of the tolerance interval (T —dy, T + d>5)

Then the tolerance interval is
(T—dy, T+d3)



Taguchi Loss Function: Symmetric N-tolerance

Woae then postulate that the Loss Function is continuous and of the form:

A, if Y<T—d,
k(Y-T)Y2 if T-d;<Y <T
k,(Y-T) if T Y <T+d,
A, if T4+d,<Y

L(Y) =

L(¥)

A

Az
T j
| Y

T+ds

I-d



Taguchi Loss Function: Symmetric N-tolerance

Woae then postulate that the Loss Function is continuous and of the form:

L(Y) = k(Y-=T)2° if T-dy< Y <T
) k(Y-T)2 if T< Y <T+4d,

A, if T+d,< Y
It follows:
2 2
Ay =k, ((T—dy) —T) Ay =k((T—dy) —T)
Al —_ kld% Az —_ kzd%
Al AZ
ki =— - _“



Taguchi Loss Function: S-type tolerance (small)

Here, the smaller the characteristic Y, the beiter. The ideal target valueis T = 0.

An example is the pollution (of air / water / etc.).

Let

I 4 denote the actual value of the characteristics of the quality;
this is a random variable

» USL = Upper Specification Limit

e k be a constant

e A be the losses behind the tolerance interval [0, USL)

Then the tolerance interval is



Taguchi Loss Function: S-type tolerance (small)

Woae then postulate that the Loss Function is continuous and of the form:

0 if Y<0
L(Y) =1 kY? if 0<Y <USL
A if USL<Y

LY) |

=0 USL Y



Taguchi Loss Function: S-type tolerance (small)

Woae then postulate that the Loss Function is continuous and of the form:

0 if Y<0
L(Y) =1 kY? if 0<Y <USL

A if USLY
It follows:
A =k x USL2
A
k

~ USIZ



Taguchi Loss Function: L-type tolerance (large)

Here, the larger the characteristic Y, the better. The ideal target valueis T = +oo.
Let

e« Y denote the actual value of the characteristics of the quality;

this is a random variable

« LSL = Lower Spegcification Limit
e k be a constant
s A be the losses forefront the tolerance interval (LSL, +c0)

Then the tolerance interval is
(LSL, +o0)



Taguchi Loss Function: L-type tolerance (large)

Woae then postulate that the Loss Function is continuous and of the form:

A if Y <LSL

2
L(Y) = k(%) if LSL<Y



Taguchi Loss Function: L-type tolerance (large)

Woae then postulate that the Loss Function is continuous and of the form:

A if Y <LSL

2
L(Y) = k(%) if LSL<Y

It follows:

2
1
A="(ﬁ)

k = A X LSL2



The expected loss

« Symmetric N-tolerance
* Non-symmetric N-tolerance
« S-type tolerance (small)

 L-type tolerance (large)




The expected loss

Recall that the quality of a product is measured by the characteristic Y,

which is assumed to be a random variable.

The loss L(Y) depends upon the deviation of the characteristic Y
from its target value T.

We, however, are interested to know the expected loss E[L(Y)].



The expected loss: Symmetric N-tolerance

Assume that the Loss Function is of the form

L(Y) = k(Y —T)? if T—d< Y <T+d
A if ¥ <T—d or TH+d< Y

where



The expected loss: Symmetric N-tolerance

Assume for simplicity that the random variable

YE(T—-d t+d) always

E[L(Y)] = E[k(Y — T)?] = k X E[(Y — T)?]

Then:

If E[Y] =T, then
E[L{(Y)] = k X Var(Y) = ko?



The expected loss: Symmetric N-tolerance

Assume for simplicity that the random variable

YE(T—-d t+d) always

E[L(Y)] = E[k(Y — T)?] = k X E[(Y — T)?]

Then:

Otherwise, in general:
E[L(Y)] = k x E[(Y — E[Y] + E[Y] - T)?] =
= k x E[(Y — E[Y])? + 2( — E[YD(EY] - T) + (E[Y] - T)*] =
= k x (Var(Y) + 2(E[Y] - E[YD(E[Y] - T) + (E[Y] - T)?) =
= ko? + k(E[Y] — T)?



The expected loss: The estimates of E[Y] and Var(Y)

Remark:
The expected value E[Y] and the variance ¢? = Var(¥Y) are unknown usually.

Woe then make experiments and use the
* the sample mean and
* the sample-population variance

o estimate these quantities.



The expected loss: The estimates of E[Y] and Var(Y)

Let us have a sample
Y1, Y2, Yn

of the observations of the characteristic Y, which is a random variable.

The sample mean — estimate of E|Y]:

f~y= 1Yy,

i=1

The sample-population variance — estimate of Var(Y):

n
1
0%~ 5% = EZ(:W - y)?
=i



The expected loss: The estimates of E[Y] and Var(Y)

Another approach:.

* Assume that the random variable Y is normally distributed.

« This is the case, e.g., if the producer aims to achieve the target value T.

* Then the probability that Y € (E[Y] — 30, E[Y] + 30) is about 99.8%.

« Assuming that T = E[Y] and that all the production is within the tolerance
interval (T —d, T + d), we can estimate that

d =~

o

o

Q
Q

Wl &



The expected loss: The estimates of E[Y] and Var(Y)

Yet another approach:

* Assume that the random variable Y is uniformly distributed.

« This is the case, e.qg., if the producer aims to have all the production
within the tolerance interval (T — d, T + d) only; that is, does not aim
to achieve the target value T.

* Assuming that T = E[Y], it follows
_(2d)* 4d* d?

12 12 3

0.2

g =~

4
V3



The expected loss: The cost of the quality

Recall that we have calculated:
A

E[L(Y)] =kxVar(Y) = ko? = ﬁaz

Notice that
« the parameters A and d are given by the designer (design engineer), but

« the parameter a2 is given by the worker.

It follows that we wish to have d as large as possible and to minimize A and ¢2.



The expected loss: The cost of the quality

Example: Assume that

A=40
d=4
o =133
Then the expected loss Is
A , 40 )
E[L(Y)] = 27 =1z X 1.334 = 442225

monetary units per a piece of production.



The expected loss: The cost of the quality

Assume further that the variance ¢% = 1.33% = 1.7689 can be decreased
by 30 % to 0.70 x 6% = 0.7 x 1.7689 = 1.23823, but the cost of this decrease
is 0.50 monetary units per a piece of production. Then the total loss is:

A 40
— 020w + 0.50 = — x 1.23823 + 0.50 = 3.595575

which is a result better than the previous one (4.42225)
with the original ¢% = 1.33%.

To conclude, this improvement can be recommended.



Total
Quality Costs

 Quality Cost Monitoring
« Taguchi’s approach

to Quality Cost Monitoring




Quality Cost Monitoring

We concentrate on Quality Cost Monitoring on the side of the manufacturer.
There are several approaches to Quality Cost Monitoring, including:

« monitoring based on PAF (Prevention, Appraisal, Failure) models

* monitoring based on process models

* monitoring based on Taguchi’'s approach

We here concentrate in Taguchi’'s approach.



Taguchi’s approach to Quality Cost Monitoring

There are two main cases in Taguchi’s approach to Quality Cost Monitoring:

« checking all (100%) pieces of production
« checking one out of every n pieces of production;

— checking qualitative (non-measurable) characteristics of quality — attributes



Checking
all (100%) pieces
of production




Checking all (100%) pieces of production

Let us have a sample

Y1, Y25 Yn

of the observations of the characteristic Y, which is a random variable.

When all (100%) pieces of production are checked,
the total cost of the quality control is:

QA

JLRdz




Checking all (100%) pieces of production

The total cost of the quality control is:

where
« @ are the annual costs for 100% quality control

« R isthe annual production = the number of the pieces of production per year
« d isthe tolerance (see above)

« A istheloss when the tolerance is exceeded (see above)

n—1
1 1
5% = —[02 =07 + s = 320 + -+ O = ¥n1)?] = mZ@m - )2
=1



Checking all (100%) pieces of production

Remark: The total variance
n—1
1
S5 = m;(‘}’m — ¥1)?
consists of:

« s§ =the production variance

+ sz =the measurement variance

and it holds:

s§ = s& + s



Checking one out
of every n pieces
of production




Checking one out of every n pieces of production

When n pieces of production are made between two quality checks,
the total cost of the quality control is:

B C AD2+AD2 n+1+z A
n u d23 d?Zu 2

 d Isthe tolerance (see above)
« A istheloss when the tolerance is exceeded (see above)
« B s cost of the check of one piece of production

« n isthe number of pieces produced between two quality checks



Checking one out of every n pieces of production

When n pieces of production are made between two quality checks,
the total cost of the quality control is:

+?$§1

_B+C+AD2+AD2 n+1+ A
n u d23 dZul\ 2 z
where

» C are the repair costs of the production plant

« u isthe average number of pieces produced between two failures
of the production plant



Checking one out of every n pieces of production

The total cost of the quality control is:

2

B_I_C AJ’J2 A Dz(n+1 ) A
d2 3 d2 u\ 2
where
« d isthe tolerance is defined by the customer (see above) —
the tolerance within which the product is safisfactory in terms of its quality
« D isthe tolerance defined by the producer; it holds
D<d

« z isthe number of pieces of production made during the check



Checking one out of every n pieces of production

I, =

B C+AD2+AD2 ntl .4,
n u d23 dZ2u 2 Z)Tgz5m
where

— are the control costs per a piece of production
. 5 are the repair costs per a piece of production
A

« = losses due to imprecise production

. L 1: (":1 + z) losses due to production of defective pieces



Checking one out of every n pieces of production

, _B C+AD2+AD2 ntl .4,
“nTu T3 T u\ 2z %) Tgztm
where
A D? I : : :
* =5 osses due to imprecise production

. ::2 D7 (";’1 + z) losses due to production of defective pieces

y: | . .
* % Sm losses due to imprecise measurements



Remarks

* Dr. Genichi Taguchi proposed the above formula based on his long experience.

* That is, the formula expresses Dr. Taguchi’s experience in mathematical terms.

« That is, there is no mathematical justification of the above formula.

« Notice, however, that the last three terms are mathematically justified because
they are based on the loss function L(Y).

* By letling

n_y o R,
on or oD

we obtain:



Remarks

What is the optimal inspection interval?

0t 2uB d
‘A D

Whatis the optimal tolerance defined by the producer?

+|3CDEd?
- f;
D J Au ()

where D, is the prior (previocus) tolerance defined by the producer.



Remarks

The new average number of pieces produced between two failures

of the producticn plant:

where
* D, is the prior (previous) tolerance defined by the producer

* u, Iis the prior (previous) number of pieces produced between two failures
of the production plant



Checking attributes

When checking qualitative (non-measurable) characteristics of quality — attributes,

the total cost of the quality control is:

B C A(n+1 )
L=—4+—4+- +z
n u u 2

where
« A isthe loss when the piece of production is defective (see above)
« B s cost of the check of one piece of production

« C are the repair costs of the production plant



Checking attributes

When checking qualitative (non-measurable) characteristics of quality — attributes,

the total cost of the quality control is:

B C A(n+1 )
L=—+—-+ +z
n u u 2

where
« n isthe number of pieces produced between two quality checks

« u isthe average number of pieces produced between two failures
of the production plant

« z isthe number of pieces of production made during the check



Capability indices

» Capability index C,
» Capability index C,x




Capability indices

Recall the nofation:

« Y isthe (numerical) value of some characteristic — a random variable —
by using which we measure the quality

« T isthe Target value

« USL isthe Upper Specification Limit

« LSL isthe Lower Specification Limit

We have:
LSL < T < USL



Capability indices

Assume that the random variable Y is normally distributed:
Y ~N(u,0%2) forsome u€R and o62>0

Remarks:

* use a large sample

« use a statistical test for normality

+ remove outlying values from the sample

« u is approximated by the sample mean ¥ = X;i-, v;/n

* o2 is approximated by the sample variance s% =Y}I,(y; —7)%/(n—1)



Capability indices

If the characteristic is qualitative (an aftribute), the capability index is the ratio

__the number of good pieces of production
~ the total number of pieces of production

In general, if the characteristic Y is quantitative, the capability index is

_ the length of the tolerance interval, where all the values should be
~ the length of the interval where the observed values actually are




Capability index C,

Recall the six-sigma rule for the normally distributed random variable
Y ~ N(ﬂ: 0'2)

Under the assumption that the target valueis T = g,

the capability index C, is defined:
- _USL—LSL
P~ 60

or

_ USL—LSL
P s



Capability index C,

Assuming that Y ~ N (i, 62), the capability index C.« is defined:

o oo {USL—p p-LSL
pk =N ™35 7 30



