Statistical Methods for Economists

Lecture 2 & 3

Hypothesis testing: Parametric and Non-parametric tests (in marketing and elsewhere)

David Bartl Statistical Methods for Economists INM/BASTE

Outline of the lecture

- About statistical hypothesis testing
- PARAMETRIC TESTS
- *t*-tests for the means
- Two sample *F*-test for the equality of variances
- NON-PARAMETRIC TESTS
- Sign test for the median
- Pearson's χ^2 -test for the goodness of fit
- χ^2 -test of independence of qualitative data items

About statistical hypothesis testing

The general outline

of a statistical hypothesis test

- The *p*-value of a test
- Parametric and Non-parametric tests

- A statistical test consists in the study of the outcomes of a random experiment.
- We put down a hypothesis about the probability distribution of the outcomes of the random experiment.
- We also make up a statistic S a formula, i.e. a mathematical expression and we prove (!) as a mathematical Theorem that, under our hypotheses, the statistic S follows a certain probability distribution.
- We carry out the random experiment several (or many) times.
- We put down the results of the experiment, i.e., count positive results, count the negative results, and so on.

- We substitute the results (the counts, and so on) into the mathematical expression-statistic S, which is a random variable thus (its value depends on the results of the random experiment).
- We then choose the significance level α a small probability such as $\alpha = 5 \% = 0.05$ (i.e. "one error per twenty trials").

(Other popular choices include $\alpha = 10 \% = 0.1$ or $\alpha = 1 \% = 0.01$.)

By using the mathematical Theorem, which we proved (see above),
 we find the critical region C ⊆ ℝ so that – if our hypotheses are true –
 then the probability of the event that S ∈ C is ≤ α.

- The critical region *C* is usually a closed interval or the union of two closed intervals.
- Finally, make a statistical conclusion:
- If $S \in C$, then **reject** the hypothesis.
- If the hypotheses are true, then it is quite improbable that *S* ∈ *C*; the probability is ≤ α. So we are making a mistake type I error,
 i.e. rejecting a hypothesis which is true about once per twenty trials, if α = 5 %.

- If $S \notin C$, then do not reject (or fail to reject) the hypothesis.
- The fact that we fail to reject the hypothesis is <u>not</u> a confirmation that the hypothesis is true!
- Since the statistic S is a random variable, it may happen by chance that $S \notin C$ even if the hypothesis is false.
- This situation failing to reject a false hypothesis is a type II error.
 The probability of type II error is β, and this probability is difficult to calculate...
 If α = 5 %, then the probability β should be ≤ 20 %. (Is it ≤ 20 %?)
 The probability 1 β is the **power of the test**.

The above outline of the test is as follows:

- Choose the significance level α (such as $\alpha = 5$ %).
- Depending upon the α , find the critical region $C_{\alpha} \subseteq \mathbb{R}$ so that if the hypothesis is true – then the probability that $(S \in C_{\alpha})$ is $\leq \alpha$.
- Carry out the experiment, enumerate the expression S, and see if $S \in C_{\alpha}$.

Another procedure:

- Carry out the experiment and enumerate the expression S.
- Find the least number $p \in (0, 1)$ such that $S \in C_p$.
- This value p is the *p***-value of the test**.

There are two large classes of statistical tests: parametric and non-parametric.

 The parametric tests make assumptions about the probability distributions of the random variables that are subject to the test. It is often assumed that the underlying distribution is normal (Gaussian).

• The **non-parametric** tests do not make such assumptions. The non-parametric tests can be used if the random variables are not normally distributed.

PARAMETRIC TESTS

- *t*-tests for the means
- Two sample *F*-test

for the equality of variances

t-tests for the means

One-sample *t*-test for

the population mean

• Paired-sample *t*-test for

the difference of the population means

• Two-sample *t*-test for

the difference of the population means

Theorem:

If
$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$$
 are independent, then $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$

where

X̄ = Σⁿ_{i=1}*X_i/n* is the sample mean of the random variables
 σ = √*σ*² is the standard deviation of the random variables
 (0,1) is the standard normal distribution

Theorem:

If
$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$$
 are independent, then $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$

where

• $s^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)$ is the sample variance of the random variables • χ^2_{n-1} is Pearson's χ^2 -distribution with n-1 degrees of freedom One-sample *t*-test for the population mean

<u>Theorem – Corollary:</u> If $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ are independent, then $\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$

where

- $\overline{X} = \sum_{i=1}^{n} X_i / n$ is the sample mean of the random variables
- $s = \sqrt{\sum_{i=1}^{n} (X_i \bar{X})^2 / (n 1)}$ is the sample standard deviation of the random variables

is Student's *t*-distribution

with n-1 degrees of freedom

If $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ are independent, then

$$\frac{\bar{X}-\mu}{s/\sqrt{n}} = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \times \frac{\sigma}{s} = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \times \frac{\sqrt{n-1}\sigma/s}{\sqrt{n-1}} = \frac{\frac{X-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{n-1}{s^2}}} \sim t_{n-1}$$

77

by the definition of Student's t-distribution

$$\frac{Z}{\sqrt{\frac{X_{n-1}^2}{n-1}}} \sim t_{n-1} \quad \text{if} \quad Z \sim \mathcal{N}(0,1) \text{ and } X_{n-1}^2 \sim \chi_{n-1}^2$$

(having used the preceding two Theorems before).

Theorem – Corollary:

If
$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$$
 are independent, then $\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$

Example or motivation:

Assume that $X \sim \mathcal{N}(\mu, \sigma^2)$ is a random variable following the normal probability distribution with some mean $\mu \in \mathbb{R}$ and with some variance $\sigma^2 \in \mathbb{R}_0^+$. Knowing <u>neither the variance</u> σ^2 <u>nor the true value of the population mean</u> $\mu \in \mathbb{R}$, we conjecture / we assume / we ... / that the population mean $\mu = \mu_0$, i.e. the (unknown) population mean μ is equal to some prescribed value $\mu_0 \in \mathbb{R}$.

Example: An archer shoots an arrow against the plane.

The sample space $\Omega = \mathbb{R}^2 = \{ [x, y] : x, y \in \mathbb{R} \}$ is the set of all the points of the plane. The random variable X is the x-coordinate of the hit, i.e. $X(\omega) = X([x, y]) = x.$

We do not know the archer's variance σ^2 and we do not know the archer's intention, i.e. we do not know the point which the archer intends to hit, i.e. we do not know the archer's mean μ .

We conjecture that the archer's intention is to hit the origin, i.e. $\mu = 0$.

Let $x_1 = X(\omega_1)$, $x_2 = X(\omega_2)$, ..., $x_n = X(\omega_n)$ be the numerical results

of *n* trials of a random experiment, where $X \sim \mathcal{N}(\mu, \sigma^2)$,

such as the x-coordinates of the archer's n hits.

We do not know the variance σ^2 and we do not know the mean μ .

We state the null hypothesis (about the mean):

 $H_0: \quad \mu = \mu_0$

where $\mu_0 \in \mathbb{R}$ is some number such that we conjecture that the true mean could equal the μ_0 .

The meaning of the null hypothesis (such as H_0 : $\mu = \mu_0$ in our example) is that

the observed distinct values are caused by the randomness only

(according to the assumed distribution, such as $X \sim \mathcal{N}(\mu, \sigma^2)$ in our example)

- there are no other factors causing the distinct values
- everything is all right, no need to reconfigure anything
- all factors under the consideration are equivalent (have the same effect)

Having stated the null hypothesis

 $H_0: \quad \mu = \mu_0$

we also state the alternative hypothesis:

- two-sided: $H_1: \mu \neq \mu_0$
- one-sided: $H_1: \mu < \mu_0$
- one-sided: H_1 : $\mu > \mu_0$

Which alternative hypothesis ($\mu \neq \mu_0$ or $\mu < \mu_0$ or $\mu > \mu_0$) do we choose?

 \rightarrow That depends upon our knowledge of the situation.

In our example:

- If we suspect that the archer's intention is to hit a point different from the given point (such as the origin), we choose $H_1: \mu \neq \mu_0$.
- If we conjecture that the archer's intention is to hit a point to the left of the given point (such as the origin), we choose H_1 : $\mu < \mu_0$.
- If we conjecture that the archer's intention is to hit a point to the right of the given point (such as the origin), we choose $H_1: \mu > \mu_0$.

Under our assumptions $(x_1, ..., x_n \sim \mathcal{N}(\mu, \sigma^2)$ are independent and $\mu = \mu_0$), it follows by the Theorem that

$$\frac{\bar{x}-\mu}{s/\sqrt{n}} = \frac{\bar{x}-\mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

Thus, having the *n* measurements $x_1, x_2, ..., x_n$, we calculate the statistic

$$T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

We know (or assume) that $T \sim t_{n-1}$.

We have
$$T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$
.
Then, if $-\infty \le a < b \le +\infty$, the probability that $a < T < b$ is

$$P(a < T < b) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

where

$$f(x) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)\sqrt{\pi(n-1)}} \left(1 + \frac{x^2}{n-1}\right)^{-\frac{k}{2}}$$

is the density of Student's *t*-distribution with n-1 degrees of freedom.

$$\Gamma(z) = \int_0^{+\infty} x^z e^{-x} dx \quad \text{for } z \in \mathbb{C} \text{ such that } \operatorname{Re}(z) > 0$$

It is easy to calculate:

 $\Gamma(1) = 1$ $\Gamma(z+1) = z\Gamma(z)$

Therefore:

 $\Gamma(n+1) = n!$ for n = 0, 1, 2, 3, ...

The gamma function – another definition (due to Euler)

$$\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^z}{1 + \frac{z}{n}}$$

for
$$z \in \mathbb{C} \setminus \{0, -1, -2, -3, ...\}$$

Consider the first case $(H_1: \mu \neq \mu_0)$ first. We have:

$$H_0: \quad \mu = \mu_0$$
$$H_1: \quad \mu \neq \mu_0$$

Knowing that
$$T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$
, the probability
 $P(-c < T < +c)$

is quite high,

so having -c < T < +c accords with H_0 , if c > 0 is large enough.

On the other hand, if H_0 is true, then it is quite improbable that $T \notin (-c, +c)$. Therefore, if we observe that

$$T \leq -c$$
 or $+c \leq T$

then we may conclude that H_0 is probably not true,

i.e. we reject the null hypothesis H_0 .

Therefore, the statistical test proceeds as follows: (see below)

Statistical one-sample *t*-test with two-sided alternative hypothesis ($\mu \neq \mu_0$):

- choose the level of significance, a small number $\alpha > 0$, a very popular value is $\alpha = 5$ %, other popular values are 10 % or 1 % or 0.1 % etc.
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x + \int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in (-\infty, -c] \cup [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

There are exactly four possibilities when testing the null hypothesis H_0 :

- the null hypothesis (H_0) is actually true & we do not reject it OK
- the null hypothesis (H_0) is actually true & we reject it type I error
- the null hypothesis (H_0) is actually not true & we do not reject it type II error
- the null hypothesis (H_0) is actually not true & we reject it OK

The purpose is that the probability of the type I error and that of the type II error is as little as possible.

What is the probability of type I error

(the null hypothesis (H_0) is actually true & we reject it)?

The probability is equal to the significance level α , usually $\alpha = 5$ %.

<u>Recall:</u> The null hypothesis H_0 is rejected if and only if $T \in (-\infty, -c] \cup [+c, +\infty)$, i.e. if and only if $|T| \ge c$. The critical value c is such that - if H_0 holds true - then $P(|T| \ge c) = \alpha$, i.e. the probability of the type I error (rejecting H_0 when it is true) is α .

What is the probability of type II error

(the null hypothesis (H_0) is actually false & we fail to reject it)?

The probability of type II error is denoted by β .

The power of the test is the probability $1 - \beta$

It is much more difficult to calculate the probability β of type II error. It must be calculated for each test separately.

To calculate the probability β of type II error, consider that the null hypothesis

$$H_0$$
 is not true $(\mu \neq \mu_0)$ and we fail to reject it $(|T| = \left| \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \right| < c)$.
By the Theorem then, we have $\frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{x - \mu_0 + (\mu_0 - \mu)}{s/\sqrt{n}} \sim t_{n-1}$.

Then the probability of the type II error (H_0 not true & fail to reject it) is:

$$P\left(-c < \frac{\bar{x} - \mu_0}{s/\sqrt{n}} < +c\right) = P\left(-c < \frac{\bar{x} - \mu + (\mu_0 - \mu)}{s/\sqrt{n}} < +c\right) =$$
$$= P\left(\frac{\mu - \mu_0}{s/\sqrt{n}} - c < \frac{\bar{x} - \mu}{s/\sqrt{n}} < \frac{\mu - \mu_0}{s/\sqrt{n}} + c\right) =$$
$$= \beta = \int_{(\mu - \mu_0)/(s/\sqrt{n}) - c}^{(\mu - \mu_0)/(s/\sqrt{n}) + c} f(x) \, dx$$

Notice that, if the true μ is close to the hypothesized μ_0 ($\mu \approx \mu_0$), then $\frac{\mu - \mu_0}{s/\sqrt{n}} \approx 0$, hence

$$\beta = \int_{(\mu-\mu_0)/(s/\sqrt{n})-c}^{(\mu-\mu_0)/(s/\sqrt{n})+c} f(x) \, \mathrm{d}x \approx \int_{-c}^{+c} f(x) \, \mathrm{d}x = 1 - \alpha = 95 \%$$

if $\alpha = 5$ %, say.

It is recommended that β should be ≤ 20 %.

Therefore, if we wish to have $\beta \approx 20$ % or $\beta \leq 20$ %,

then we must not consider the true μ close to the hypothesized μ_0 .

N.

There are exactly four possibilities when testing the null hypothesis H_0 :

- the null hypothesis (H_0) is actually true **&** we do not reject it **—** OK
- the null hypothesis (H₀) is actually true
 & we reject it
 type I error
- the null hypothesis (H₀) is actually not true & we do not reject it type II error
- the null hypothesis (H_0) is actually not true & we reject it OK

The probability of the type 1 error is the significance level α

The probability of the type II error is β

The **power of the test** is the probability $1 - \beta$

Consider now the second case $(H_1: \mu < \mu_0)$. We have:

 $H_0: \quad \mu = \mu_0$ $H_1: \quad \mu < \mu_0$

Knowing that $T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$ and assuming that c > 0 is large enough, what is the probability that -c < T?

If H_0 is true, then it is quite improbable that $T \notin (-c, +\infty)$.

Therefore, if we observe that $T \leq -c$, then we may conclude that H_0 is probably not true, i.e. we reject the null hypothesis H_0 .

Statistical one-sample *t*-test with one-sided alternative hypothesis ($\mu < \mu_0$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in (-\infty, -c]$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis
Consider finally the third case $(H_1: \mu > \mu_0)$. We have:

 $H_0: \quad \mu = \mu_0$ $H_1: \quad \mu > \mu_0$

Knowing that $T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$ and assuming that c > 0 is large enough, what is the probability that T < +c?

If H_0 is true, then it is quite improbable that $T \notin (-\infty, +c)$.

Therefore, if we observe that $+c \le T$, then we may conclude that H_0 is probably not true, i.e. we reject the null hypothesis H_0 .

Statistical one-sample *t*-test with one-sided alternative hypothesis ($\mu > \mu_0$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- find the critical value c > 0 so that

$$\int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-\infty, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Example or motivation:

Let us have a sample of n objects, e.g. n patients.

We do two measurements with each of the objects (patients)

- before some treatment
- after the treatment

The purpose it to learn whether the treatment has any effect. (Hence the null hypothesis: "The treatment has no effect.") Let $x_1, x_2, ..., x_n$ be the values measured before the treatment, and let $y_1, y_2, ..., y_n$ be the values measured after the treatment.

That is, the measurement x_i and y_i is done with the *i*-th object (patient) before and after the treatment for i = 1, 2, ..., n.

We assume that $X \sim \mathcal{N}(\mu^{\text{before}}, \sigma_X^2)$, i.e. the random variable of the measurement before the treatment follows the normal distribution, and that $Y \sim \mathcal{N}(\mu^{\text{after}}, \sigma_Y^2)$, i.e. the random variable of the measurement after the treatment also follows the normal distribution, for some $\mu^{\text{before}}, \mu^{\text{after}} \in \mathbb{R}$ and for some $\sigma_X^2, \sigma_Y^2 \in \mathbb{R}_0^+$. We do not know the true values of the population means μ^{before} and μ^{after} , and we do not know the true values of the variances σ_X^2 and σ_Y^2 .

We formulate the **null hypothesis**:

the treatment has no effect, i.e. the population means are the same

$$H_0: \quad \mu^{\text{before}} = \mu^{\text{after}}$$

Recall that we do not know the true population means μ^{before} and μ^{after} . We

only test the hypothesis by having done a sample of n pairs of measurements.

Formulate the alternative hypothesis:

- two-sided: $H_1: \mu^{\text{before}} \neq \mu^{\text{afer}}$
- one-sided: H_1 : $\mu^{\text{before}} < \mu^{\text{after}}$
- one-sided: H_1 : $\mu^{\text{before}} > \mu^{\text{after}}$

(the treatment has <u>some effect</u>) (the treatment <u>increases</u> / ...

... / decreases the quantity)

Recall the theorem:

If
$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$$
 are independent, then $\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$

Notice also:

If $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu^{\text{before}}, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu^{\text{after}}, \sigma_Y^2)$ are independent, then the differences

$$X_1 - Y_1, X_2 - Y_2, ..., X_n - Y_n \sim \mathcal{N}(\mu^{\text{before}} - \mu^{\text{after}}, \sigma_X^2 + \sigma_Y^2)$$

Now, the hypothesis $\mu^{\text{before}} = \mu^{\text{after}}$ is equivalent to that the mean of the difference X - Y is $\mu = \mu_0 = 0$.

We have thus

reduced

the paired-sample t-test for the difference of the population means

to

the one-sample t-test for the population mean,

which we already know.

Having the *n* pairs of the measurements $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$, calculate the statistic

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{s^2} / \sqrt{n}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y} - \mu_0}{\sqrt{s^2} / \sqrt{n}}$$

where

- $\bar{x} = (\sum_{i=1}^{n} x_i)/n$ is the sample mean of the measurements <u>before</u> the treatment • $\bar{y} = (\sum_{i=1}^{n} y_i)/n$ is the sample mean of the measurements <u>after</u> the treatment
- $\mu_0 = 0$ for no difference of the means $(\mu^{\text{before}} = \mu^{\text{after}})$
- $\mu_0 = \text{const.}$ for a general difference of the means ($\mu^{\text{before}} = \mu^{\text{after}} + \text{const.}$)
- $s^2 = (\sum_{i=1}^n (x_i y_i \bar{x} + \bar{y})^2)/(n-1)$ is the sample variance of the differences

In the first case (H_1 : $\mu^{\text{before}} \neq \mu^{\text{after}}$), we have:

 $H_0: \quad \mu^{\text{before}} = \mu^{\text{after}}$ $H_1: \quad \mu^{\text{before}} \neq \mu^{\text{after}}$

Knowing that

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{s^2} / \sqrt{n}} \sim t_{n-1}$$

we fail to reject H_0 iff

-c < T < +c

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(-c < T < +c) = 1 - \alpha$ where the probability α of type I error is small.

Statistical paired-sample *t*-test for the difference of the population means with two-sided alternative hypothesis ($\mu^{\text{before}} \neq \mu^{\text{after}}$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x + \int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in (-\infty, -c] \cup [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the second case (H_1 : $\mu^{\text{before}} < \mu^{\text{after}}$), we have:

$$\begin{array}{ll} H_0: & \mu^{\text{before}} = \mu^{\text{after}} \\ H_1: & \mu^{\text{before}} < \mu^{\text{after}} \end{array} \end{array}$$

Knowing that

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{s^2} / \sqrt{n}} \sim t_{n-1}$$

we fail to reject H_0 iff

-c < T

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(-c < T) = 1 - \alpha$ where the probability α of type I error is small.

Statistical paired-sample *t*-test for the difference of the population means with one-sided alternative hypothesis ($\mu^{\text{before}} < \mu^{\text{after}}$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in (-\infty, -c]$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the third case $(H_1: \mu^{\text{before}} > \mu^{\text{after}})$, we have:

 $H_0: \mu^{\text{before}} = \mu^{\text{after}}$ $H_1: \mu^{\text{before}} > \mu^{\text{after}}$

Knowing that

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{s^2} / \sqrt{n}} \sim t_{n-1}$$

we fail to reject H_0 iff

T < +c

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(T < +c) = 1 - \alpha$ where the probability α of type I error is small.

Statistical paired-sample *t*-test for the difference of the population means with one-sided alternative hypothesis ($\mu^{\text{before}} > \mu^{\text{after}}$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with n-1 degrees of freedom

- if $T \in [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-\infty, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Motivation:

We have two unknown random variables X and Y. We ask (test the hypothesis) whether the population means of both random variables are the same.

We assume that both random variables are normal, i.e. $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, for some $\mu_X, \mu_Y \in \mathbb{R}$ and for some $\sigma_X^2, \sigma_Y^2 \in \mathbb{R}_0^+$.

Although we do not know the means μ_X , μ_Y nor the variances σ_X^2 , σ_Y^2 , we assume that

$$||| ||| ||| ||| \sigma_X^2 = \sigma_Y^2 \quad ||| ||| |||$$

Having the *m* samples $x_1, x_2, ..., x_m$ of the random variable $X \sim \mathcal{N}(\mu_X, \sigma^2)$ and having the *n* samples $y_1, y_2, ..., y_n$ of the random variable $Y \sim \mathcal{N}(\mu_Y, \sigma^2)$, we formulate the **null hypothesis**:

both samples come from the same population: the values of the population means are the same

 $H_0: \quad \mu_X = \mu_Y$

Recall that we do not know the true population means μ_X and μ_Y . We only **test the hypothesis by the means of** two samples of m and n measurements with the same variance.

Having the *m* samples $x_1, x_2, ..., x_m$ of the random variable $X \sim \mathcal{N}(\mu_X, \sigma^2)$,

the *n* samples $y_1, y_2, ..., y_n$ of the random variable $Y \sim \mathcal{N}(\mu_Y, \sigma^2)$, and

 $H_0: \quad \mu_X = \mu_Y$

formulate the alternative hypothesis:

- two-sided: $H_1: \mu_X \neq \mu_Y$ (the means are different)
- one-sided: H_1 : $\mu_X < \mu_Y$ (the first mean < the second mean)

• one-sided: H_1 : $\mu_X > \mu_Y$ (the first mean > the second mean)

By the Theorem:

If $X_1, X_2, ..., X_m \sim \mathcal{N}(\mu_X, \sigma^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu_Y, \sigma^2)$ are independent, then

$$\frac{\overline{X} - \mu_X}{\sigma/\sqrt{m}} \sim \mathcal{N}(0, 1)$$
 and $\frac{\overline{Y} - \mu_Y}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$

equivalently

$$\bar{X} \sim \mathcal{N}\left(\mu_X, \frac{\sigma^2}{m}\right)$$
 and $\bar{Y} \sim \mathcal{N}\left(\mu_Y, \frac{\sigma^2}{n}\right)$

Therefore:

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_X - \mu_Y, \frac{\sigma^2}{m} + \frac{\sigma^2}{n}\right)$$

No.

We have shown:

If $X_1, X_2, ..., X_m \sim \mathcal{N}(\mu_X, \sigma^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu_Y, \sigma^2)$ are independent, then

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_X - \mu_Y, \frac{\sigma^2}{m} + \frac{\sigma^2}{n}\right)$$

equivalently

$$\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim \mathcal{N}(0, 1)$$

The above Theorem says:

If $X_1, X_2, ..., X_m \sim \mathcal{N}(\mu_X, \sigma^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu_Y, \sigma^2)$ are independent, then

$$\frac{(m-1)s_X^2}{\sigma^2} \sim \chi_{m-1}^2 \quad \text{and} \quad \frac{(n-1)s_Y^2}{\sigma^2} \sim \chi_{n-1}^2$$

Therefore:

$$\frac{(m-1)s_X^2 + (n-1)s_Y^2}{\sigma^2} \sim \chi_{m+n-2}^2$$

Two-sample *t*-test for the diff. of the pop. means // $\sigma_x = \sigma_y$

Recall also that, if

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim \mathcal{N}(0, 1)$$

and

$$Y = \frac{(m-1)s_X^2 + (n-1)s_Y^2}{\sigma^2} \sim \chi_{m+n-2}^2$$

then

$$T = \frac{Z}{\sqrt{\frac{Y}{m+n-2}}} \sim t_{m+n-2}$$

by the definition of Student's t-distribution.

Two-sample *t*-test for the diff. of the pop. means // $\sigma_x = \sigma_y$

Therefore:

$$\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}}} = \frac{\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}}} \sim t_{m+n-2}$$

where

$$s_{\bar{X}}^2 = \frac{\sum_{i=1}^m (X_i - \bar{X})^2}{m-1}$$
 and $s_{\bar{Y}}^2 = \frac{\sum_{j=1}^n (Y_i - \bar{Y})^2}{n-1}$

are the sample variances.

Having the *m* measurements $x_1, x_2, ..., x_m$ and *n* measurements $y_1, y_2, ..., y_n$, recall that

- $\bar{x} = \sum_{i=1}^m x_i/m$
- $\bar{y} = \sum_{j=1}^{n} y_j/n$
- $s_x^2 = \sum_{i=1}^m (x_i \bar{x})^2 / (m-1)$
- $s_y^2 = \sum_{j=1}^n (y_j \bar{y})^2 / (n-1)$

• m

• n

is the sample mean of the <u>first</u> sample is the sample mean of the <u>second</u> sample is the sample variance of the <u>first</u> sample is the sample variance of the <u>second</u> sample is the size of the <u>first</u> sample is the size of the <u>second</u> sample

Having the *m* measurements $x_1, x_2, ..., x_m$ and *n* measurements $y_1, y_2, ..., y_n$, calculate the statistic

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}}\sqrt{\frac{1}{m} + \frac{1}{n}}}$$

for no difference of the means $(\mu_X = \mu_Y)$

We know (or assume) that $T \sim t_{m+n-2}$

Or, having the *m* measurements $x_1, x_2, ..., x_m$ and *n* measurements $y_1, y_2, ..., y_n$, calculate the statistic

$$T = \frac{\bar{x} - \bar{y} - \mu_0}{\sqrt{\frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}}} \sqrt{\frac{1}{m} + \frac{1}{n}}$$

for a general difference of the means $(\mu_X = \mu_Y + \mu_0)$

We know (or assume) that $T \sim t_{m+n-2}$

In the first case $(H_1: \mu_X \neq \mu_Y)$, we have:

$$H_0: \quad \mu_X = \mu_Y$$
$$H_1: \quad \mu_X \neq \mu_Y$$

Knowing that

$$T \sim t_{m+n-2}$$

we fail to reject H_0 iff

-c < T < +c

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(-c < T < +c) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *t*-test for the difference of the population means with two-sided alternative hypothesis ($\mu_X \neq \mu_Y$) and with the same variances:

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x + \int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with m + n - 2 degrees of freedom

- if $T \in (-\infty, -c] \cup [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the second case $(H_1: \mu_X < \mu_Y)$, we have:

$$H_0: \quad \mu_X = \mu_Y$$
$$H_1: \quad \mu_X < \mu_Y$$

Knowing that

$$T \sim t_{m+n-2}$$

we fail to reject H_0 iff

-c < T

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(-c < T) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *t*-test for the difference of the population means with one-sided alternative hypothesis ($\mu_X < \mu_Y$) and with the same variances :

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %
- find the critical value c > 0 so that

$$\int_{-\infty}^{-c} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with m + n - 2 degrees of freedom

- if $T \in (-\infty, -c]$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the third case $(H_1: \mu_X > \mu_Y)$, we have:

$$H_0: \quad \mu_X = \mu_Y$$
$$H_1: \quad \mu_X > \mu_Y$$

Knowing that

$$T \sim t_{m+n-2}$$

we fail to reject H_0 iff

T < +c

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(T < +c) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *t*-test for the difference of the population means with one-sided alternative hypothesis ($\mu_X > \mu_Y$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_{+c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the t-distribution with m + n - 2 degrees of freedom

- if $T \in [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-\infty, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider two normal random variables $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, for some $\mu_X, \mu_Y \in \mathbb{R}$ and for some $\sigma_X^2, \sigma_Y^2 \in \mathbb{R}_0^+$.

We ask (test the hypothesis) whether the population means of both random variables are the same.

Once $\sigma_X^2 = \sigma_Y^2$ is not assumed, the things get complicated. We have an approximate result only.

If the random variables $X_1, X_2, ..., X_m \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ are independent, then the statistic

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}} \sim t_v \qquad approximately$$

where

$$v = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{s_X^4}{m^2(m-1)} + \frac{s_Y^4}{n^2(n-1)}}$$

Exercise:

Use the last Theorem (Satterthwaite's approximation) to formulate a statistical two-sample *t*-test for the difference of the population means with two-sided / one-sided alternative hypothesis (not assuming the same variance). Two sample *F*-test for the equality of variances

We have two unknown random variables X and Y. We ask (test the hypothesis) whether the population variances of both random variables are the same.

We assume that both random variables are normal, i.e. $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, for some $\mu_X, \mu_Y \in \mathbb{R}$ and for some $\sigma_X^2, \sigma_Y^2 \in \mathbb{R}_0^+$.

We ask (test the hypothesis) whether

$$\sigma_X^2 = \sigma_Y^2$$
 ?

Having the *m* samples $x_1, x_2, ..., x_m$ of the random variable $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and having the *n* samples $y_1, y_2, ..., y_n$ of the random variable $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, we formulate the **null hypothesis**:

both samples come from populations with the same variances:

$$H_0: \quad \sigma_X^2 = \sigma_Y^2$$

Recall that we do not know the true population variances σ_X^2 and σ_Y^2 . <u>We only test the hypothesis</u> by the means of the two samples of *m* and *n* independent measurements.

The meaning of the null hypothesis (such as $H_0: \sigma_X^2 = \sigma_Y^2$ in our example) is that

- the observed distinct values are caused by the randomness only (according to the assumed distribution, such as $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\mu, \sigma^2)$, where $\sigma^2 = \sigma_X^2 = \sigma_Y^2$, in our example)
- there are no other factors causing the distinct values
- everything is all right, no need to reconfigure anything
- all factors under the consideration are equivalent (have the same effect)

Two sample *F*-test for the equality of variances

Having stated the null hypothesis

$$H_0: \quad \sigma_X^2 = \sigma_Y^2$$

we also state the alternative hypothesis:

- two-sided: $H_1: \sigma_X^2 \neq \sigma_Y^2$
- one-sided: H_1 : $\sigma_X^2 < \sigma_Y^2$
- one-sided: $H_1: \sigma_X^2 > \sigma_Y^2$

Theorem

If the random variables $X_1, X_2, ..., X_m \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_n \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ are independent and

$$\sigma_X^2 = \sigma_Y^2$$

then

$$\frac{S_X^2}{S_Y^2} \sim F_{m-1,n-1}$$

where

 $F_{m-1,n-1}$ is Fisher's *F*-distribution with m-1 and n-1 degrees of freedom $s_X^2 = \sum_{i=1}^m (X_i - \bar{X})^2 / (m-1)$ is the sample variance of the first sample $s_Y^2 = \sum_{j=1}^n (Y_j - \bar{Y})^2 / (n-1)$ is the sample variance of the second sample

$$F = \frac{s_x^2}{s_y^2}$$

where

• $s_x^2 = \sum_{i=1}^m (x_i - \bar{x})^2 / (m - 1)$ is the sample variance of the <u>first</u> sample • $s_y^2 = \sum_{j=1}^n (y_j - \bar{y})^2 / (n - 1)$ is the sample variance of the <u>second</u> sample • $\bar{x} = \sum_{i=1}^m x_i / m$ is the sample mean of the <u>first</u> sample • $\bar{y} = \sum_{j=1}^n y_j / n$ is the sample mean of the <u>second</u> sample • m and n is the size of the first and second, respectively, sample

In the first case $(H_1: \sigma_X^2 \neq \sigma_Y^2)$, we have:

$$\begin{array}{ll} H_0: & \sigma_X^2 = \sigma_Y^2 \\ H_1: & \sigma_X^2 \neq \sigma_Y^2 \end{array}$$

Knowing that

$$F = \frac{s_x^2}{s_y^2} \sim F_{m-1,n-1}$$

we fail to reject H_0 iff

c < F < d

where the critical value d > c > 0, under the assumption that H_0 is true, are such that $P(c < F < d) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *F*-test for the equality of the population variances with two-sided alternative hypothesis ($\sigma_X^2 \neq \sigma_Y^2$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical values 0 < c < d so that

$$\int_0^c f(x) \, \mathrm{d}x = \frac{\alpha}{2} \qquad \text{and} \qquad \int_d^{+\infty} f(x) \, \mathrm{d}x = \frac{\alpha}{2}$$

where f is the density of the F-distribution with m-1 and n-1 d.f.

- if $F \in [0, c] \cup [d, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $F \in (c, d)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the second case (H_1 : $\sigma_X^2 < \sigma_Y^2$), we have:

$$H_0: \quad \sigma_X^2 = \sigma_Y^2$$
$$H_1: \quad \sigma_X^2 < \sigma_Y^2$$

Knowing that

$$F = \frac{s_x^2}{s_y^2} \sim F_{m-1,n-1}$$

we fail to reject H_0 iff

c < F

where the critical value c > 0, under the assumption that H_0 is true, is such that $P(c < F < +\infty) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *F*-test for the equality of the population variances with one-sided alternative hypothesis ($\sigma_X^2 < \sigma_Y^2$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_0^c f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the F-distribution with m-1 and n-1 d.f.

- if $F \in [0, c]$, the critical region, then <u>reject</u> the null hypothesis
- if $F \in (c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

In the third case $(H_1: \sigma_X^2 > \sigma_Y^2)$, we have:

$$H_0: \quad \sigma_X^2 = \sigma_Y^2$$
$$H_1: \quad \sigma_X^2 > \sigma_Y^2$$

Knowing that

$$F = \frac{s_x^2}{s_y^2} \sim F_{m-1,n-1}$$

we fail to reject H_0 iff

F < d

where the critical value d > 0, under the assumption that H_0 is true, is such that $P(0 \le F < d) = 1 - \alpha$ where the probability α of type I error is small.

Statistical two-sample *F*-test for the difference of the population variances with one-sided alternative hypothesis ($\sigma_X^2 > \sigma_Y^2$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value d > 0 so that

$$\int_{d}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the F-distribution with m-1 and n-1 d.f.

- if $F \in [d, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $Z \in [0, d)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

NON-PARAMETRIC TESTS

- Sign test for the median
- Pearson's χ^2 -test for the goodness of fit
- χ^2 -test of independence of qualitative

data items

Sign test for the median

- Sign test for the median
- Paired sign test for

the difference of the medians

Motivation:

Let X be a random variable (of any distribution), but assume that its cumulative distribution function F is <u>continuous</u>.

Recall that the median \tilde{x} of the random variable X is the value such that $P(X < \tilde{x}) = \frac{1}{2} = P(\tilde{x} < X)$

We conjecture / we assume / we speculate / we ... / that the mean \tilde{x} of the random variable X is equal to some given value $\tilde{x}_0 \in \mathbb{R}$. We thus formulate the <u>null hypothesis</u>: H_0 : $\tilde{x} = \tilde{x}_0$

The sign test proceeds as follows:

- Let us have n samples x₁, x₂, ..., x_n of the random variable X,
 whose cumulative distribution function F is continuous.
- Considering the null hypothesis $(H_0: \tilde{x} = \tilde{x}_0)$ about the median, calculate the *n* differences

$$x_1 - \tilde{x}_0, \quad x_2 - \tilde{x}_0, \quad \dots, \quad x_n - \tilde{x}_0$$

- Drop any zero differences (i.e., if $x_i \tilde{x}_0 = 0$, then drop x_i from the sample).
- We have a sample of m non-zero differences

$$x_{j_1} - \tilde{x}_0, \quad x_{j_2} - \tilde{x}_0, \quad \dots, \quad x_{j_m} - \tilde{x}_0$$

Sign test for the median

Let

$$Z = |\{i : x_{j_i} - \tilde{x}_0 < 0\}|$$

be the number of the negative differences.

Theorem:

Under the null hypothesis (H_0 : $\tilde{x} = \tilde{x}_0$) that the median \tilde{x} of the random variable X is \tilde{x}_0

$$Z \sim \operatorname{Bi}(m, \frac{1}{2})$$

i.e. the random variable Z follows the binomial probability distribution.

<u>Remark</u>: We actually test the hypothesis that the probability $P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{1}{2}$

(We have $P(X < \tilde{x}_0) = P(X \le \tilde{x}_0)$ because we assume that the cumulative distribution function F is continuous at \tilde{x}_0 .)

Therefore, we could test in the same manner the null hypothesis that

 \tilde{x}_0 is the first quartile $(P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{1}{4}$, whence $Z \sim \operatorname{Bi}\left(m, \frac{1}{4}\right)$, or that \tilde{x}_0 is the third decile $(P(X < \tilde{x}_0) = P(X \le \tilde{x}_0) = \frac{3}{10}$, whence $Z \sim \operatorname{Bi}\left(m, \frac{3}{10}\right)$, etc.

4

Having stated the null hypothesis about the median

$$H_0: \ \tilde{x} = \tilde{x}_0 \quad \text{or} \quad H_0: \ P(X < \tilde{x}_0) = p_0 = \frac{1}{2}$$

we also state the alternative hypothesis:

- two-sided: $H_1: \tilde{x} \neq \tilde{x}_0$ or $H_1: P(X < \tilde{x}_0) \neq p_0$
- one-sided: H_1 : $\tilde{x} > \tilde{x}_0$ or H_1 : $P(X < \tilde{x}_0) < p_0$
- one-sided: $H_1: \tilde{x} < \tilde{x}_0$ or $H_1: P(X < \tilde{x}_0) > p_0$

The test then proceeds as the binomial test (or z-test approximately) for the

Consider the first case $(H_1: \tilde{x} \neq \tilde{x}_0)$ first. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) \neq p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical values $K, L \in \{0, 1, ..., m\}$ so that

K is the largest number and L is the least number such that

$$\sum_{k=0}^{K} \binom{m}{k} p_{0}^{k} q_{0}^{m-k} = \sum_{k=0}^{K} \binom{m}{k} \frac{1}{2^{m}} \le \frac{\alpha}{2} \quad \text{and} \quad \sum_{k=L}^{m} \binom{m}{k} p_{0}^{k} q_{0}^{n-k} = \sum_{k=L}^{m} \binom{m}{k} \frac{1}{2^{m}} \le \frac{\alpha}{2}$$

- if $Z \in \{0, ..., K\} \cup \{L, ..., n\}$, the critical region, then reject the null hypothesis
- if $Z \in \{K + 1, ..., L 1\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider now the second case $(H_1: \tilde{x} > \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) < p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %
- find the critical value $K \in \{0, 1, ..., m\}$ so that K is the largest number such that

$$\sum_{k=0}^{K} \binom{m}{k} p_{0}^{k} q_{0}^{m-k} = \sum_{k=0}^{K} \binom{m}{k} \frac{1}{2^{m}} \leq \alpha$$

- if $Z \in \{0, ..., K\}$, the critical region, then <u>reject</u> the null hypothesis
- if $Z \in \{K + 1, ..., m\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider finally the third case $(H_1: \tilde{x} < \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) > p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value $L \in \{0, 1, ..., m\}$ so that L is the least number such that

$$\sum_{k=L}^{m} \binom{m}{k} p_0^k q_0^{m-k} = \sum_{k=L}^{m} \binom{m}{k} \frac{1}{2^m} \leq \alpha$$

- if $Z \in \{L, ..., m\}$, the critical region, then <u>reject</u> the null hypothesis
- if $Z \in \{0, ..., L-1\}$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

It is inconvenient to calculate the sums $\sum_{k=0}^{K} {m \choose k} \frac{1}{2^m}$ and $\sum_{k=1}^{m} {m \choose k} \frac{1}{2^m}$ if *m* is large. It is more convenient then to approximate the sums by using

the de Moivre-Laplace Central Limit Theorem (for p = q = 1/2):

It holds, whenever $-\infty \le a < b \le +\infty$, that

$$\frac{\sum_{k=A_m}^{B_m} \binom{m}{k} \frac{2}{2^m} - n}{\sqrt{m}} \longrightarrow \underbrace{\int_a^b \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} dt}_{\Phi(b) - \Phi(a)} \quad \text{as} \quad m \to \infty$$

where $A_m = [(m + a\sqrt{m})/2] \ge 0$ and $B_m = [(m + b\sqrt{m})/2] \le m$ if $m \ge \max(a^2, b^2)$. Moreover, the convergence is uniform with respect to a and b.

De Moivre-Laplace Central Limit Theorem (reformulated):

If $X \sim Bi(m, 1/2)$, whenever $-\infty \le a < b \le +\infty$, it then holds

$$P\left(a < \frac{2X - m}{\sqrt{m}} < b\right) \rightarrow \underbrace{\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt}_{\Phi(b) - \Phi(a)} \quad \text{as} \quad m \to \infty$$

and the convergence is uniform with respect to a and b.

Consider the first case $(H_1: \tilde{x} \neq \tilde{x}_0)$ first. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) \neq p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{-\infty}^{-c} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\alpha}{2} \quad \text{and} \quad \int_{+c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\alpha}{2}$$

- if $Z \le (m c\sqrt{m})/2$ or $(m + c\sqrt{m})/2 \le Z$, the critical region, then reject the null hypothesis
- if $(m c\sqrt{m})/2 < Z < (m + c\sqrt{m})/2$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider now the second case $(H_1: \tilde{x} > \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) < p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{-\infty}^{-c} \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} dt = \alpha$$

- if $Z \le (m c\sqrt{m})/2$, the critical region, then relect the null hypothesis
- if $(m c\sqrt{m})/2 < Z$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Consider finally the third case $(H_1: \tilde{x} < \tilde{x}_0)$. We have: $H_0: P(X < \tilde{x}_0) = p_0 = 1/2$ $H_1: P(X < \tilde{x}_0) > p_0$

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find c > 0 so that

$$\int_{+c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \alpha$$

- if $(m + c\sqrt{m})/2 \le Z$, the critical region, then reject the null hypothesis
- if $Z < (m + c\sqrt{m})/2$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

<u>Remarks:</u>

• By using another probability (such as $p_0 = 0.25$, $p_0 = 0.3$, etc.) we can test the null hypothesis that \tilde{x}_0 is, e.g., the first quartile, the third decile, etc.

• If we know that the distribution of X is symmetric (F(x) = 1 - F(-x)), then the mean $\mu = E[X]$ and the median \tilde{x} of the random variable X coincide $(\tilde{x} = \mu)$. Then the sign test for the median can also be used as another test for the mean $(H_0: \mu = \tilde{x}_0)$.

Remarks:

• More generally, if we know that the mean $\mu = E[X]$ is the p_0 -quantile

 $(0 < p_0 < 1)$ of the distribution of the random variable X with a continuous cumulative distribution function, then the sign test can also be used as another test

for the mean
$$(H_0: \mu = \tilde{x}_0 \text{ with } Z = \left| \left\{ i : x_{j_i} < \tilde{x}_0 \right\} \right| \sim \operatorname{Bi}(m, p_0) \right).$$

• Exercise: Apply the procedure of the sign test to determine the confidence interval for the median, i.e. the interval of values \tilde{x}_0 such that the null hypothesis is not rejected for them.

Motivation:

Let us have a sample of n objects, e.g. n patients.

We do two measurements with each of the objects (patients)

- before some treatment
- after the treatment

The purpose it to learn whether the treatment has any effect. (Hence the null hypothesis: "The treatment has no effect.") Let $x_1, x_2, ..., x_n$ be the values measured before the treatment, and let $y_1, y_2, ..., y_n$ be the values measured after the treatment.

That is, the measurement x_i and y_i is done with the *i*-th object (patient)

before and after the treatment for i = 1, 2, ..., n.

FIRST, assume that only two outcomes are possible:

- $x_i < y_i$ (improvement)
- $x_i > y_i$ (worsening)

Objects with $x_i = y_i$ are dropped from the sample.

We then can test the null hypothesis that the treatment has no effect, i.e.

$$Z = |\{i : x_i < y_i\}| \sim \operatorname{Bi}(m, \frac{1}{2})$$

etc. (Finish the details of the test analogously as above as an exercise.)

That is, the measurement x_i and y_i is done with the *i*-th object (patient) before and after the treatment for i = 1, 2, ..., n.

SECOND, assume that $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ are the numerical outcomes of the random variable X and Y, respectively, with a continuous cumulative distribution function F_X and F_Y , respectively.

<u>Theorem</u>: The median \tilde{x}_0 of the difference X - Y of the random variables is

$$\tilde{x}_0 = \tilde{x} - \tilde{y}$$

Thus, we can test the null hypothesis that the median \tilde{x} of the random variable X (before the treatment) is the same as the median \tilde{y} of the random variable Y (after the treatment), i.e. their difference is $\tilde{x}_0 = \tilde{x} - \tilde{y} = 0$.

(More generally, we can test that the difference $\tilde{x} - \tilde{y}$ is equal to some prescribed value $\tilde{x}_0 \in \mathbb{R}$.)

(Complete the details of the test analogously as above as an exercise.)

χ^2 -test for goodness of fit

• Pearson's χ^2 -test for the goodness of fit

Let X be a random variable (discrete or continuous) and

let F be the cumulative distribution function of the random variable X.

We do not know the cumulative distribution function F.

We have the numerical results $x_1 = X(\omega_1)$, $x_2 = X(\omega_2)$, ..., $x_N = X(\omega_N)$ of *N* trials of the corresponding random experiment.

Let F_0 be some cumulative distribution function. We conjecture / we assume / we speculate / we ... / that $F = F_0$, i.e. the random variable X follows the probability distribution with the cumulative distribution function $F = F_0$.

秋

More generally, let \mathcal{F}_0 be a class of cumulative distribution functions (c.d.f.'s) of a certain type, such as

- the collection of all c.d.f.'s of $\mathcal{U}(a, b)$ for various $a, b \in \mathbb{R}$, a < b
- the collection of all c.d.f.'s of $\mathcal{N}(\mu, \sigma^2)$ for various $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}_0^+$
- the collection of all c.d.f.'s of $Exp(\lambda)$ for various $\lambda \in \mathbb{R}^+$
- etc.

Having the numerical results $x_1 = X(\omega_1), x_2 = X(\omega_2), ..., x_N = X(\omega_N)$

of N trials of a random experiment, we conjecture / we assume / we speculate /

we ... / that $F \in \mathcal{F}_0$, i.e. the random variable X follows the probability distribution

Having the numerical results $x_1 = X(\omega_1), x_2 = X(\omega_2), ..., x_N = X(\omega_N)$

of the *N* trials of the random experiment and having the class \mathcal{F}_0 of the cumulative distribution functions – <u>first of all</u> – find the cumulative distribution function $F_0 \in \mathcal{F}_0$ that best fits the experimental data:

- if $\mathcal{F}_0 = \{F_0\}$, then the c.d.f. F_0 is given; the number of parameters is v = 0
- if \mathcal{F}_0 is the collection of all c.d.f.'s of $\mathcal{N}(\mu, \sigma^2)$, then put

$$\mu = \bar{x}$$
 and $\sigma^2 = s^2$

(the sample mean and the sample variance); the number of parameters is $\nu = 2$

• if \mathcal{F}_0 is the collection of all c.d.f.'s of $Exp(\lambda)$, then put

either
$$\lambda = \frac{1}{\bar{x}}$$
 or $\lambda = \sqrt{\frac{1}{s^2}}$

the number of parameters is v = 1

(recall: if $X \sim \text{Exp}(\lambda)$, then $E[X] = 1/\lambda$ and $Var(X) = 1/\lambda^2$)

- if \mathcal{F}_0 is the collection of all c.d.f.'s of $\mathcal{U}(a, b)$, then consider the German Tank Problem (see previous lectures); the number of parameters is $\nu = 2$
- etc.

Having the sample data $x_1, x_2, ..., x_N$ of the random variable X and the cumulative distribution function $F_0 \in \mathcal{F}_0$ that best fits the sample.

Now – <u>as the second step</u> – choose *n* intervals $(t_0, t_1], (t_1, t_2], (t_2, t_3], ..., (t_{n-2}, t_{n-1}], (t_{n-1}, t_n]$ with $t_0 < t_1 < t_2 < t_3 < \cdots < t_{n-2} < t_{n-1} < t_n$

as well as

 $t_0 < \min\{x_1, \dots, x_N\}$ and $\max\{x_1, \dots, x_N\} \le t_n$

so that

- there are at least 5 outcomes in each of the intervals

Formulate the null hypothesis: The random variable X follows the probability

distribution with the cumulative distribution function $F = F_0$:

$$H_0: \quad F = F_0$$

Next – <u>as the third step</u> – assume the null hypothesis H_0 and calculate the theoretical probability that $t_{i-1} < X \leq t_i$, i.e.

$$p_{i} = P(t_{i-1} < X \le t_{i}) =$$

= $F_{0}(t_{i}) - F_{0}(t_{i-1})$ for $i = 1, 2, ..., n$

Since p_i is the expected probability (under the null hypothesis H_0) that $X \in (t_{i-1}, t_i]$ and we have a sample $x_1, x_2, ..., x_N$ of N observations, we should find about

 $E_i = N \times p_i$

observations in the interval $(t_{i-1}, t_i]$ for i = 1, 2, ..., n. Let

$$O_i = |\{j : x_j \in (t_{i-1}, t_i]\}|$$

be the true number of the observations found in the interval $(t_{i-1}, t_i]$ for i = 1, 2, ..., n.

<u>Theorem</u>: If the null hypothesis H_0 : $F = F_0$ is true, then the statistic

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{n-\nu-1} \quad approximately \quad \text{as} \quad N \to \infty$$

where

- *n* is the number of the intervals $(t_{i-1}, t_i]$
- ν is the number of the parameters that have been determined when finding the cumulative distribution function F_0 ($\nu = 0, 1, 2, ...$)
- O_i is the number of the results found (observed) in the *i*-th interval $(t_{i-1}, t_i]$
- E_i is the number of the results expected (if H_0 is true) in the interval $(t_{i-1}, t_i]$

Now, finish Pearson's χ^2 -test for the goodness of fit (H_0 : $F = F_0$) as follows:

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- find the critical value c > 0 so that

$$\int_{c}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the χ^2 -distribution with $n - \nu - 1$ degrees of freedom

• if $X^2 \ge c$, the critical region, then <u>reject</u> the null hypothesis

Ľ

• if $X^2 < c$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Tossing a coin repeatedly, we ask whether the coin is fair.

More generally, we consider a Bernoulli trial, with the probability of the success being $p \in (0, 1)$, and with the probability of the failure being q = 1 - p. We do not know the true probability p.

We conjecture / We assume / We ... / that the probability $p = p_0$, i.e. the (unknown) probability p is equal to some prescribed value $p_0 \in (0, 1)$, e.g., in the case of the coin, conjecture that $p_0 = 50$ % (meaning the coin is fair).

No.

We now know three statistical tests to test the null hypothesis that $p = p_0$:

- the binomial test for the population proportion
- the z-test for the population proportion
- Pearson's χ^2 -test for the goodness of fit

The binomial test is exact and the z-test is an approximation of it.

Both binomial test and z-test allow one-sided or two-sided alternative hypothesis.

Pearson's χ^2 -test for the goodness of fit allows two-sided alternative hypothesis $(H_1: F \neq F_0)$ only.

Pearson's χ^2 -test for the goodness of fit proceeds as follows:

- there are two intervals (1 = "success" and 0 = "failure")
- having N observations of the random variable X, we expect (under the null hypothesis that $p = p_0$) that $E_1 = N \times p_0$ and $E_0 = N \times (1 p_0)$
- let O_1 and O_0 be the observed number of successes and failures, respectively
- the statistic

$$X^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{0} - E_{0})^{2}}{E_{0}} \sim \chi_{1}^{2} \quad approximately \quad \text{as} \quad N \to \infty$$

(we have n = 2 and $\nu = 0$, therefore $n - \nu - 1 = 1$)

<u>Remark:</u> In Pearson's χ^2 -test for the goodness of fit, we have

$$X^2 \sim \chi^2_{n-\nu-1}$$

where

- *n* is the number of the intervals $(t_{i-1}, t_i]$
- ν is the number of the parameters that have been determined when finding the cumulative distribution function F_0 ($\nu = 0, 1, 2, ...$)

Notice that one degree of freedom ("-1") must always be subtracted

because the observed counts O_1, O_2, \dots, O_n are bound by the equation

 $O_1 + O_2 + \dots + O_n = N$

therefore only n-1 of the counts (such as O_1, O_2, \dots, O_{n-1} , say) are free,

*x*²-test of independence of qualitative data items

• χ^2 -test of independence of

qualitative data items

Consider a dataset where each data unit has two qualitative data items

(i.e. two qualitative variables).

Let the qualitative variables under the consideration be denoted by A and B. Let the variable A can attain up to r ("rows") distinct categories

Let the variable B can attain up to s ("columns") distinct categories

$$B_1, B_2, \dots, B_s$$

The counts of the occurrences of all the $r \times s$ combinations of the categories are easily summarized by a contingency table.

the observed counts of the combinations of the categories $A_i \& B_j$ for i=1,...,r & j=1,...,s

B TOTAL B_1 B_2 B_{s} A \ . . . A_1 n_{11} n_{12} *n*₁. n_{1s} ... marginal totals A_2 n_2 . n_{21} n_{22} n_{2s} ... : ÷ : ł A_r n_{r1} n_{r2} nrs n_r TOTAL *n*.₁ $n_{\cdot 2}$ $n_{\cdot s}$ n.... marginal totals the grand total

Contingency table

N.

2 2 contingency table

The 2 2 contingency table is popular.

It is a contingency table with r=2 rows and s=2 columns.

Having all the observed counts of the combinations of the categories $A_i \& B_j$ summarized in the contingency table for i=1,...,r and for j=1,...,s, we ask whether the category of the data item (variable) **B** depends upon the category of the data item (variable) **A**, or whether the categories of both data items (variables) **A** and **B** are independent of each other.

Assume therefore the null hypothesis H_0 :

the categories of both data items (variables) **A** and **B** are independent of each other

Having all the observed counts of the combinations of the categories $A_i \& B_j$ summarized in the contingency table for i=1,...,r and for j=1,...,s, assume <u>the null hypothesis</u> H_0 that the categories of both data items (variables) **A** and **B** are independent of each other.

Now – if we choose a data unit randomly:

- What is the probability that the data item **A** of the chosen data unit is of category A_i for some i=1,...,r?
- What is the probability that the data item **B** of the chosen data unit is of category B_j for some j=1,...,s?

The total number of all data units is n.

The count of the data units of category A_i is n_i .

Therefore, the probability that a randomly selected data unit is of category A_i is

$$p_{i\cdot} = \frac{n_{i\cdot}}{n}$$

The count of the data units of category B_j is $n_{.j}$

Therefore, the probability that a randomly selected data unit is of category B_i is

$$p_{\cdot j} = \frac{n_{\cdot j}}{n}$$

Recall that the probability that a randomly selected data unit is of category A_i and B_j is

$$p_{i.} = \frac{n_{i.}}{n}$$
 and $p_{.j} = \frac{n_{.j}}{n}$

respectively. If the null hypothesis H_0 (that the categories of A and B are independent of each other) is true, then the (cumulative) probability that a randomly selected data unit is of category A_i and B_j should be

$$p_{ij} = p_i \times p_{j} = \frac{n_i \cdot n_{j}}{n^2}$$

for i = 1, 2, ..., r and for j = 1, 2, ..., s.

Once the probability that a randomly selected data unit is of category A_i and B_i is

$$p_{ij} = p_{i.} \times p_{.j} = \frac{n_{i.}n_{.j}}{n^2}$$

then we should expect

$$E_{ij} = p_{ij} \times n = \frac{n_{i \cdot n} \times n_{\cdot j}}{n}$$

data units of category A_i and B_j for i = 1, 2, ..., r and for j = 1, 2, ..., sif the null hypothesis H_0 (that the categories of **A** and **B** are independent of each other) is true.

χ^2 -test of independence of qualitative data items

Expecting

$$E_{ij} = p_{ij} \times n = \frac{n_{i \cdot n} \times n_{\cdot j}}{n}$$

and observing

 $O_{ij} = n_{ij}$

data units of category A_i and B_j for i = 1, 2, ..., r and for j = 1, 2, ..., s,

we apply Pearson's χ^2 -test for the goodness of fit to see if the observed counts agree with the expected counts, i.e. if the null hypothesis H_0 (that the categories of **A** and **B** are independent of each other) is true.

χ^2 -test of independence of qualitative data items

Calculate

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(n \times n_{ij} - n_{i} \times n_{j}\right)^{2}}{n_{i} \times n_{j}}$$

Theorem:

If the null hypothesis is true, then

$$X^2 \sim \chi^2_{(r-1)(s-1)}$$
 approximately as $n \to \infty$

Notice the number of the degrees of freedom

(see below)

The number of the degrees of freedom:

The observed counts O_{ij} for i = 1, ..., r and for j = 1, ..., s

are bound by the system of r + s equations:

$$\sum_{j=1}^{s} O_{ij} = \sum_{j=1}^{s} n_{ij} = n_i. \quad \text{for} \quad i = 1, 2, ..., r$$
$$\sum_{i=1}^{r} O_{ij} = \sum_{i=1}^{r} n_{ij} = n_{j} \quad \text{for} \quad j = 1, 2, ..., s$$

of which only r + s - 1 are linearly independent, i.e. one of the equations depends on the others.

The number of the degrees of freedom:

We thus have $r \times s$ observed counts O_{ij} for i = 1, ..., r and for j = 1, ..., sbound by r + s - 1 linearly independent equations, i.e. only $r \times s - r - s + 1 = (r - 1) \times (s - 1)$

of the observed counts are free.

Therefore, the number of the degrees of freedom is

$$(r-1)(s-1)$$

Now, finish the χ^2 -test of independence of qualitative data items

(H_0 : the categories of **A** and **B** are independent of each other) as follows:

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5 \%$
- find the critical value c > 0 so that

$$\int_c^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

where f is the density of the χ^2 -distribution with (r-1)(s-1) d.f.

- if $X^2 \ge c$, the critical region, then <u>reject</u> the null hypothesis
- if $X^2 < c$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis