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The general outline of a statistical hypothesis test

« A statistical test consists in the study of the cuicomes of a random experiment.

«  We put down a hypothesis about the probability distribution of the outcomes
of the random experiment.

« We also make up a statistic § — a formula, i.e. a mathematical expression —
and we prove (!} as a mathematical Theorem that, under our hypotheses,
the statistic S follows a certain probability distribution.

«  We camry out the random experiment several (or many) times.

«  We put down the results of the experiment, i.e., count positive results,

count the negative results, and so on.



The general outline of a statistical hypothesis test

«  We substitute the results (the counts, and so on} into the mathematical

expression-statistic S, which is a random variable thus
(its value depends on the results of the random experiment).

«  Wethen choose the significance level a — a small probability — such as
a=5%=0.05 (i.e. “one error per twenty trials”).
(Other popular choices include a=10%=0.1 or a=1%=0.01.)

« By using the mathematical Theorem, which we proved (see above),
we find the critical region € € R so that — if our hypotheses are true —
then the probability of the event that S€C is S a.



The general outline of a statistical hypothesis test

* The critical region € is usually a closed interval or the union of two closed

intervals.

« Finally, make a statistical conclusion:

« [|f S €, then reject the hypothesis.

« [fthe hypotheses are true, then it is quite improbable that S € € ;
the probability is < a. So we are making a mistake — type | error,
I.e. rejecting a hypothesis which is true — about once per twenty ftrials,
ifa=5 %.



The general outline of a statistical hypothesis test

 If S ¢&C, thendo notreject (or fail to reject) the hypothesis.
* The fact that we fail to reject the hypothesis is not a confirmation
that the hypothesis is true!
» Since the statistic § is a random variable, it may happen by chance
that S & C even if the hypothesis is false.
» This situation — failing to reject a false hypothesis — is a type Il error.
The probability of type Il erroris 8, and this probability is difficul to calculate...
If a=25%, then the probability 8 shouldbe <20 %. (lsit<20 %?)
The probability 1 — B is the power of the test.




The p-value of the test

The above outline of the test is as follows:
» Choose the significance level a (such as a =5 %).

* Depending upon the a, find the critical region C, € R so that —
if the hypothesis is true — then the probabilitythat (S € C,) is <a.

« Carry ouf the experiment, enumerate the expression S, and seeif S € C,.

Another procedure:

« Carny out the experiment and enumerate the expression S.
* Find the least number p € (0,1) such that S € C,.

« This value p is the p-value of the test.

hypothesis.)



Parametric and Non-parametric tests %&%

There are two large classes of statistical tests: parametric and non-parametric.

* The parametric tests make assumptions about the probability distributions
of the random variables that are subject to the test. It is often assumed that

the underlying distribution is normal (Gaussian).

 The non-parametric tests do not make such assumptions. The non-parametric

tests can be used if the random variables are not normally distributed.



PARAMETRIC
TESTS

* {-tests for the means
 Two sample F-test

for the equality of variances




{-tests
for the means

* One-sample t-test for

the population mean

» Paired-sample t-test for

the difference of the population means

« Two-sample t-test for

the difference of the population means




One-sample t-test for the population mean

Theorem: )

If X4, Xy, ., X, ~ N(u,02) are independent, then ;;\,_i ~N(0,1)

where

e X=3"r.X;/n is the sample mean of the random variables

« g=+Vo? is the standard deviation of the random variables

« N(0,1) is the standard normal distribution



One-sample t-test for the population mean

Theorem:
2
f X,, X, ..., X, ~ N(u,02) areindependent, then &= m ~ X2 _4

where

» s2=37 (X;—X)?/(n—1) s the sample variance of the random variables
* Xi_1 is Pearson’s y2-distribution

with n — 1 degrees of freedom



One-sample t-test for the population mean

Theorem — Corollary:

If X1,X5,..,X, ~ N(u,a%) areindependent, then —= / r ~ tp_1
where
s X=Y".X;/n is the sample mean of the random variables

¢ §= JE L (X;—X)2/(n—1) s the sample standard deviation of the random
variables

* £, 1 Is Student’s t-distribution
with n — 1 degrees of freedom



Theorem — Corollary — Proof:

If X1,X5,..,X, ~ N(u,0?%) areindependent, then

X—u _ X—,uxg _ X—,ux\/n—ld/s _ o/\n ~ t,
s/Nfm  o/fn s o/¥n  Jn-1 (n— 1)s2 ~
2
\ ng—l

by the definition of Student’s ~distribution

Z
~tyq if Z~N(0,1) and X7, ~ x3_,

(having used the preceding two Theorems before).



One-sample t-test for the population mean

Theorem — CorollanL
If X,,X,,..., X, ~ N(u,0%) are independent, then ~ tp_q

Example or motivation:
Assume that X ~ ¥ (u, ¢%) is a random variable following the normal probability

distribution with some mean p € R and with some variance ¢% € Ry.
Knowing neither the variance ¢ nor the true value of the population mean u € R,
we conjecture / we assume / we ... / that the populationmean u = y,, i.e.

the (unknown) population mean g is equal to some prescribed value y; € R.



One-sample t-test for the population mean

Example: An archer shoots an arrow against the plane.

The sample space Q =R? ={[x,y]: x,¥ € R} is the set of all the points of

the plane. The random variable X is the x-coordinate of the hit, i.e.

7

Y

X(w) =X([x,yD) == \&

We do not know the archer’s variance ¢ and we do not know the archer’s
intention, I.e. we do not know the point which the archer intends to hit,
I.e. we do not know the archer’s mean .

We conjecture that the archer’s intention is to hit the origin, l.e. g = 0.



One-sample t-test for the population mean

Let x, = X(wy), x; = X(w,), ..., x, = X(w,) be the numerical results

of n trials of a random experiment, where X ~ N(u, 62),

such as the x-coordinates of the archer's n hits.
We do not know the variance ¢? and we do not know the mean u.

We state the null hypothesis (about the mean):
Ho: p=p
where u, € R is some number such that we conjecture

that the true mean could equal the p;.



One-sample t-test for the population mean 5&%

The meaning of the null hypothesis (such as H;: u = y, in our example) is that
* the observed distinct values are caused by the randomness only

(according to the assumed distribution, such as X ~ N (i, 62%) in our example)
* there are no other factors causing the distinct values
« everything is all right, no need to reconfigure anything
« all factors under the consideration are equivalent (have the same effect)



One-sample t-test for the population mean

Having stated the null hypothesis

Hy: u=yq

we also state the alternative hypothesis:
 two-sided: Hi: pu#yy
* one-sided: Hi: u<ypyg

« onhe-sided: Hi: u>yg



One-sample t-test for the population mean

Which alternative hypothesis (u # p, or u < gy or u> u,) do we choose?
— That depends upon our knowledge of the situation.

In our example:

 |If we suspect that the archer’s intention is fo hit a point different
from the given point (such as the origin), we choose H,: u # u,.

+ |f we conjecture that the archer’s intention is to hit a point to the left
of the given point {such as the ongin), we choose H;: u < u,.

» |f we conjecture that the archer’s intention is fo hit a point to the right

of the given point {(such as the origin), we choose Hj: y > y,.



One-sample t-test for the population mean

Under our assumptions (x4, ..., X, ~ N(u,02) are independent and u = y,),
it follows by the Theorem that
X—p X—l
s/Nn s/n

~ tﬂ;—l

Thus, having the n measurements x;,x,,...,x,, we calculate the statistic

X — Hp

YN

We know {(or assume) that T ~ ¢,,_;.



One-sample t-test for the population mean

_F#o
Wehave T = Y tn—1.
Then, if —oo < a < b < 400, the probabilitythat a <T <b is

b
P(a <T < b) =f £(x) dr

where

B ( x? )
f(x)_l"(nT_l)\/n(n—l) 1+—

is the density of Student’s {-distribution with n — 1 degrees of freedom.




The gamma function

+co
I'(z) = f xZe % dx for z € C suchthat Re(z) >0
0

It is easy to calculate:
rfiy)=1
I'(z+ 1) = zl'(2)

Therefore:
T'n+1) =n! for n=0,12,3,..



The gamma function — another definition (due to Euler)

N
[(z) = EH(HH) for zeC\{0,—1,—2,—3,..}



One-sample t-test for the population mean

Consider the first case (H;: u # o) first. We have:
Hy: p=ue
Hy: p#u

Knowing that T =

~ ta—1, the probability
P(—c < T < +c)

N_

is quite high,
so having —c < T < +¢ accords with H,, if ¢ > 0 is large enough.



One-sample t-test for the population mean

On the other hand, if Hy is true, then it is quite improbable that T & (—c¢, +c¢).

Therefore, if we observe that
T<-—c or +c<T

then we may conclude that H, Is probably not true,
I.e. we reject the null hypothesis H,.

Therefore, the statistical test proceeds as follows:
(see below)



One-sample t-test for the population mean

Statistical one-sample {-test with two-sided alternative hypothesis (1 # 1y ):
* choose the level of significance, a small number a > 0, avery

popular value is « = 5 %, other popular values are 10 % or 1 % or 0.1 % etc.

* find the critical value ¢ > 0 so that

—C +o0

fdx+ ] f(xX)dx=a

-0 +c
where f is the density of the -disfribution with n — 1 degrees of freedom
e if T € (—o0,—c]U[+c,+0), the critical region, then relect the null hypothesis
« if T € (—c,+c), then do not reject (or fail to reject) the null hypothesis



Type | and Type Il error

There are exactly four possibilities when testing the null hypothesis H,:

the null hypothesis (H,) is actuallytrue & we do nofrejectit — OK

 the null hypothesis (Hg) is actually true & we reject it —type | error
« the null hypothesis (H,) is actually not true & we do not rejectit — type Il error
« the null hypothesis (Hy) is actually not true & we reject it — OK

The purpose is that the probability of the type | error and that of the type Il error
Is as little as possible.



Type | and Type Il error

Whatis the probability of type | error
(the null hypothesis (H,) is actually true & we reject it)?

The probability is equal to the significance level a, usually a = 5 %.

Recall: The null hypothesis Hj is rejected if and only if
T € (—oo0,—¢] U [+¢,+0), l.e.ifandonlyif |T| = c.
The critical value ¢ is such that — if Hy holds true —then P(|T| = ¢) = a,

i.e. the probability of the type | error (rejecting Hy whenitis true) is «a.



Type | and Type Il error

What is the probability of type Il error
(the null hypothesis (H,) is actually false & we fail to reject it)?

The probability of type |l error is denoted by 8.

The power of the test is the probability 1-8

It is much more difficult o calculate the probability 8 of type Il error.

It must be calculated for each test separately.



Type | and Type |l error

To calculate the probability 8 of type Il error, consider that the null hypothesis
H, is nottrue (u + i) and we fail to reject it (|T| = \“" 0

< C).

H
(so—1) o

X—it  x—pot(io—pt .
By the Theorem then, we have Yy th—1-

Then the probability of the type Il error (H, not true & fail to reject it) is:

X — Ho B x—p+ (o—w _
P(—c<s/ﬁ<+c)—P(—c< S/ <+c)—

_f(H—H E—p_p—i B
_P(sNﬁ C<SN'E<SNE+C)_
J’ (e—p0}/ (3 / '\/?_1) +C

f(x) dx
(u—no)/(s/VR)—c




Type | and Type Il error

Notice that, if the true u is close fo the hypothesized u, (1 = y;), then "/_4“_" = 0,

hence
(u—po)/(s/n}+c ¢
ﬁ=f fdx=|] fx)dx=1—a=95%
(u—po)/(s/Vm)—c -c

if @ =>5 %, say.
It is recommended that 8 should be =20 %.

Therefore, ifwe wishto have 8= 20% or £ < 20 %,
then we must not consider the true u close to the hypothesized u,



Type | and Type Il error: Summary

There are exactly four possibilities when testing the null hypothesis H,:

the null hypothesis (Hy) is actually true & we donotrejectit — OK

the null hypothesis (H,) is actuallytrue & we reject it — type | error

the null hypothesis (H) is actually not true & we do notrejectit —type Il error

the null hypothesis (H;) is actually not frue & we reject it —OK

The probability of the type | error is the significance level g
The probability of the type |l erroris 8

The power of the test is the probability 1-p



One-sample t-test for the population mean

Consider now the second case (H;: u < ip). We have:
Ho: p=yp
Hy: g <l

Knowing that T =

/ r ~ t,—1 and assuming that ¢ > 0 is large enough,

what is the probabilitythat —c < T ?
If Hy is true, then it is quite improbable that T & (—c, +<0).

Therefore, if we observe that T < —c, then we may conclude that
H, is probably not true, i.e. we reject the null hypothesis H,.



One-sample t-test for the population mean

Statistical one-sample ftest with one-sided alternative hypothesis (1 < p,):
« choose the level of significance, a small number a > 0, suchas a =5%,

other popular valuesare a =10% or a=1% or a = 0.1 % sefc.

* find the critical value ¢ > 0 so that

_cf (x)dx =«

where f is the density of the {-distribution with n — 1 degrees of freedom
« if T €(—o0,—c], the critical region, then reject the null hypothesis
* if T € (—¢,+), then do not reject (or fail to reject) the null hypothesis



One-sample t-test for the population mean

Consider finally the third case (H;: u > ). We have:
Ho: p=yp
Hy: @ > o

Knowing that T =

/ r ~ t,—1 and assuming that ¢ > 0 is large enough,

what is the probabilitythat T < +c¢ ?
If Hy is true, then it is quite improbable that T & (—, +¢).

Therefore, if we observe that +c < T, then we may conclude that
H, is probably not true, i.e. we reject the null hypothesis H,.



One-sample t-test for the population mean

Statistical one-sample {-test with one-sided alternative hypothesis (i > p,):
« choose the level of significance, a small number a > 0, suchas a =5 %,

other popular valuesare a=10% or a=1% or a = 0.1 % efc.
* find the critical value ¢ > 0 so that

+ o

fdx=a
+c

where f Is the density of the tdistribution with n — 1 degrees of freedom
« if T €[+c, +0), the critical region, then reject the null hypothesis
o if T € (—0,+c), then do not reject (or fail to reject) the null hypothesis



Paired-sample t-test for the difference of the pop.means

Example or motivation:
Let us have a sample of n objects, 8.g. n patients.

We do two measurements with each of the objects (patients)
— before some freatment

— after the treatment
The purpose if to learn whether the treatment has any effect.
(Hence the null hypothesis: "The treatment has no effect.”)
Let x.,x5,...,x, bethe values measured before the tfreatment, and

let ¥, ¥, ..,¥, be the values measured after the freatment.



Paired-sample t-test for the difference of the pop.means

That is, the measurement x; and y; is done with the i-th object (patient)
before and after the treatmentfor i = 1,2, ...,n.

Woe assume that X ~ V' (uPefre, 62), i.e. the random variable of the measurement

before the treatment follows the normal distribution, and that Y ~ & (p2fer, 62),
i.e. the random variable of the measurement after the treatment also follows the
normal distribution, for some pPefore ,after ¢ R and for some oZ,02 € Ry.

We do not know the true values of the population means pP¢fore and pafter and

we do not know the true values of the variances o and of.



Paired-sample t-test for the difference of the pop.means

Woe formulate the null hypothesis:

the treatment has no effect, i.e. the population means are the same

H,: #before — #aﬂ:er

Recall that we do not know the true population means pbefore and pafter. We
only test the hypothesis by having done a sample of n pairs of measurements.
Formulate the alternative hypothesis:

« two-sided: H,: pbefore o ,afer (the freatment has some effect)
« one-sided: Hy: pbefore  jafter (the treatment increases/ ...

* one-sided: Hy: pbefore . yafter ... | decreases the quantity)



Paired-sample t-test for the difference of the pop.means

Recall the theorem:
If Xq,X5, ., Xn ~ N(u,a%) are independent, then ~ tp_q

Notice also:
If X;,X5,..., X, ~ N(ubefore, 62) and 1, ¥,..., Y, ~ N(u?T,62) are independent,

then the differences

Xi =Yy, Xo— Yo, e, Xp— Yy ~ N (pbefore — yafter 52 4 52)

Now, the hypothesis pPefore = yafter jg equivalent to that

the mean of the difference X —Y is u =y, = 0.



Paired-sample t-test for the difference of the pop.means

We have thus
reduced

the paired-sample t-test for the difference of the population means

to

the one-sample t-test for the population mean,

which we already know.



Paired-sample t-test for the difference of the pop.means

Having the n pairs of the measurements xj,x5, ...,X, and y4,¥s, ..., ¥, calculate
the statistic

T = X—y or T=f—y—ﬂn
V2 [ V2 [
where
« ¥ = (=, x))/n isthe sample mean of the measurements before the treatment
« ¥=0Q%,y)/n Isthe sample mean of the measurements after the treatment
* up=0 for no difference of the means (ubefore — jafter)
* o = const. for a general difference of the means (uPefore = yafter 4 eopst)

o s2=0QL,(x;i—yi—X+7)%)/(n—1) isthe sample variance of the differences



Paired-sample t-test for the difference of the pop.means

In the first case (H,: uPbefore x ,3fter)  we have:
Hy: #bed’ore — paﬁ:er

Hl: #before == uaﬂ:er

Knowing that
r=2"9 _.
VsZ/ym
we fail to reject H, iff
—c<T <+c

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(—c < T < +c) = 1 — a where the probability a of type | error is small.



Paired-sample t-test for the difference of the pop.means

Statistical paired-sample i-test for the difference of the population means
with two-sided altemative hypothesis (pPefore = yaftery.

« choose the level of significance, a small number a > 0, suchas a=5%

* find the critical value ¢ > 0 so that

—C +00

f(dx+| fxXdx=«a

-0 +c
where f Is the density of the {-distribution with n — 1 degrees of freedom
e if T € (—o0,—clV[+c,+0), the critical region, then reject the null hypothesis
« if T € (—c,+c), then do not reject (or fail to reject) the null hypothesis



Paired-sample t-test for the difference of the pop.means

In the second case (H,: uPefore « 43fter) we have:
Hy: #bed’ore — paﬁ:er

Hl: #before < #aﬂ:er

Knowing that
r=2"9 _.
VsZ/m
we fail to reject H, iff
—c<T

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(—c < T) = 1 - a where the probability a of type | error is small.



Paired-sample t-test for the difference of the pop.means

Statistical paired-sample i-test for the difference of the population means
with one-sided alternative hypothesis (uPefore « yafter:

» choose the level of significance, a small number a > 0, suchas a=5%

* find the critical value ¢ > 0 so that

L:f(x) dx =«

where f is the density of the f-distribution with n — 1 degrees of freedom
« if T € (—o0,—c], the critical region, then reject the null hypothesis

« if T € (—c, +), then do not reject (or fail to reject) the null hypothesis



Paired-sample t-test for the difference of the pop.means

In the third case (H,: ubefore > jaftery e have:
Hy: #bed’ore — paﬁ:er

Hl: #before > #aﬂ:er

Knowing that
r=2"9 _.
VsZ/m
we fail to reject H, iff
T < +4c

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(T < +c¢) = 1 — a where the probability a of type | error is small.



Paired-sample t-test for the difference of the pop.means

Statistical paired-sample i-test for the difference of the population means
with one-sided altemative hypothesis (gubefore > yafter)

« choose the level of significance, a small number a > 0, suchas a=5%

* find the critical value ¢ > 0 so that

+o0
fXdx=a

+C

where f Is the density of the {-distribution with n — 1 degrees of freedom
« if T €[+c¢, +), the critical region, then reject the null hypothesis
e if T € (—00,+c), then do not reject (or fail to reject) the null hypothesis



Two-sample t-test for the diff. of the pop. means // o,=0,

Motivation:
We have two unknown random variables X and Y. We ask (fest the hypothesis)

whether the population means of both random variables are the same.

We assume that both random variables are normal, i.e. X ~ ¥ (uy,0#) and
Y ~ N(uy,of), for some puy,py € R and for some o%,0f € RY.

Although we do not know the means py, uy nor the variances a2, 67,

we assume that

EEn AR N [ N B 2 — 2
i ofg=o¢ WM



Two-sample t-test for the diff. of the pop. means // o,=0,

Having the m samples x4,x5,.., %, Ofthe random variable X ~ N (uy,0%) and
having the n samples y,,¥,,...,¥, o©of the random variable Y ~ N (uy, 64),
we formulate the null hypothesis:
both samples come from the same population:
the values of the population means are the same
Ho: px = py
Recall that we do not know the true population means uy and uy. We only
test the hypothesils by the means of two samples of m and n measurements

with the same variance.



Two-sample t-test for the diff. of the pop. means // o,=0,

Having the m samples x,,x5,..,%, Of the random variable X ~ N (uy, 0%),

the n samples y4,v-,..,¥, ©Ofthe random variable Y ~ ¥(uy, %), and

Ho: px =py
formulate the alternative hypothesis:

« two-sided: Hi: ux+puy (the means are different)
* one-sided: Hi: py <y (the first mean < the second mean)

* one-sided: Hy: ux> iy (the first mean > the second mean)



Two-sample t-test for the diff. of the pop. means // o,=0,

By the Theorem:
If X1,X5, i, X ~ N (g, 62) and 1, Y, .., Y, ~ N(uy,0%) are independent, then

i/_ j:_f ~N(0,1) and 1;/_ J’:_:' ~ N(0,1)
equivalently
_ o? _ a?
X~N (,ux, E) and Y~N (uy, ?)
Therefore:

X -

=~
2
-
e
I
&
Q
[
+
Q
a
~——



Two-sample t-test for the diff. of the pop. means // o,=0,

Wae have shown:
If X1,X5, i, X ~ N (g, 62) and 1, Y, .., Y, ~ N(uy,0%) are independent, then

_ - e
X—Y”N(ﬂx—ﬂm —+ n)

equivalently

(f—)_’)—(ﬂx—ﬂr)

~ N(0,1)
JL+L
g m n




Two-sample t-test for the diff. of the pop. means // o,=0,

The above Theorem says:
If X1,X5, i, X ~ N (g, 62) and 1, Y, .., Y, ~ N(uy,0%) are independent, then

(n— 1)s3
0-2

(m — 1)s%
a-Z

2

~ Am-1 and -

~ Xn—1

Therefore:
(m—1)sg + (n— 1)s¢
o2 ~

2
Am+n—2




Two-sample t-test for the diff. of the pop. means // o,=0,

Recall also that, if

7= (X -Y)— (ug — py) ~ N(0,1)
N
m'n
and
(m—Dsg+(—-1s§
Y = o2 ~ Am+n-2
then
T = ‘ ~ tm
Y +n—2
m+n—2

by the definition of Student’s £distribution.



Two-sample t-test for the diff. of the pop. means // o,=0,

Therefore:

(& — V) — Qg — py)

Y _V l+l
X —-Y)—(ux — uy) . ofNm™n .
- ~ +n—2
(m = )si + (" 1)s J +1 J(m— 1)S§_2 (n—1)s¢ "

m+n-— m n o _

m+n—2

where
m V2 n T2
2 i=1(Xi _X) 2 _ zj=1(1’i -Y)
S S and sf= —

are the sample variances.



Two-sample t-test for the diff. of the pop. means // o,=0,

Having the m measurements xy,x5,...,X; and n measurements yq, ¥2, ., ¥,

recall that
e X=2",x;/m is the sample mean of the first sample
* ¥ =2Xim1yi/n is the sample mean of the second sample

o sZ2=3".(x;—%)%/(m—1) isthe sample variance of the first sample
o s2=3" (y;— 37)2/ (n—1) isthe sample variance of the second sample

*m is the size of the first sample
*n Is the size of the second sample



Two-sample t-test for the diff. of the pop. means // o,=0,

Having the m measurements x;,x5,...,X; and n measurements yq, ¥2, ., ¥,

calculate the statistic

xX—y

T —
‘(’m — 1)sz + (n—1)s7 ’ 1,1

m+n—2

for no difference of the means (ux = uy)

We know {or assume)that T ~ t,,.,,—>



Two-sample t-test for the diff. of the pop. means // o,=0,

Or, having the m measurements x,,xs, .., X, and n measurements vq, ¥z, ..., ¥n.

calculate the statistic

=Y~k
(m—1)sz + (n— 1)s; , 1.1
\ m+n-—2 m n

for a general difference of the means (uy = uy + 1p)

We know (or assume) that T ~ t4n—



Two-sample t-test for the diff. of the pop. means // o,=0,

In the first case (H;: iy # py), we have:

Hy: ux =y
Hy: px # iy
Knowing that
T'~tpin—2
we fail fo reject H, iff
—c<T < +c

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(—c < T < +c) = 1 — a where the probability a of type | error is small.



Two-sample t-test for the diff. of the pop. means // o,=0,

Statistical two-sample t-test for the difference of the population means
with two-sided alternative hypothesis (ix # py) and with the same variances:

» choose the level of signlificance, a small number a > 0, suchas a=5%
+ find the critical value ¢ > 0 so that

—C +o0

fx)dx+ fFXdx=a

—0 tc
where f Is the density of the {distributionwith m +n — 2 degrees of freedom
¢ if T € (—00,—c]U][+c,+0), the critical region, then reject the null hypothesis
o if T €(—c,+c), then do not reject (or fail io reject) the null hypothesis



Two-sample t-test for the diff. of the pop. means // o,=0,

In the second case (H;: uy < ity), we have:

Ho: px =py
Hy: px < py
Knowing that
I~ tpin—2
we fail fo reject H, iff
—c<T

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(—c < T) = 1 - a where the probability a of type | error is small.



Two-sample t-test for the diff. of the pop. means // o,=0,

Statistical two-sample t-test for the difference of the population means
with one-sided alternative hypothesis (uy < uy) and with the same variances :

» choose the level of significance, a small number a > 0, suchas a=5%
* find the critical value c¢ > 0 so that

_cf (x)dx =«

where f is the density of the {-distribution with m +n — 2 degrees of freedom
« if T €(—o0,—c], the critical region, then reject the null hypothesis
* if T € (—¢,+), then do not reject (or fail to reject) the null hypothesis



Two-sample t-test for the diff. of the pop. means // o,=0,

In the third case (H;: iy > uy), we have:

Ho: px=py
Hy: px > py
Knowing that
I'~tpin-—2
we fail fo reject H, iff
T < +c¢

where the critical value ¢ > 0, under the assumption that H, is frue, is such that
P(T < +c¢) = 1 — a where the probability a of type | error is small.



Two-sample t-test for the diff. of the pop. means // o,=0,

Statistical two-sample t-test for the difference of the population means
with one-sided alternative hypothesis (uy > iy ):

» choose the level of signlificance, a small number a > 0, suchas a=5%
+ find the critical value ¢ > 0 so that

+ o

fdx=a
+c

where f Is the density of the {distributionwith m +n — 2 degrees of freedom
« if T €[+c, +0), the critical region, then reject the null hypothesis
o if T € (—0,+c), then do not reject (or fail to reject) the null hypothesis



Two-sample t-test for the diff. of the pop. means // o,#0,

Consider two normal random variables X ~ N {(uy,02) and Y ~ X (uy, 6%),

for some uy,uy € R and for some o#,07 € R].

Woe ask (test the hypothesis) whether the population means of both random

variables are the same.

Once df = of is not assumed, the things get complicated.

We have an approximate result only.



Theorem (Satterthwaite’s approximation):

If the random variables X;,X5, ...,Xm ~ N(ux,08) and Y1, %, ..., Y, ~ N(uy, 0%)
are independent, then the statistic

=(f—17)—(ﬂx—#r)~

T ty approximately
sz s
J =X X
m n
where
2
53, st
m' ' n
V= 3 Z

) ST
méim—1)  n¢(n—1)




Two-sample t-test for the diff. of the pop. means // o,#0,

Exercise:

Use the last Theorem (Satterthwaite’s approximation) to formulate
a statistical two-sample t-test for the difference of the population means
with two-sided / one-sided alternative hypothesis

(not assuming the same variance).



Two sample F-test
for the equality
of variances




Motivation

We have two unknown random variables X and Y. We ask (test the hypothesis)

whether the population variances of both random variables are the same.

We assume that both random variables are normal, i.e. X ~ N (uy,62) and

Y ~ N'(uy, o2), for some uy,py € R and for some o%,0% € Ry.

Woe ask (test the hypothesis) whether
i, of=of ?



Two sample F-test for the equality of variances

Having the m samples x4,%5,..,%, Ofthe random variable X ~ N(ux,0#) and

having the n samples y;,¥s,..,¥, Of the random variable Y ~ ¥ (uy, o),
we formulate the null hypothesis:
both samples come from populations with the same variances:

Hy: of =of

Recall that we do not know the true population variances o7 and ¢Z.

We only test the hypothesis by the means of the two samples
of m and n independent measurements.



Two sample F-test for the equality of variances

The meaning of the null hypothesis (such as Hy: o = o# in our example)
is that

* the observed distinct values are caused by the randomness only

(according to the assumed distribution, such as

X ~N({o?) and Y ~ N(y,02), where 02 = g2 = o2, in our example)
« there are no other factors causing the distinct values
+ everything is all right, no need to reconfigure anything
 all factors under the consideration are equivalent {(have the same effect)



Two sample F-test for the equality of variances

Having stated the null hypothesis

we also state the alternative hypothesis:
* two-sided: Hi: of # of
* one-sided: Hi: of <of

+ one-sided: H: of > of



Theorem

If the random variables X;,X5, v, Xm ~ N(ux, 0f) and Y1, Ys,.., Y, ~ N (uy,0¢)
are independent and

6% = of
then
5%
Sf— m—-1n—1
where

Fpn-1n-1 is Fisher's F-distribution with m —1 and n —1 degrees of freedom
sg =2 (X;—X)2/(m—1) isthe sample variance of the first sample

s§ =21, (Y - I_’)z [(n—1) is the sample variance of the second sample



Two-sample F-test for the equality of variances

Having the m measurements xq,x5,..,X; and n measurements y4, ¥2, ., ¥n,

calculate the statistic

S%

F = g
where
o sZ2=3" (x;—%x)%/(m—1) isthe sample variance of the first sample

o si=Y7q(y- 7)°/(n—1) s the sample variance of the second sample

« x=)0 x;/m is the sample mean of the first sample

¢ ¥=Xia1yj/n is the sample mean of the second sample

* mand n is the size of the first and second, respectively, sample



Two-sample F-test for the equality of variances

In the first case (H;: 6% + ¢%), we have:

Knowing that
S%
F=—=~Fnp1n1
Sy
we fail to reject H, iff
c<F<d

where the critical value d > ¢ > 0, under the assumption that H; is true, are such
that P(c < F < d) = 1— a where the probability a of type | error is small.



Two-sample F-test for the equality of variances

Statistical iwo-sample F-test for the equality of the population variances
with two-sided alternative hypothesis (67 # o#):

« choose the level of significance, a small number a > 0, suchas a=5%
« find the critical values 0 < ¢ < d so that

c o +co o
f f@dx=2  and fl)dx =2
0 2 d 2
where f is the density of the Fdistributionwith m—1 and n—1 d.f.
 if F€[0,c]Vld, +x), the critical region, then reject the null hypothesis

« if F€(c,d), then do not reject (or fail to reject) the null hypothesis




Two-sample F-test for the equality of variances

In the second case (H,: ¢ < o%), we have:

Hy: of =of

Hy: of <of

Knowing that
S¥
=" F m—1,n—-1
Sy
we fail fo reject H, iff
c<F

where the critical value ¢ > 0, under the assumption that H, is true, Is such that
P(c < F < +) = 1 — a where the probability a of type | error is small.



Two-sample F-test for the equality of variances

Statistical two-sample F-test for the equality of the population variances
with one-sided alternative hypothesis (6% < o#):

« choose the level of significance, a small number a > 0, suchas a=5%
 find the critical value ¢ > 0 so that

J:f(x) dx=a«a

where f is the density of the F-distributionwith m -1 and n—1 d.f.
« if Fe[0,c], the critical region, then reject the null hypothesis
* if F € (c,+9), then do not reject (or fail to reject) the null hypothesis



Two-sample F-test for the equality of variances

In the third case (H,: o > o%), we have:

Knowing that
Sx
F= ™ F m—1,n—-1
Sy
we fail fo reject H, iff
F<d

where the critical value d > 0, under the assumption that H, is true, is such that
P(0 < F < d) = 1— a where the probability a of type | error is small.



Two-sample F-test for the equality of variances

Statistical two-sample F-test for the difference of the population variances
with one-sided alternative hypothesis (62 > o#):

« choose the level of significance, a small number a > 0, suchas a=5%
* find the critical value d > 0 so that

+co

fxX)dx=a
d

where f is the density of the Fdistributionwith m—1 and n—1 d.f.
* if F €[d,+), the critical region, then reject the null hypothesis
« if Z€[0,d), then do not reject (or fail to reject) the null hypothesis



NON-
PARAMETRIC
TESTS

* Sign test for the median
« Pearson’s x?-test for the goodness of fit
 y2-test of independence of qualitative

data items




Sign test
for the median

* Sign test for the median
 Paired sign test for

the difference of the medians




Sign test for the median

Motivation:
Let X be a random variable (of any distribution), but assume that

its cumulative distribution function F is continuous.
Recall that the median ¥ of the random variable X is the value such that

P(X<5c")=%=P(:“E<X)

We conjecture / we assume / we speculate / we ... / that the mean ¥ of the
random variable X is equal to some given value X, € R.

We thus formulate the null hypothesis: H,: X=%,



Sign test for the median

The sign test proceeds as follows:
» Letus have n samples x4,x5,..,x, Of the random variable X,

whose cumulative distribution function F is continuous.
« Considering the null hypothesis (H,: ¥ = %,) about the median,
calculate the n differences
X1 —Xo, Xo—Xqg, .., Xpn—Xg
* Drop any zero differences (i.e., if x; — X%, = 0, then drop x; from the sample).
 We have a sample of m non-zero differences

Xj

=%y X, —Xg, ., X, — %



Sign test for the median

o Lot

Z=|{i:x,-% <0}|

be the number of the negative differences.

Theorem:

Under the null hypothesis (H,: ¥ = ¥;) that the median ¥ of the random variable
X is%

Z ~ Bi(m, 1)

i.e. the random variable Z follows the binomial probability distribution.



Sign test for the median

Remark: We actually test the hypothesis that the probability
1

(We have P(X < Xo) = P(X < %;) because we assume that the cumulative

distribution function F is continuous af %,.)

Therefore, we could test in the same manner the null hypothesis that
%o isthefirstquartile (P(X < Xy) =P(X < X%,) = i, whence Z ~ Bi (m, %)), or that

%o isthe third decile (P(X < X%3) =P(X < %3) = %, whence Z ~ Bi (m, %)) etc.



Sign test for the median

Having stated the null hypothesis about the median

Hy: X=X, or Hy PX<X)=pp= %
we also state the alternative hypothesis:
« two-sided: H: X+#ZX, or Hi: P(X <X #po
» one-sided: H: X>%  or Hi: PX<%))<po
* one-sided: Hi: <X, or Hi: PX<Z;)>p

The test then proceeds as the binomial test (or z-test approximately) for the



Sign (binomial) test for the median 5&%

Consider the first case (H;: ¥ + %,) first. We have: Hy: PX<X%3)=po=1/2
Hl: P(X <fﬂ) + Po

« choose the level of significance, a small number a« >0, suchas a =5%
« find the critical values K,L € {0,1,...,m} so that
K is the largest number and L is the least number such that

D i N TR Y (4T D Y (g

» if Z€{0,..,K}U{L,..,n}, the critical region, then reject the nuII hypothems
« if Ze{K +1,...,L — 1}, then do not reject (or fail to reject) the null hypothesis



Sign (binomial) test for the median 5&%

Consider now the second case (Hy: ¥ > %y). Wehave: Hy: PX < %)) =pp=1/2
H-]_: P(X <fﬂ) < Po

» choose the level of significance, a small number « > 0, suchas a=5%

« find the critical value X € {0,1,...,m} so that K is the largest number such that

S (a3 (ks

» if Z€{0,..,K}, the critlcal reglon, then relect the null hypothesis
« if Ze{K+1,..,m}, then do nhot reject (or fail to reject) the null hypothesis



Sign (binomial) test for the median 5&%

Consider finally the third case (H;: ¥ < %y). Wehave: Hy PX < %) =p,=1/2
H-]_: P(X <fﬂ) > Do

choose the level of significance, a small number a« >0, suchas a=5%

find the critical value L € {0, 1, ...,m} so that L is the least number such that

S M- 3 ()

e if Z€{l,..,m}, the crifical region, then reject the null hypothesis

if Z €{0,..,L—1}, then do not reject (or fail to reject) the null hypothesis



Sign (z-) test for the median

It is inconvenient to calculate the sums XX_,(7) zim and ¥, (%) zim

if m is large. It is more convenient then to approximate the sums by using
the de Moivre-Laplace Central Limit Theorem (for p = ¢ = 1/2):

It holds, whenever —o < g < b < 400, that

k—Am(m) gm _ It

Jm

—rf —e Zdt as m — oo

p——_

¢(b)-¢(a)

where A, =[(m+aym)/2] =0 and B, =|(m+ bym)/2| < m if m = max(a? b?).
Moreover, the convergence is uniform with respect to a and 5.



Sign (z-) test for the median

De Moivre-Laplace Cenftral Limit Theorem (reformulated):
If X ~Bi(m,1/2), whenever —oco < a < b < +0o0, itthen holds

2X—m
P(a< ) f—e 2 dt as m-— ow

T opo@

and the convergence is uniform with respect to ¢ and b.



Sign (z-) test for the median 5&%

Consider the first case (H;: ¥ # X,) first. We have: Hy: PX<X)=py=1/2
H'l: P(X "-':fu) * Yo

» choose the level of significance, a small number a > 0, suchas a =5%
 find ¢ > 0 sothat

¢ 1 _& a oo t> a
—e 2dt == and —— e 2dft =—
f—m Vvarm 2 +C 2T 2

e if Z<(m—cym)/2 or (m+ cym)/2 < Z, the critical region, then reject
the null hypothesis

o if (Im—ecym)/2 <Z < (m+cym)/2, then do not reject (or fail to reject)
the null hypothesis



Sign (z-) test for the median 5&%

Consider now the second case (Hy: ¥ > %,). Wehave: Hy: P(X < %)) =p,=1/2
Hl: P(X <fﬂ) < Po

choose the level of significance, a small number a« > 0, suchas a=5%
find ¢ > 0 sothat

! 1 t?..
f —e 2dt=«

—0 V2T
e if Z < (m—cym)/2, the critlcal reglon, then relect the null hypothesis

e if (m—cym)/2 < Z, then do not reject (or fail to reject) the null hypothesis



Sign (z-) test for the median 5&%

Consider finally the third case (H;: ¥ < %;). Wehave: Hy: P(X<Z%py)=po=1/2
H'l: P(X "-':fu) > Yo

choose the level of significance, a small number « > 0, suchas a =5%
find ¢ > 0 so that

+ 00 1 _f
—e 2dt=«a

+c Vom
e if (m+cym)/2 < Z, the critical region, then reject the null hypothesis

v if Z < (m+cym)/2, then do not reject (or fail to reject) the null hypothesis



Sign test for the median

Remarks:
« By using another probability (such as p, = 0.25, pq = 0.3, etc.) we can test

the null hypothesis that X, is, e.g., the first quartile, the third decile, etc.

* [If we know that the distribution of X is symmetric (F(x) = 1 — F(—x)), then the
mean px = E[X] and the median % of the random variable X coincide (% = y).
Then the sign test for the median can also be used as another test for the mean

(Ho: 1t =X%).



Sign test for the median

Remarks:
* More generally, if we know that the mean u = E[X] is the py-quantile

(0 < pg < 1) of the distribution of the random variable X with a continuous
cumulative distribution function, then the sign test can also be used as another test

for the mean (Hy: p =%, with Z = |[{i: x5, < % }| ~ Bi(m, po)).

» Exercise: Apply the procedure of the sign test to determine the confidence
Interval for the median, i.e. the interval of values %, such that the null hypothesis
is not rejected for them.



Paired sign test for the difference of the medians

Motivation:
Let us have a sample of n objects, 8.g. n patients.

We do two measurements with each of the objects (patients)
— before some freatment
— after the treatment
The purpose if to learn whether the treatment has any effect.
(Hence the null hypothesis: "The treatment has no effect.”)
Let x., x5, ..., X, De the values measured before the tfreatment, and

let vy, 95, ..,V De the values measured afier the freatment.



Paired sign test for the difference of the medians

That is, the measurement x; and y; is done with the i-th object {(patient)

before and after the treatment for i = 1,2, ...,n.

FIRST, assume that only two outcomes are possible:

* x;<y; {improvement)

e x;>y;  (worsening)

Objects with x; = y; are dropped from the sample.

We then can fest the null hypothesis that the freatment has no effect, i.e.
Z =|{i:x; <y}l ~Bi(m, 3)

etc. (Finish the details of the test analogously as above as an exercise.)



Paired sign test for the difference of the medians

That is, the measurement x; and y; is done with the i-th object (patient)
before and after the treatmentfor i = 1,2,...,n.

SECOND, assume that x{,x5,..,x, and vy, v,, .., ¥, are the numerical outcomes
of the random variable X and Y, respectively, with a continuous cumulative

distribution function F; and Fy, respectively.

Theorem: The median X, of the difference X —Y of the random variables is

Fop=%—F



Paired sign test for the difference of the medians

Thus, we can test the null hypothesis that the median ¥ of the random variable X

(before the treatment) is the same as the median ¥ of the random variable Y
(after the treatment), i.e. their differenceis ¥; =% — % = 0.

(More generally, we can test that the difference ¥ — ¥ is equal to some prescribed
value %, € R.)

(Complete the details of the test analogously as above as an exercise.)



« Pearson’s x?-test for the goodness of fit

x2-test
for goodness of fit




Pearson’s y?-test for the goodness of fit

Let X be a random variable (discrete or continuous) and
let F be the cumulative distribution function of the random variable X.

We do not know the cumulative distribution function F.

We have the numerical results x; = X(w¢), x> = X(w3), ..., xy = X(wy)
of N trials of the comresponding random experiment.

Let F; be some cumulative distribution function. We conjecture / we assume /
we speculate / we ... / that F = F,, i.e. the random variable X follows the

probability distribution with the cumulative distribution function F = F,.



Pearson’s y?-test for the goodness of fit

More generally, let F, be a class of cumulative distribution functions (c.d.f.’s)

of a certain type, such as

* the collection of all ¢.d.f.’s of U(a,b) forvarious a,bER, a<b

* the collection of all c.d.f.'s of M(u,02) forvarious u € R and ¢% € R}
« the collection of all ¢c.d.f."s of Exp(A1) for various A € R*

* etc.

Having the numerical results x; = X(w4), x3 = X(w3), ..., xy = X(wy)

of N trials of a random experiment, we conjecture / we assume / we speculate /
we ... /that F € F,, i.e.the random variable X follows the probability distribution



Pearson’s y?-test for the goodness of fit

Having the numerical results x; = X(w¢), x; = X(w3), ..., x5 = X(wy)

of the N trials of the random experiment and having the class F, of the
cumulative distribution functions — first of all — find the cumulative distribution
function F, € F, that best fits the experimental data:

« if Fy ={F,}, then the c.df. F, is given; the number of parametersis v =0
« if F, isthe collectionof all c.df.'s of N(u a%), then put
p=% and o¢%=s?

(the sample mean and the sample variance); the number of parametersis v =2



Pearson’s y?-test for the goodness of fit

o if Fp isthe collection of all c.d.f.’s of Exp(1), then put

1 ’1
either A =-— or A= -
X 5

the number of parameters is v=1
(recall: if X ~ Exp(2), then E[X] =1/A and Var(X) = 1/1%)
» If F, isthe collection of all c.d.f’s of U(a,b), then consider the German

Tank Problem (see previous lectures); the number of parameters is v =2

* efc.



Pearson’s y?-test for the goodness of fit

Having the sample data x4, x5, ..., xy 0f the random variable X and

the cumulative distribution function F, € F, that best fits the sample.

Now — as the second step — choose n intervals

(to, ti]l (tll t2]: (tZ! tB]! anay (tn—m t'n—i]l (tn—ll tn]
with
<t < <lz< <ty 2 <ty 1<,
as well as
to < min{xy, ..., X5} and max{xy,.., Xy} < t,
so that

— there are at least 5 outcomes in each of the intervals




Pearson’s y?-test for the goodness of fit

Formulate the null hypothesis: The random variable X follows the probability

distribution with the cumulative distribution function F = F,:
HU: F —_ F[}

Next — as the third step — assume the null hypothesis H; and calculate the
theoretical probability that t;_, <X < ¢;, i.e.
p=P1<X=st)=

= Fo(t;) — Fo(t;—1) for i

1,2,..,n



Pearson’s y?-test for the goodness of fit

Since p; is the expected probability (under the null hypothesis H,) that

X € (t;_41,t;]] and we have a sample x4,%5,.., Xy Of N observations,
we should find about
Eg =NX Py

observations in the interval (t;—4,¢;] for i = 1,2,..,n.
Let
0= |{j:x€@-tl}
be the true number of the observations found in the interval (¢t;_,, £;]
fori=1,2..,n.



Pearson’s y?-test for the goodness of fit

Theorem: If the null hypothesis H,: F = F, is true, then the statistic

n
X? = Z ©: ;,iEi)z ~ x%_. .. approximately as N -
where =
 n isthe number of the intervals (t;_4, ;]
v isthe number of the parameters that have been determined when
finding the cumulative distribution function 7, (v =0,1,2,...)
* 0; isthe number of the results found (observed) in the i-th interval (£;_4, ;]

« E; isthe number of the results expected (if H, is true) in the interval (t;_4, t;]



Pearson’s y?-test for the goodness of fit

Now, finish Pearson’s y?-test for the goodness of fit (H,: F = F;) as follows:

choose the level of significance, a small number a > 0, suchas a =5 %,
other popular valuesare a=10% or a=1% or a = 0.1 % efc.
find the critical value ¢ > 0 so that

+o0
fdx=a

c

where f is the density of the y2-distribution with n — v — 1 degrees of freedom
if X% > c, the critical region, then reject the null hypothesis
if X% < ¢, then do not reject (or fail to reject) the null hypothesis



Example: Tests for population proportion

Tossing a coin repeatedly, we ask whether the coin is fair.

More generally, we consider a Bernoulli frial, with the probability of the success
being p € (0,1), and with the probability of the failure being ¢ =1 — p.
We do not know the true probability p.

Wae conjecture / We assume / We ... / that the probability p = p,, i.e.
the (unknown) probability p is equal to some prescribed value p, € (0, 1),

e.d., in the case of the coin, conjecture that p, = 50 % (meaning the coin is fair).



Example: Tests for population proportion

Wae now know three statistical tests to test the null hypothesis that p = py:

« the binomial fest for the population proportion
« the ztest for the population proportion
* Pearson’s y2-test for the goodness of fit

The binomial test is exact and the z-test is an approximation of it.
Both binomial test and z-test allow one-sided or two-sided alternative hypothesis.

Pearson’s x*-test for the goodness of fit allows two-sided altemative hypothesis
(Hy: F # Fy) only,



Example: Tests for population proportion

Pearson’s y2-test for the goodness of fit proceeds as follows:

 there are two intervals (1 = “success” and 0 = “failure”)

 having N observations of the random variable X, we expect (under the null
hypothesis that p = p,) that E; =NXp, and E; =N X (1 —py)

* let O, and O, be the observed number of successes and failures, respectively

* the statistic

(0, - E,)* + (0 —Eo)*

X2 =
E, Eq A1

approximately as N - o

(we have n=2 and v =0, therefore n—v—-1=1)



Pearson’s y?-test for the goodness of fit

Remark: In Pearson’s y2test for the goodness of fit, we have

2 2
X ~ ¥p—v—1

where
 n isthe number of the intervals (t;_,, ;]

v isthe number of the parameters that have been determined when
finding the cumulative distribution function £, (v =0,1,2,...)

Notice that one degree of freedom (“-17) must always be subtracted
because the observed counts 0,,0,,..,0, are bound by the equation
0,+0,++0,=N

therefore only n — 1 of the counts (such as 04, 05, ..., On—1, Say) are free,



x2-test
of independence
of qualitative

data items
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x2-test of independence of qualitative data items

Consider a dataset where each data unit has two qualitative data items

(i.e. two qualitative variables).
Let the qualitative variables under the consideration be denoted by A and B.
Let the variable A can attain up to r ("rows”) distinct categories

A, Ay ..., A
Let the variable B can attain up to s ("columns”) distinct categories
B, B, .., B,

The counts of the occurrences of all the r X s combinations of the categories

are easily summarized by a contingency table.



Contingency table

the observed counts of the combinations
of the categories A,&Bj fori=1,...,r&j=1,...,s

marginal totals

: N1 N2 - Mg
- n21 Uy, - Nog
‘ Ny Ny2 Nys

marginal totals

the grand total




2 2 contingency table

The 2 2 contingency table is popular.
It is a contingency table with =2 rows and s=2 columns.

the observed counts of the combinations
of the categories A&B, for i=1,2 & j=1,2

marginal totals

marginal totals

the grand total




x3-test of independence of qualitative data items

Having all the observed counts of the combinations of the categories A; & B,
summarized in the contingency table for /=1,...,r and for j=1,...,s,

we ask whether the category of the data item (variable) B depends upon

the category of the data item (variable) A, or whether the categories of both data

items (variables) A and B are independent of each other.

Assume therefore the null hypothesis H,:

the categories of both data items (variables) A and B are independent

of each other



x3-test of independence of qualitative data items

Having all the observed counts of the combinations of the categories A; & B,
summarized in the contingency table for i=1,...,r and for j=1,...,s, assume

the null hypothesis H, that the categories of both data items (variables) A and B

are independent of each other.

Now — if we choose a data unit randomly:

« What is the probability that the data item A of the chosen data unit is of
category A; for some i=1,...,r?

« What is the probability that the data item B of the chosen data unit is of

category B, for some j=1,...,5 7



x3-test of independence of qualitative data items

The total number of all data units is n.

The count of the data units of category A, is n;.

Therefore, the probability that a randomly selected data unit is of category A, is
n;.

P =—

The count of the data units of category B; is n.;
Thereifore, the probability that a randomly selecied data unit is of category B; Is

n.g
Pj="



x3-test of independence of qualitative data items

Recall that the probability that a randomly selected data unit is of category
A; and B, is

ng. n.;
= — and = —
Di n D.j n

respectively. If the null hypothesis H, (that the categories of A and B
are independent of each other) is true, then the {(cumulative) probability
that a randomly selected data unit is of category A, and B, should be

niNn.;
n2

Pij =P XDy =
fori=1,2,..,r andfor j=1,2,...,s.



x3-test of independence of qualitative data items

Once the probability that a randomly selected data unit is of category A, and B, is

n;.n.;
Pij =Di. XP.j= 2
then we should expect
ni.n X Tl..j
By=pyxn=—r

data units of category A; and B; for i = 1,2,..,r andfor j=1,2,..,s
if the null hypothesis H, (that the categories of A and B are independent
of each other) is true.



x3-test of independence of qualitative data items

Expecting

'ni.“_ X ﬂ..j
n

Eij=py Xn=
and observing
0;‘ j = n; j
data units of category A; and B; for i =1,2,..,r andfor j=1,2,..,s,
we apply Pearson’s x>test for the goodness of fit to see if the observed counts
agree with the expected counts, i.e. if the null hypothesis H, (that the categories

of A and B are independent of each other) is true.



x3-test of independence of qualitative data items

Calculate

T 5§

pey S GB) s foinynxn)

i=1 j=1 i=1 j=1

Theorem:
If the null hypothesis is true, then

X? ~ xto—1ys-1)  approximately as n-— o

Nofice the number of the degrees of freedom
(see below)



x3-test of independence of qualitative data items

The number of the degrees of freedom:

The observed counts 0;; for i =1,..,r andfor j=1,..,s

are bound by the system of r + s equations:
S S

Oij—ZnU—n; for i=1,2,..,r
=1 j_
r
ZOU—ZRU—RJ for j=1,2,...,3
i=1

of whichonly r+ s — 1 are linearly independent, i.e. one of the equations
depends on the others.



x3-test of independence of qualitative data items

The number of the degrees of freedom:

We thus have r X s observed counts 0;; for i =1,..,r andfor j=1,..,s

bound by r+ s — 1 linearly independent equations, i.e. only
rXs—r—s+1 = (r—-1)x(s—-1)

of the observed counts are free.

Therefore, the number of the degrees of freedom is

(r—1D(s—1)



x2-test of independence of qualitative data items

Now, finish the y*test of independence of qualitative data items

(H,. the categories of A and B are independent of each other) as follows:
« choose the level of significance, a small number a > 0, suchas a=5%

* find the critical value ¢ > 0 s0 that

+ 00

fx)dx=a

¢
where [ is the density of the y2-distribution with (r—1){(s—1) d.f.
« if X? = ¢, the critical region, then reject the null hypothesis
« if X? < ¢, then do not reject (or fail to reject) the null hypothesis




