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Simple Linear Regression: Motivation

Motivation:
Assume a dataset (y;, xy;)t, of n statistical units, i.e. we are given n pairs

(Vi x14), 2, %24), ..y (Mxny) Of quantitative variables (x;;,y; € R), such as

* x;; = investments and y; = the resulting revenues
* x;; = particulartimes and y; =the price of a stock at the given time
* x;; = the quantity of some goods supplied 10 a market

and y; = the resulting unit price for the goods

« efc.



Simple Linear Regression: Motivation

Given the n pairs (v1,%x11), (¥2,%21), .... (¥, xpq) Of the measurements,

we assume that there is a simple linear relationship between the values
of X; and Y of the form

Y = B+ 51X, forsome By, B €ER

or rather
Y=0+ X1 +¢ forsome fp, 5 ER

where ¢ is a random deviation.

We do not know the parameters #, and f;, however...



Simple Linear Regression: Motivation

Based onthe n pairs (v, x11), (?v2,%21), ... (¥uXpe) Of the measurements,
it is our purpose to find

the estimates by and by
of

the unknown Bo and 5,

The estimates b, and b, are also denoted by S8, and f,, respectively,

sometimses, i.e. the estimates are
by = 30 and b, = 31



Simple Linear Regression: Example

Wae have got a sample of n = 10 observations:

L Xi1 Vi

1 8.01 7.24
12 7.81 6.62
13 4.38 5.53
14 3.54 4.47
15 6.17 6.35
16 6.64 6.56
7 7.58 6.68
18 8.98 7.46
19 1.01 3.53
10 5.88 5.56

E.g.. x; = temperature & y; =the length of a metal rod



Simple Linear Regression: Example

y=3+X,




Simple Linear Regression: Least Squares Method

We have gotthe n pairs (yy,x11), (33, %34), ..., (34, x5,) Of the observations.
For any by, b; € R, the i-th estimated value is

$1=by+bxyy for i=12,..,n

The i-th residual is the difference
S=e=yi— W for i=1,2,..,n

The residual sum of squares is

RSS = Z ef = Z@i —-$:1)° = Z(Yﬁ — bg — b1x41)?
=1 =1 =1



Simple Linear Regression: Least Squares Method

Giventhe n pairs (v{,x31), (32,%21), ..., (3, xny) Of the observations,

find by, by € R so that the residual sum of squares

n
RSS = Z(bo + bixpn —y)* — min
i=1
is minimized.

The first-order optimality conditions are

dRSS JdRSS
= and —={

T 3b.




Simple Linear Regression: Least Squares Method

Given RSS = X1, (bg + byx;1 — y;)%, we obtain the system of two equations

of two unknowns:
n n
dRSS JRSS
= ) 2(bg+bixy—y) =0 and ——= ) 2(by+byxy—yJ)x;=0
abﬂ =1 abl =1
or

n n \
nby + zxu by = ZJ’!
i=1 i=1

>— the normal equation
n n

n
Z Xi1 b + Z xf b= ) Xuvi
i=1

i=1 i=1




Simple Linear Regression: Least Squares Method

Hence,
given the observations (y3,x41), (72,%21), ..., (Fn,%n1), the estimates are:
1 n n
3n=bo=5 J"i_zxilbl =
i=1 i=1
_ f=1 X1 X1 E}"=1 Yi— f=1%i1 E}"=1 Xj1Yj

n E?:]_ Xi1Xi1 — E?:]_ Xi1 E?:]_ le

and

ﬁ —p = n Yl XY — D1 Xia Z}}=1 Yj
1 — ¥1 —
n z:":]_ xilxi'l - E?::[ xi'l Z}}=1 xj'l



Simple Linear Regression: Generalization

Given the n pairs (y1,%x11), (¥2,%21), ..., (Un,Xn1) of the measurements,

we have assumed the simple linear relationship of the form

Y = By + 31X, forsome B, f; ER

The simple linear relationship can be generalized to the form

Y =~ BUXU + ﬁ1X1 with XD =1
forsome By, 61 ER

In general, we can have any n triples (31, x10,x11), (2, %20, X21)s «vvv Vn Xm0 Xn1)



Simple Linear Regression: Generalization

We shall now study

Multiple Linear Regression



Multiple Linear Regression: Introduction

That is, we are given a dataset (y;, xy9, Xi1, Xi2, .-, Xix ) ieq Of n statistical units
((k + 2)-tuples):

(3’1, X10, X11, X12, =, X1k )

(yZJ X200 X21, X22, -, X2k )

(J’nr Xnor Xn1lr Xn2r - xnk)

where VYirXios Xi1r» Xizs s Xix € R forevery i=1,2,..,n.



Multiple Linear Regression: Introduction

Giventhe n (k + 2)-tuples (3, X0, X1, ) Xix )=,  SUCh @s measurements,

we assume the multiple linear relationship between the values of X, X3, ..., X;

and Y of the form

Y = BoXo + B1Xy + -+ BrXx for some fo,f,...0r ER
or rather

Y =BoXog+ 1 Xq + -+ BiXy + £ for some By, 81, ., B ER

where £ is a random deviation.

We do nof know the parameters f,, 51, ..., B, however...



Multiple Linear Regression: Notation

We have the datasetofthe n (k + 2)-tuples (y;, X9, Xy s Xig )11

The values (y;)7-, constitute an n-component column vector y,
which is an n X1 matrix, and the (k + 1)-tuples (x;o, Xi1, s Xiz )11,
constifute an n x (1 + k) matrix X:

B4 1 X10 X111 - X1k

_ n _[Y2 _ n _ [ %20 X21 - X2
y - (yi)i=1 - : X = (xi(]!xill ---:xl'.k)i=1 - - : . .

n Xno Xni - Xngk

We often have x;, =1 forevery i =1,2,..,n,



Multiple Linear Regression: Notation

Assuming the multiple linear relationship between the values of X, X3, ..., Xj,
and Y ofthe form

Y = Xoflo + X151 +--- + XpBx

the unknown parameters Bq, B1, ., B € R constitute a (k + 1)-component
column vector #, whichisa (k+ 1) X1 matrix

Bo
B
B = ﬁjz

K



Multiple Linear Regression: Notation

All in all, we have the n equations

y1 = X10f0 + %1181 + X1282 + -+ Xqpfr + &
V2 = X080 + X211 + X222 + -+ Xop fir + &

Yn = Xnofo T XnaB1 + Xp2B2 + -+ XpiBx + &y
where

 the dataset (y; xi0,Xi1, w0 X )ieq I8 given,
» the parameters B,, 81, ... B € R are unknown (to be estimated), and
« the values &,s,,..,&, € R are random deviations (random errors).



Multiple Linear Regression: Notation

The (unknown) random deviations &, &5, ..., &, € R constitute an n-component
column vector & whichisan n x 1 matrix:

&y

)
£= (gl =

€n
Moreover, the values (x;o,x;1,..,Xix) are seen as a (1 + k)-component
row vector x;, whichisa 1 x (14 k) matrix:

x;=(Xi0 Xi1 - Xig) for i=1,2,..,n



Multiple Linear Regression: Notation

Tosumup, assuming n2 2 and k =2 0, we have:

Yi X10 X171 - X1k X1
¥y2 X20 X212 - Xog X2
y= (yi ?=1 = : X = (xiﬁl Xil '"!xik)?=1 = : : : : = .
n Xno Xn1 - Xnk Xn
P1 !
— _ n _1 &2
B=|5 &= ()= =
. En
k



Multiple Linear Regression: Notation

The n equations

Vi = Xpofotxufrtxppfettxy iyt = x1+4
Yo = XpoBot X1t xnfot txyfrtez = xBte;
Yn = XpoPotxpfrtxpfot v +xuPr + &0 = X8+ ¢,

can then be written briefly as

y=XB+e&




Random vectors

« Random variable

« Random vector

 Mean value
 Variance-covariance matrix

* Uncorrelated random variables

* Independent random variables




Random variable

Let (f),F,P) be a probability space. Thatis,
« 3 — the sample space (a non-empty set),

« F — the event space {a g-algebra on the sample space )
« P — the probability measure on (Q,F).

Recall that a random varlable is a function
X:0—R

which is measurable, i.e. the preimage of any open interval is an event
(X‘l((a, b)) ={wen:X(w)e (ab)}eF forevery a,b € R such that a < b).



Random vector

Let (£}, F,P) be the probability space as above, and let n random variables
X1, X2, .., X, be given. We can then stack the random variables into an

n-dimensional random vector
X4
X= {2
X
which is a (measurable) mapping

X:0-R"



Random vector

Remark: The fact that the mapping X:Q - R" is measurable means that the

preimage of any open set is an event:
X (={we:X(w)EGIEF  forevery open G S R"

We assume for simplicity that { = R® and that the mapping is the identity:
XiwPrP w

(the event space F is the collection of all Lebesgue measurable subsets of R")

Remark: The mapping X:Q —» R" is measurable if and only if



Random vector: Expected value

Given the random variables X;,X5, .... X,
the expected value of the random vector X is:

E[X;]
E[X] — E‘EYZ
E[Xp.




Random variables: Variance and Covariance - QE

Given the probability space (Q,F,P), let X:Q->R and Y:Q - R

be some two random variables.

The variance of the random variable X is:

Var(X) = E[(X — E[X])?]

The covarlance of the random variables X and Y is:

cov(X,Y) = E[(X — E[XDD(¥ — E[Y])]

Observation:



Random vector: Variance-covariance matrix - QE

Given the random variables X, X5, ..., X,
the variance-covariance matrix of the random vector X is:

Var(X;) cov(X{,X;) cov(Xy,X3) .. cov(Xy,X,)
cov(X,, X;) Var(X,) cov(Xy, X3) .. cov(Xy X,)
Var(X) = | cov(Xs3,X;) cov(X3,X,) Var(Xg) .. cov(Xg, X,)

cov(X,, Xy) cov(X, X,) cov(X,,X3) .. Var(X,)

where
cov(Xy, X;) = E[(X; — EIX:D(X; —E[X;])] and  Var(X)) = cov(X; X))



Random vector: Uncorrelated random variables - e%

The random variables X;,X,,...,X,, are {pairwise) uncorrelated if and only if

cov Xi,Xj) =0 if i#j forall i,j=1,2,..,n



Random vector: Independent events

Let (£}, F,P) be a probability space and let A,,4,,...,4,, € F be events.

Recall that the events 44, 4,,...,4, are mutually independent if and only if

P(A; NA; N---NA,) = P(A) X P(4,) X - X P(A,)



Random vector: Independent random variables

Let (Q,F,P) be the underlying probability space and let X;,X;, ..., X,: Q- R

be random variables.
The random variables X, X5, ..., X,, are mutually independent if and only if

fwe:a <Xi(w)<biln PlweN:a < X(w) <b}X
p N{fwell:ia, <X (w)<b}n _ XP{we: az<X2(w)<b2}><
NfweN:a, <X,(w) <b,} XP{we: an<Xn(cu)<bn}

forevery a,, by, a3, b,, ..., a,, b, E RU{—00,+00} suchthat a; < b



Random vector: Independent random variables

Theorem: If the random variables

Xy, X5, ..., X, are mutually independent, then they are pairwise uncorrelated.

Remark: j The converse does not hold true in general !

Remark: The proof of the theorem is easy if the sample space is finite
(Q=1{1,2,..,N}) orcountable (@ ={1,2,3,..}). The proof is somewhat
involved in the general case (requires some knowledge of the theory of

the Lebesgue integral, uses limiting steps — Levi's Theorem).



Multivariate
normal distribution




Normal distribution

Consider a probability space (L2, F, P) where the sample space { =R, the

event space F is the collection of all Lebesgue measurable subsets of R,
and the probability P is given by its probability density function

1 J%Lx- 2
p(x) = =e 2 for x€R

2no

forsome g €R and ¢% € R, sothat ¢ > 0.
That is, the probability is

P(4) = fcp(x)dx forany A€EF
A



Normal distribution

Given the above probability space (Q,F, P), the probability P being given

by its density
1 JjéLx- 2
¢(x) = e 2 for x€R

2o

then the identity random variable X:R - R
X(x)=x for x€R
follows the Gaussian normal distribution.

We then say that X is a Gaussian normal random variable and write

X~ N(ﬂ,d’z)



Normal distribution

Theorem: Let (,F,P) be a probability space. (Consider (0 = R® for simplicity.)
If the random variables X; ~ ¥ (i,,62), Xo ~ N (y, 06%), ..., Xp ~ N (i, 02)

are mutually Independent and normally distributed, then

Xp+Xo++X, ~ N +p+ -+, of +df ++0f)

that is, their sum is also normally distributed.



Variance-covariance matrix - Q%

Theorem: Let (Q,F,P) be a probability space (with = R" for simplicity)
and let X,,X,,...,X,: 2 = R be any random variables, which are stacked info
a random vector X. Then its variance-covariance matrix

Z = Var(X)
is symmetric and positively semi-definite.

That is, it holds

2T=X and u'Zu=>0 forevery ueR"



Variance-covariance matrix: A decomposition - Q%

Theorem:

Let £ € R*™*" be any symmetric and positively semi-definite matrix, and let
k = rank(Z)
Then there exists a matrix 4 € R*>** such that

Y =AAT

Remark: The matrix A can be obtained » either from the spectral decomposition /
eigendecomposition of the matrix Z: = = QAQ" where 4 is diagonal and @ is
orthonormal (QQT = I); - or from the Cholesky decomposition: £ = LLT where



Standard multivariate normal distribution (of dim. k2 1)

Consider a probability space (Q,F, P) where the sample space Q = R¥, the
event space F is the collection of all Lebesgue measurable subsets of R,

and the probability P is given by the standardized normal density function

1 xTx

(x) = e 2 for xeR¥
P ,—( L

That is, the probability is

P(A) = f{pk(x) dx forany A€EF
A



Standard multivariate normal distribution (of dim. k2 1)

Given the above probability space (Q,F, P), the probability P being given
by its density

1 xTx

(x) = e 2 for x € RF
P '_(er)"

then the identity random vector Z: R* -» R¥

Z(x)=x for xeR*

follows the standard Gaussian multivariate normal distribution.

Woe then say that Z is a standard multivariate hormal random vector and write
Z~XN(0,I)



Multivariate normal distribution

Let a vector g € R® (mean values) and a symmetric positively semi-definite

matrix £ € R™" (variance-covariance matrix) of rank &k be given. Moreover,
let 4 € R®™** be a matrix such that Z = AAT. Finally, consider the probability
space (Q,F,P) with the sample space 02 = R*¥ and the standard multivariate
normal random variable Z ~ N (0,1I).
Then the random vector X:R¥ - R™ defined so that

X(x)=AZ(x) for xe€RF
follows the standard Gaussian multivariate normal distribution.

Woe then say that X is a multivariate normal random vector and write



Multivariate normal distribution: Density

If the variance-covariance matrix £ € R**? is non-singular,
thatis rank(Z) = k = n, then the probability density function
of the multivariate normal probability distribution

N (e, X)

IS

1 (x—ﬂ)TEi“i(x-El

e for xe€ R®
V (2r)E det(T)

flx) =

If the variance-covariance matrix £ € R"*" is singular, that is rank(Z) =k <n,
then the probabllity denslity functlon of the multivariate normal probability



Multivariate normal distribution: Another definition

Let (£}, F,P) be a probability space and let X:Q —» R™ be a random vector.

Then X follows a multivariate normal distribution, that is X ~ ¥ (g, E)
for some g € R"™ and for some symmetric and positively semi-definite £ € R?*%

if and only if,

for every a € R®, the random variable a'X is normally distributed;
that is, there exista p, € R and a non-negative ¢Z € R such that

X+ aXo + -+ a, X, ~ N(ug02) forevery a€R"



Multivariate normal distribution: Linear transformation

Theorem: Let (Q,F,P) be a probability space and let X: 2 — R® be
a multivariate nommally distributed random vector, thatis X ~ ¥ (u, Z)

for some g € R"™ and for some symmetric and positively semi-definite £ € R?*%.

Then
AX ~ N(Ap,AZAT)  foranymatrix A€ R™"



Multivariate normal distribution: Theorem

Theorem: Letrandom variables X;,X,, ..., X,, be stacked into a multivariate

normally distributed random vector X, thatis X ~ ¥ (,Z) for some g€ R"
and for some symmetric and positively semi-definite € R®™**. Then
the random variables X, X,, ..., X,, are mutually independent
if and only if
the random variables X, X,, ..., X,, are pairwise uncorrelated

(that is, the variance-covariance matrix Z is diagonal).

Remark:
= holds true in general, see above
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Multiple Linear Regression: Summary

Wae have got the sample of the n (k + 2)-tuples

(yil X ) = (yl".l Xios Xitr Xi2s e, xﬂc) for i=1!2l'“ln

of the observations, where y; € R and x; € R™¥U+Ek) or x;0, x4, ., xix € R
fori=1,2,..,n.

The sample could have been obtained in either of the following two ways:

(see the next two slides)



Multiple Linear Regression: Summary

First:

— A sample of n statistical units was selected from a larger population.

— Each of the statistical units was measured and we have obtained
the pairs (y;, x;) for i =1,2,...,n thus.

— jii The values x; € R1X(1+K) were measured / are known exactly 1!
(That is, the values x; are non-random.)

— Weassume y; =~ x;f# and we have y; = x;8 + &,

where ¢&; is a random deviation (error).

— The random deviation is caused by the intrinsic properties of the statistical unit



Multiple Linear Regression: Summary

Second:

— We prepared the values x4, x5, ..., x,, € R4 3t the beginning.

— jii These values x4, x5, ..., x, are known exactly therefore !

— When making the i-th measurement,
we set up the system (adjust the system’s settingto x; exactly) first and
we measure the value y; of the dependent variable then.

— The random deviation &; here is caused
either by the intrinsic properties of the system (further unknown / “random” /

unconsidered factors),



Multiple Linear Regression: Summary

Remarks:
* In practice, the data may be obtained in either way (first or second).

* In either case (first or second), the independent values x4, x5, ..., Xy,
are assumed to be known exactly, i.e. without any measurement errors.

 Assuming y; = x;B8, even the dependent values y; may be measured exactly,
I.e. without any measurement error, the random deviation &; = y; — x; 8 being
caused by the intrinsic properties (other unknown / “random” / unconsidered
factors).

* Forthe purpose of the mathematical analysis, we assume the second case only.



Multiple Linear Regression: Terminology

Parameters

% Regression coefficients
/Y = XO 0 +X1ﬁ1 + +Xkﬁk + 8\

Regressand Regressors Deviation
Predicand Predictors Error term
Explained variable Explanatory variables Disturbance
Dependent variable Independent variables Noise
Endogenous variable Exogenous variables
Controlled variable Control variables
Response Stimuli
Outcome Covariates
Predicted variable
Measured variable




Multiple Linear Regression: Terminology

If Xu=1:

The intercept term

|

Parameters

Regression coefficients

—

/Y = ﬁD + Xw}{kﬁk + E\

Deviation
Error term
Disturbance

Noise

Regressand Regressors
Predicand Predictors
Explained variable Explanatory variables
Dependent variable Independent variables
Endogenous variable Exogenous variables
Controlled variable Control variables
Response Stimuli
Outcome Covariates
Predicted variable
Measured variable




Multiple Linear Regression: Assumptions

« The n row vectors x;,x,,..,X, € RIX(+K) gre known exactly, fixed,

given before the measurements.
+ We have n random variables Y;,Y5,..., ¥,
and n random variables &y, &5, ..., &n.
* We assume that the random variables Y, Y,, ..., Y, are independent
and the random variables &4, &5, ..., &, are independent.
« Remark:
It is enough to assume that the random variables Y;,Y5, ..., Y, are uncormrelated

and the random variables &, &;, ..., &, are uncorrelated.



Multiple Linear Regression: Assumptions

« Let (Q,F, P) be the underlying probability space.
« We stack the random variables Y1,Y5,...,Y, and &, &, ...,&, into

random vectors:

Y]_ €1
Y = }:2 and £ = Ez
Y, €n

which are (measurable) mappings

Y:Q - R? and - R"




Multiple Linear Regression: Random vectors

» We assume for simplicity that ) = R® and that the mappings are identities:

Yio~ w and WP ®

(the event space F is the collection of all Lebesgue measurable subsets of R")

* The expected values of the random vectors ¥ and & are:

E[Yj_] E ;81]
E[Y] = E[EYZ] and E[e] = E 52]
E[Y;,] &n]




Multiple Linear Regression: Random vectors

 The variance-covariance matrix of the random vector Y is:

Var(Y;) cov(yy,Y,) cov(y;,Ys) .. cov(Yy,Yy,)
cov(Yo, Y1) Var(Yz) cov(la,Y3) .. cov(Ya, V)
Var(Y) = | cov(Yy,Y;) cov(¥s,¥) Var(Ys) .. cov(YsY,)

cov(Y,,Y;) cov(Y,.Y5) cov(Y, Ys) .. Var(Y,)

Recall that
cov(Y, Y;) =E[(Y; —El¥D(Y; —E[;;])] and  Var(¥)) = cov(¥;, 17)



Multiple Linear Regression: Random vectors

 The variance-covariance matrix of the random vector £ is:

Var(e;) cov(e, &) covie, &) .. cov(ey,e,)
cov(es, g4) Var(e,) covi(ey,g3) .. cov(es g,)
Var(e) = | cov(es, &) covies, &) Var(es) ... covles,g,)

cov(ey, &) covig,, &) coviey,g) .. Var(s,)

Recall that
cov(es &) = E[(5; —EleD(¢; —Elg])] and  Var(e) = covle, &)



Multiple Linear Regression: The Classical Assumptions

« We have the underlying probability space (Q,F,P), with & = R" for simplicity.
* Let w € Q be the outcome of the random experiment.
* Recallingthat X isthe nx (1+ k) design matrix, we have
y=Y¥(w) =XB + e(w)

In other words:
* The measured values y,,y,,...,), are the numerical outcomes

Yi{w), Y2(w), .., Y (w) of the random experiment.
* The numerical outcomes Y;(w), Y>(w), ..., Y,(w) are obtained so that the

numerical outcomes & (w), s2(w), ..., &,(w) of the random experiment



Multiple Linear Regression: The Classical Assumptions

Recall:
iii The values of the regressors x,, x,, ..., x, are non-random and known !!!

iii The values of the parameters By, B1,.., 8 are non-random but unknown !!!

We assume that

Y~NIXB,o’) and &~N(0,0%I) forsome o2 € Ry

where I denotes the n x n identity matrix

and 0 denotes the n X 1 zero vector.



Multiple Linear Regression: The Classical Assumptions

The classical assumptions ¥ ~ N(Xg,0%I) and & ~ N (0,5%I) mean that

E[Y]=X8 and E[g]=0

that is
E[Y'_]_] xlﬁ E[EI] 0
eyl = B2 | o (%28 | ang gpe = | Eled | (©
E[Yy] B Ele,] 0

That is

E[Yil=x;8 and E[g]=0 for i=1,2,..,n



Multiple Linear Regression: The Classical Assumptions 5&&

The classical assumptions ¥ ~ N(Xg,0%I) and & ~ N(0,0%I) also mean that

g2 0 0 .. O
0 62 0 .. O
Var(¥)=Var(e)=c?I=| 0 0 o2 0

0 0 0 .. o°

That is,
o Var(Yy) = Var(g) = o? for i=1,2,..,n forsome o2 € Rf —

* and the random variables Y;,Y5, .., Y, Or &,&3 ..,&,

homoscedasticity,
l.e. the variance
IS the same

are (pairwise) uncorrelated.



Multiple Linear Regression: The Classical Assumptions 5&%

The classical assumptions ¥ ~ N (Xg,c%I) and & ~ N(0,0%I) finally mean that
. Y; ~ N(x:8,0%) and g ~ N(0,02) for i=1,2,..,n
where N (u,0%) denotes the normal (Gaussian) probability distribution

with mean u and variance 6% and that

* the random variables Y,,Y,,..,Y, or g,¢&,,..,&, are (pairwise)uncorrelated.

Remark: It always holds: If the random variables Y,,Y5,...,Y,, Or £, &5, .., &,
are mutually independent, then they are (pairwise) uncorrelated.

It also holds: If ¥ ~ N(XB,06%I) and & ~ N(0,a%I), then the random variables



Multiple Linear Regression: The Classical Assumptions

The classical assumption ¥ ~ M(XB,0%I) implies that

linearity - E[Y] = X8

that is
E[Y;] = xiﬁ = xmﬁo + xﬂﬁ;l + e+ xmﬁk for i=1,2,..,n



Multiple Linear Regression: Notation

* The unknown quantities
— unknown parameters £y, 81, -, Pi

— unknown (random) deviations &y, 5, ..., &,

are denoted by Greek letters

» The estimates of the unknown parameters S, 84, -, Bx
are denoted by the respective Latin letters by, b4, ..., by,

or by the E A7 ﬁﬂrﬁll '"JBk!
so that b, =ﬂo, by =ﬁ1, oy Dy =3k




Multiple Linear Regression: Notation

 The predicted values of the dependent variable are denoted by the hat “A"

V; = x;ib = xi9bg + Xi1bq + -+ XDy for i=12,..,n

« The unknown (random) deviations &4, &5, ..., &, are denoted by Greek |letters.
The residuals are denoted by the respective Latin letters e,, e, ..., e,
orby the hat "V £&,5,...,&,,
so that

e1=é&=y1— 9 ez=&6=y,—¥; n=E,=Yn—n



Basic Results
(Theorems)

* The normal equation

* The predicted values

« Orthogonal projections

« Theorem 1: ¥ and e are independent
 Theorem 2: y ~ N (XB, 6%H)

« Theorem 3: e ~ N (0, 6*M)

* Theorem4: b ~ N(B,6%C) if rank(X) =k +1



Multiple Linear Regression: The Normal Equation

Given the n pairs (v, x1), (y2,%3), ..., (5u%;) oOf the observations,
the Residual Sum of Squares for the estimates by, b4,...br €ER IS

n n n
RSS = Z eiz = Z(J’: —9)% = Z(:V: — Xiobo — Xi1by — - — xpbr)? — min
=1 i=1 i=1

It is our purpose to find the estimates by, by, ..., b € R s0 that the Residual Sum

of Squares RSS Is minimized. To this end, we let

n
dRSS
ab; Z —2x;5(¥; — %i0bo — Xyaby — - —Xixbe) =0 for j=0,1,.. .k
J

=1



Multiple Linear Regression: The Normal Equation

From 9RSS/5, = ¥ie1—2x4;(y; — %wbo — Xunbr — - — Xubr) = 0, we obtain

the Normal Equation:

n n
Zx,-_j(xmbo + xﬂbj_ + et x;kbk) — Z XijVi for j =01,..,k

=1 i=1



Multiple Linear Regression: The Normal Equation

Recall the notation:

X10 %11 - Xix X1
X = Cio. Xigy r X )leg = 20 20T TR
Xno Xni o Xnk Xn
and
Y1
y=0)i= = yz



Multiple Linear Regression: The Normal Equation

So the normal equation

n n
qu(xmbo + Xy by + o+ xyby) = Zx,;jy; for j=0,1,..,k

i=1 i=

(Y

n
Z x;;(x;b) = ) x5y for j=0,1,..,k
i=1

l,=

can be written as

XTXb=X"y



Multiple Linear Regression: The Normal Equation

Having the normal equation (X"Xb = XTy), where X isan n x (1+ k) matrix,
let

p = rank(X)

Assume for simplicity that the matrix X Is of full rank, that is,

NO
p=rankX)=k+1<n R (perfect)

multicollinearity

The matrix XTX is then non-singular; let:

c=(xTx)"



Multiple Linear Regression: The Normal Equation

We have

C=(XTX)_1= C%o C'?l Cao - CZ.k

The solution to the normal equation

XTXb=X"y

is then
b=CcX'y




Multiple Linear Regression: the predicted values

Recall the n equations

y1 = X10f0 + %1181 + X1282 + -+ Xqpfr + &
V2 = X080 + X211 + X222 + -+ Xop fir + &

Yn = Xnofo T XnaB1 + Xp2B2 + -+ XpiBx + &y
where

 the dataset (y; xi0,Xi1, w0 X )ieq I8 given,
» the parameters B,, 81, ... B € R are unknown (to be estimated), and
« the values &,s,,..,&, € R are random deviations (random errors).



Multiple Linear Regression: the predicted values

Now the predicted values are:
Y1 = X10bp + X11b1 + X12b2 + -+ X1 by

$2 = x20b0 + X21b1 + X228 + -+ X1 by

Pn = Xpobg + Xpa by + Xpobo + -~ + X by
where
 bo=pfy, by =P8y ..., by =fii arethe estimates

of the unknown parameters Sy, 51, ....8; € R,

* 91, %, ...V, are the predicted values.



Multiple Linear Regression: the predicted values

Shortly:
— the solution to the normal equation is
b=cXTy = (XTX) " XTy
— the predicted values are
y = Xb = XCX"y

Introduce the notation:

H = XCX™ = X(X"X) "' xT

The letter “H” stands for "hat”:
y=Hy



Multiple Linear Regression: some properties of H

By the construction (by the Least Squares Method: the vector ¥ lies in the linear

hull of the columns of the matrix X and Is as close to y as possible in the Euclidean
distance), the mafrix

H = XCXT = X(X"X) " X7
is the matrix of the orthogonal projection onto the linear subspace
{XB: B R}
(the linear hull of the columns of the matrix X )

(I-H)
Is the matrix of the orthogonal projection onto the orthogonal complement

moreover



Multiple Linear Regression: some properties of H

The matrix H = XCXT = X(XTX) "XT therefore is:

— idempotent:

H=HH
— symmetric:

H=HT
— and:

HX =X

The residuals are:

Therefore:



Multiple Linear Regression: some properties of H

The orthogonal decomposition

XB : ]R1+k 1
(XB:B € } of the vector y € R™:

(the orthogonal
complement = y=%y+e and ely

= the space of
the residuals)

vector of the numerical outcomes
of the n random experiments

y

(L—(E)y B " By the Pythagoras Theorem:
M Iyll? = 171 + llell®
y'y=9"9+e"e
g
0 9 = Hy {XB: B e Rk}

(the linear hull of the columns of X)

Residual Sum of Squares: RSS=Y1,(y; —9)2 =YL, e = eTe



Multiple Linear Regression

Recalling that the regressors xy, x,, ..., x, € R™*(1+5) grg given, that we assume
Yi=xi1f + & for i=1,2,..,n
with
El;]l=x;# and Var(lp)=¢? for i=12,..,n
or
E[i]]=0 and Var(s;) = o2 for i=1,2...,n

where the random variables Y4, Y, ..., Y,, Or &,&,,.., &,, respectively, are
independent (or uncorrelated), and that yy, 5, ..., ¥, are some observations
of the random variables Y3,Y>, ..., Y, it follows that all the estimates

bﬂ: b‘lJ == bk (30! ﬁl! wer lﬁk) 5;11 ?2! ==e) ﬁﬂ. RSS etc.



Multiple Linear Regression: Theorem 1

Theorem 1: The random vectors ¥ and e are independent.

That is,

P( {wEﬂ=?(w)EG?}n)_ P{wen: F(w) € Gy} x
Nfwed:elw) €G,.} _xP{wEﬂ=e(m)ege}-

for every open set Gy € R™ and for every open set G, S R".



Multiple Linear Regression: Theorem 1: Corollary

Corollary: The random vector ¥ and the random variable RSS are independent.

Recall the Residual Sum of Squares is RSS =Y, (y; —5)> =2, ef = e'e

That is,
( fweQ:Fw)eGs]n )_ - Plw € 0:5(w) € Gy} X
N{weN:RSS(w) €Grss} / X P{w € N:RSS(w) € Grss }

for every open set Gy € R™ and for every open set Gpss S R



Multiple Linear Regression: Theorem 2

Theorem 2: It holds
¥ ~ N(XB, o°H)

It holds in particular hence that

E[?t] = E[Iib] = x;f§ = E[Yi] for i=1,2,...,n
and
Var($;) = a*(XCX"),, for i=12,..,n

cov(9, ;) = JZ(XCXT)U for i,j=12,..,n



Multiple Linear Regression: Theorem 3

Theorem 3: It holds
e ~N(0, o*M)

where
M=I-H=I-XCX"=I—-X(X"X) 'XT

It holds in particular hence that

Ele;]] =0 for i=12..,n
and
Var(e;) = o*my = 2 — Var(§;) for i=12,..,n

cov{e;, e;) = a%my; for i,j=1,2,..,n



Multiple Linear Regression: Theorem 4

Theorem 4: If rank(X) =k + 1, then
b ~ N(B,6%C)

It holds in particular hence that

E[b;] = B; for j=0,1,...k
and
Var(bj) =o0%cy; for j=0,1,...k

cov(b;, b)) =a%cy;  for ji=0,1,..,k



Residual Sum
of Squares,
x2-test for the
variance 02,
and

* Residual Sum of Squares (RSS)
» Theorem 5: RSS/0? ~ x7_p

confidence
Iintervals

 x2-test for the variance 0?2

* Confidence intervals




Multiple Linear Regression: Residual Sum of Squares

Recall the Residual Sum of Squares is

n

D= - yf)Z—Z(yi—xib)Z—(y—Xb)T(y—m

n
=1 i=1 i=1

RSS

We know that the matrix H is symmetric (HT = H) and idempotent (HH = H).
Moreover, we know by the Pvthagoras Theorem (see above) that

ele=yTy—-3y=y'y—y H' Hy=
=y'y—y'Hy =y'y —y'9 = yT(y — Xb)



Multiple Linear Regression: Mean Square Error

Put together, the Residual Sum of Squares is

Z eTe= (y—Xb)T(y—Xb) = yT(y—Xb)
=1

Define the residual variance or the Mean Square Error as

RSS 21—1 i xl’.b)z
n—=p n—=p

§2=——

where

p = rank(X)



Multiple Linear Regression: Theorem 5

Theorem 5: It holds

where

Recall that, if X ~ x7_,, then E[X] =n—p.

Therefore:
E[RSS] = 6%(n —p)

i)



Multiple Linear Regression: Theorem 5

Remark: Use Theorem 5 (RSS/g? ~ x7_5)

— {0 obtain an unbiased estimate of the variance:
E[s%] = o2 that is §% ~ g2
— for a y?test about the variance:

(n — p)s?
P R Xr-p

— or to establish the confidence intervals for the variance ¢?



Test of hypothesis about the variance 06?2

Remark:
Theorem 5 (RSS/0? ~ x4_,) can be used to conduct the y>test for the variance.

* Let of € R} be a prescribed number.
 Formulate the null hypothesis:
Hy: 0?2 =d¢
« Formulate the alternative hypothesis
— two-sided: Hi: ¢*+*oaf
— one-sided: H;: o¢%<gé

— one-sided: H;: o¢%>gf



x2-test for the variance o2

Notation: Let

x5-p(0)
denote the quantile function of Pearson’s y2-distribution with n —p d.f.,
where p = rank(X).

The quantile function x,?;_p(q) is the function inverse to the cumulative
distribution function F(x) of Pearson’s y2-distribution with n — p degrees

of freedom, i.e.

Yap(@)=Fq) for qe(0,1)



x2-test for the variance o2

Notation: Let

xa-p(q)
denote the quantile function of Pearson’s y2-distributlon with n —p d.f.,
where p = rank(X).

In other words, if 0 <g <1, then x= xﬁ_p(q) is the unique value such that

J.x%-p@ £ dt = f_ :f(t) dt=gq

-0

where f(t) is the density of Pearson’s y2-distribution with n—p d.f.



x2-test for the variance o?

Having chosen the value ¢f € R and assuming the null hypothesis H,: 6% = ¢¢

is true, calculate the stafistic

_RSS _RSS _ 3, (3 —9)°

- 2 2

2 T —
X o2 g, 0,
0 0




x2-test for the variance o2

The y2-test for o2 with two-sided alternative hypothesis (62 * 63):

« choose the level of significance, a small number a > 0, suchas a =5%,

ofther popular valuesare a=10% or a=1% or a =0.1% efc.
mgm a a
« the critical values are ¢ = yi_,, (E) and d=x3_, (1 — 5)
« if X% €[0,c]V[d,+), the critical reglon, then relect the null hypothesis

« if X? € (c,d), then do not reject (or fail to reject) the null hypothesis



x2-test for the variance o2

The y2-test for o2 with one-sided alterative hypothesis (62 < o%):

* choose the level of significance, a small number a > 0, suchas a =5%,

other popularvaluesare a=10% or a=1% or a =0.1% elc.
« the critical value is ¢ = y2_,(a)

« if X% €[0,c], the critical reglon, then relect the null hypothesis

¢ if X? € (c,+), then do not reject (or fail to reject) the null hypothesis




x2-test for the variance o2

The y2-test for o2 with one-sided alterative hypothesis (62 > o%):

* choose the level of significance, a small number a > 0, suchas a =5%,

other popularvaluesare a=10% or a=1% or a =0.1% elc.

« the critical value is d = y3_,(1 —a)

« if X? € [d,+), the critical reglon, then reject the null hypothesis

 if X% €[0,d), then do not reject (or fail to reject) the null hypothesis




Confidence interval for the variance 0?2

Let x,¥ € Rt be any numbers such that x <y and let F(x) be the cumulative
distribution function of Pearson’s y2-distribution with n —p degrees of freedom.
Then, by the definition of the cumulative distribution function and by Theorem 5,

the probability

RSS
P(x-(FSJ’) =F(y) = F(x)
Therefore

P(?Saz <$)=F(y)—fr(x)



Confidence interval for the variance 0?2

We have:
RSS RSS
P(—saz <—) = F(y) — F(x)
v X
Choose the level of significance, a small number « > 0, suchas a =5 %.
Let y =x2_, (1 - %) andlet x = yZ_, (g) Recall that y2_,(q) = F~(q).

Then, by the continuity of the cumulative distribution function, the probability that

RSS RSS

oo e ) 0D

is about 1—-a =95 %.



Confidence interval for the variance o3

We have:

Choose the level of significance, a small number a > 0, suchas a =5 %.
Let y = x7_,(1—a) andlet x V0. Recallthat x2_,(q) = F~1(g).
Then, by the continuity of the cumulative distribution function, the probability that

RSS
the unknown &2 € Lz , +m)
u—p(l —a)

is about 1—-a =95 %.



Confidence interval for the variance o3

We have:
RSS RSS
I’(};r-sgaz'<47;—)==1F6ﬁ)—nF(x)

Choose the level of significance, a small number « > 0, suchas a =5%.

Let y =+ andlet x = yi_,(a). Recallthat xZ_,(q) = F~1(q).
Then, by the continuity of the cumulative distribution function, the probability that

RSS
X%—p(a)

the unknown o2 € [0,

is about 1—-a =95 %.



t-test for a single
linear combination
of the parameters

BO!ﬁh- - -!pk =

e.gd. an individual

parameter §; —
and

confidence
Interval

» Theorem 6: pT™h ~ N (p™B, oc?p™Cp)

p'b-p'B ; |
Vs2,/pTCp n—(k+1) if rank(X) =k +1

and

- t-test for an individual parameter B;

- Confidence interval for the S



Multiple Linear Regression: Theorem 6

Theorem 6: Assume for simplicity that rank(X) =k + 1

and let pT € R1*(+%) beg a non-zero row vector (pT % OT).

Then
p'h ~ N(p'B, c?p™Cp)
p'b—p'p .
Ve fpicp D

and

Remark: The matrix XTX is positively definite.




Multiple Linear Regression: Prediction (Extrapolation)

Remark: Given a new row vector x = (xg, X1, X3 «u, Xp) € R1IX(1+E)
which is not included in the matrix X, we may wish fo predict (extrapolate)

the value of the random variable Y for this new statistical unit (x).

Assuming that the model is true, we should have
Y, ~ xf

or
Yy=xB +¢

where ¢ is the random error.



Multiple Linear Regression: Prediction (Extrapolation)

Not knowing the parameters £, we have to use their estimates b instead.

Then the point estimate of the value Y, is:
Y, =xb

Remark: If that rank(X) = k + 1, then we can consider pT = x and Theorem 6

pb-pf .,
V2 fpicp D

to obtain a confidence interval for the true value xp.




Multiple Linear Regression: Prediction (Extrapolation)

Choose the level of significance, a small number « > 0, suchas a =5 %.

Let ¢ > 0 be the value such that
+C
f fOdt=1—a

' A

where f(t) is the density of Student’s t-distribution with n — (k + 1) d.f.

Then, by Theorem 6,

Pb-p'B _ xb — xp -
P( FW-+°)“P( = VeieTep ) 1-@




Multiple Linear Regression: Prediction (Extrapolation)

By Theorem 6:

Pl—c< xb —xp <+cl=1—-a
REGTE

P (—chzJpTCp < xb - xf < +c+/ szJpTCp) =1-a

P (xb — s pTCp < xB < xb+ c\/szJpTCp) =1-¢q



Multiple Linear Regression: Prediction (Extrapolation)

Having obtained
P (xb — cv/s2\/pTCp < xB < xb + c/s2\/pTCp) = 1-«

the probability that the unknown

a a
xp € [xb — tn—(r+1) (1 - E) VS2VPTCP, xb + tn_es1) (1 - E) Vszy PTCP]

is about 1-a =95 %,
where t,_x+1)(q) denotes the quantlle function of Student’s t-distribution



Multiple Linear Regression: Theorem 6: Corollary

Corollary: By considering

pT=(0 .. 0 1 0 .. 0) withthe1latthej—th position

we obtain:
by — B;
Vs [g;

~ bn—(k+1) for j=0,1,..,k

Remark: Use the Corollary
— for t-tests about the parameters S, £4, ..., 8 ©f the model,

— to establish the confidence intervals for the parameters B, 1, «, B,



Tests of hypotheses about the individual parameters g,

« Choose any non-zero pT € Rk andlet a € R be a prescribed number.

» We can then use Theorem 5 to test the null hypothesis H, that p™g = a.

- By taking a particular choice of the non-zero pT € RI*(1*%) we can use

the Corollary ( ﬁ ﬁ

or B; =0 (ifwe put a =0 In particular).

~ tp—+1)) totestthe null hypothesis H, that g; =a



t-test for the parameter S; // rank(X)=k+1

Notation: Let

tn- e+ 1)(q)
denote the quantile function of Student’s t-distributlon with n— (k+ 1) d.f.

The quantile function t,_+1)(q) is the function inverse to the cumulative
distribution function F(x) of Student’s f-distribution with n — (k 4+ 1) degrees

of freedom, i.e.
th-e)(@) =F1(g) for q€(0,1)



t-test for the parameter S; // rank(X)=k+1

Notation: Let

tn- e+ 1)(q)
denote the quantile function of Student’s t-distributlon with n— (k+ 1) d.f.

In other words, if 0 < g <1, then x =t,_41)(q) is the unique value such that

b~ (@) x
[T o= o=

- 00

where f(t) is the density of Student’s {-distribution with n— (k + 1) d.f.



t-test for the parameter S; // rank(X)=k+1

Choosing the index j € {0,1, ...k} and a value by, € R,

formulate the null hypothesis
Hy: Bj = bjo

formulate the alternative hypothesis

+ two-sided: Hy:  Bj # by
* one-sided: Hi: By <by
* one-sided: Hy:  B; > bjo

and use the aforementioned Corollary to conduct the test.



t-test for the parameter S; // rank(X)=k+1

Having chosen the value b;s € R, such as bj, = 0, and assuming

the null hypothesis Hy: B; = b;, is true, calculate the statistic

ﬁj bj ~ bﬁ. by




t-test for the parameter S; // rank(X)=k+1

The t-test for B; with two-sided alternative hypothesis (8; # by):

» choose the level of significance, a small number a > 0, suchas a =5%,
other popular valuesare a =10% or a=1% or a =0.1% eftc.

* thecritical value is ¢ = t,_ 41y (1 - %)

o if T € (—o,—c]VU][+c,+0), the critical region, then reject the null hypothesis

« if T € (—c¢, +c), then do not reject (or fail to reject) the null hypothesis




t-test for the parameter S; // rank(X)=k+1

The t-test for 8; with one-sided alternative hypothesis (8; < by):

« choose the level of significance, a small number a > 0, suchas a =5 %,
other popular valuesare a =10% or a=1% or a =0.1% efc.

« the critical value is ¢ = t,_(4+1)(1 — @)

« if T € (—o0,—c|, the critical region, then reject the null hypothesis

o if T € (—c,+), then do not reject (or fail to reject) the null hypothesis



t-test for the parameter S; // rank(X)=k+1

The t-test for 8; with one-sided alternative hypothesis (8; > by):

« choose the level of significance, a small number a > 0, suchas a =5 %,
other popular valuesare a =10% or a=1% or a =0.1% efc.

« the critical value is ¢ = t,_(4+1)(1 — @)

« if T €[+c, +0), the critical region, then reject the null hypothesis

o if T €(—w,+c), then do not rejeet (or fail to reject) the null hypothesis



t-test for the parameter S; // rank(X)=k+1

IHWARNING!! It usually makes no sense to test the null hypothesis £, =0
if Xo =1, thatis, if 8, is the intercept term. Do not use the aforementioned

test unless you know what and why you are doing.

It can make sense to test the null hypothesis g, = 0 if the independent values

X1, X2, ..,Xn are from a neighbourhood of zero.

Otherwise (if the cluster of x4, x5, ..., x,, is far from zero) it hardly makes sense

fo test the null hypothesis 8, = 0 because the intercept term S, Is just a constant



Confidence interval for the parameter (; // rank(X)=k+1

Let x,¥ € R be any humbers such that x < y and let F(x) be the cumulative
distribution function of Student's f-distribution with n — (k + 1) degrees of
freedom. Then, by the definition of the cumulative distribution function and by the

Corollary, the probability

b; — B; _ B
P(x <\fs_zﬁ < y) =F(y) — F(x)

Therefore

P (xv/s2,[g; < by — B; < ys2,[gz;) = F(y) — F(x)
P(bj-ywstJGgi< B <by—x/s2[5;) = F() — F(x)



Confidence interval for the parameter (; // rank(X)=k+1

We have:

P (b — V52 55 < B; < by — 252 [57) = F(y) — F(x)

Choose the level of significance, a small number a > 0, suchas a=5%.

Let ¥ = tp_r+1) (1 - %) and let x = —y = —t,_(e41) (1 — %) = tpe (k1) (%)
Recall that t,_(e41)(q) = F~*(q).

Then, by the continuity of the cumulative distribution function, the probability that

[ 4 a
the unknown ﬁ}' = [bj — tn.—(k+1} (1 —_ E) '\/S_zﬁ: bj + tn—(k+1} (1 - E) -\/S_zﬁl



Confidence interval for the parameter (; // rank(X)=k+1

We have:

P (b — yV/s2,[5; < By < by — x[s2 [g7;) = F(y) — F(x)

Choose the level of significance, a small number a > 0, suchas a =5 %.
Let y = tp—k+1)(1 — @) and let x = —co. Recall that t,—x+1)(q) = F~1(g).
Then, by the continuity of the cumulative distribution function, the probabllity that

the unknown §; € [b;' = tn-ksn)(1 = a)x/s_zﬁ, +m)

is about 1—-a =95 %.



Confidence interval for the parameter (; // rank(X)=k+1

We have:

P (b — yV/s2,[5; < By < by — x[s2 [g7;) = F(y) — F(x)

Choose the level of significance, a small number a > 0, suchas a =5 %.
Let y = +o0 andlet x = t,—x+1)(a@). Recall that t,_+13(q) = F~1(q).
Then, by the continuity of the cumulative distribution function, the probabllity that

the unknown g; € (—00, b; +tn—(k+1)(“)‘/3_2 @]

is about 1—-a =95 %.



Confidence interval for the parameter (; // rank(X)=k+1 %’;\&

iii WARNING !!!
* Never use the above t-test for the parameters S,.8;,...,8, consecutively!

* Never use the above construction of the confidence intervals
consecutively!

« Use the following result (Theorem 7) instead !
B

/? - .1 the true confidence region

the confidence interval for B, 4< ,

N
- —J “Bo

the confidence interval for




F-test for the
significance

of the model and
confidence region

&

F-test for

a system of linear
combinations

of the parameters

ﬁo:ﬁ1 g !ﬁk

* Theorem 7:

(b—B)T(ATX)(b - B) / k+1

RSS n—

« Confidence region

e Theorem 8:

(Ab— a)T(ACAT) ' (Ab - a)

(k n 1) k+1 n—{(k+1)

* F-test for the significance of the model

RSS



Multiple Linear Regression: Theorem 7

Theorem 7: Assume for simplicity that rank(X) = &k + 1.
It holds

(b—B)"(X"X)(b— B) / k+1 .
RSS n—(k+1) = Frun-(E+)



Multiple Linear Regression: Theorem 7*

Theorem 7*: Assume for simplicity that rank(X) = k + 1.
Let a € R'** be a vector.
If

B=a
then

b-a)*'(X"X)(b—a) ; k+1 .
RSS / n—(k+1) = etin-r)



Multiple Linear Regression: Theorem 7*: Corollary

Corollary: By considering
a=0

that is the zero vector, we are testing the null hypothesis that
Hy: pB=0

that is
Hy: fo=pr==F=0

that is we are testing the overall significance of the model.



Multiple Linear Regression: Theorem 7*: Corollary

Corollary: By considering

a=10

we obfain:
b'™X'Xb; k+1 9, k+1 .
RSS /n—(k+1) ~ RSS/n—-(k+1) k+1,n—(k+1)

Remark: Use this Corollary
— for F-test about the significance of the model,
— to establish the confidence region.



Multiple Linear Regression: Theorem 7*: Corollary
(xp:perivy| The O;t:lhogona: decomﬂré?ls.ition

(the orthogonal orthe vector y € ,

complement = y = ? +e and el ? —

= the space of
the residuals)

vector of the numerical outcomes W<
of the n random experiments 0
y N
I-Hy=e [ 7 Y By the Pythagoras Theorem:
M , 9y yll? = I711% + llell®
cotan“ @ = RSS y y=% y+ eTe
subspace 0 5 = Hy (XB: B € R*k)
of dimension (the linear hull of the columns of X )
n—(k+1)
. subspace of dimension
Residual Sum of Squares: RSS=Y1,(y; —9)2 =YL, e = eTe P T+ 1




F-test for the significance of the model // rank(X)=k+1

Notation: Let

Fria, n—(k+1) (Q)

denote the quantile function of Fisher’s F-distribution
with k+1 and n— (k+ 1) degrees of freedom.

The quantile function Fy.4 n-+1)(q) is the function inverse to the cumulative
distribution function ¥(x) of Fisher’s F-distributlonwith X+ 1 and n—(k + 1)

degrees of freedom, i.e.

Friin-gen(@ =F'(q) for q€(0,1)



F-test for the significance of the model // rank(X)=k+1

Notation: Let

Fri1,n—-e+1)(q)

denote the quantile function of Fisher’s F-distribution
with X+ 1 and n— (k + 1) degrees of freedom.

In other words, if 0 <gq <1, then x = Fy41 n—+1)(q) is the unique value

such that

Fri1,n—(e+1){Q) x
| fodt=[ F@dt=gq

-0

where f(t) is the density of Fisher's F-distributionwith ¥+ 1 and n—-(k+ 1) d.f.



F-test for the significance of the model // rank(X)=k+1

Formulate the null hypothesis
Hy: po=pp==p=0

« Be cautious bhecause it usually makes no sense to test the value

of the intercept term £, (see above).
See also the Coefficient of Determination (R?) below.

* The altemative hypothesis is simply H, = —H,, the logical negation of H,,

thatis B; + 0 foratleastonej € {0,1,...,k}.



F-test for the significance of the model // rank(X)=k+1

o Calculate the statistic

Ty k+1

F_RSS n—{k+1)

« Choose the level of significance, a small number « > 0, suchas a« =5 %.

« The critical value is ¢ = Fi4q,p-+1)(1 — @), thatis | :m flx)dx = «a,
where f(x) is the density of Fisher’s F-distributionwith X+ 1 and n— (k + 1)
degrees of freedom,

« If F € [c,+), the critical region, then reject the null hypothesis.

« If F€(0,c), then do not reject (fail to reject) the null hypothesis.



Confidence region for the parameters // rank(X)=k+1

Consider 8 =0, let x € R be any real number, and let F(x) be the cumulative
distribution function of Fisher’s F-distribution with ¥k +1 and n — (k + 1) degrees
of freedom. Then, by the definition of the cumulative distribution function and by

the Corollary, the probability

p ((b -BIXTX(b-B); k+1

— 1+k
T n—(k+1)sx) F(x) forany B€ER



Confidence region for the parameters // rank(X)=k+1

Choose the level of significance, a small number « > 0, suchas a =5%.
Then the probability that

b— B)TXTx(b - k+1
the unknown B € {ﬁ € Rk : Sl 2 RSS ( B)/n — (1-_'_ D) < Fre1,n-ge+n)(1 — a’)]

is about 1-a =95 %.

Remark: This confidence region is an ellipsoid centred at b.
The nominator ((b — B)TXTX(b— B)) is a quadratic expression in g.

To gain a geometrical insight, calculate the spectral / eigendecomposition



Multiple Linear Regression: Theorem 8

Theorem 8: Assume for simplicity that rank(X) =k + 1. Let a € R" be a vector
and let 4 € R™(+%) bhean r x (1+ k) matrix of full-rank where r <1 + k,
that is

r=rank(4) <rank(X)=k +1
If
A =a
then
(4b — a)T(ACAT) " (4b — a)
RSS / (k 7D " Fre-gern




Multiple Linear Regression: Theorem 8: lllustration 5&%

{XB: BRI}

(the orthogonal
complement =
= the space of
the residuals)

subspace
of dimension

n—(k+1)

this is

It holds:
(4b — a)T(ACAT) " (Ab—a) = |7 - F'|I> =
=F-9)"G-3
G- G -5
RSS

cotan? ¢ =

2 r F
(cotan @)?/— G~ Frin-tes

an affine subspace

of dimension

k+1—r

{XB: B R}
(the linear hull of the columns of X))

{XB:AB = a, B € Rk} subspace of dimension

the dimension of its complement within k+1
the subspace of dimension k+1 is r




Multiple Linear Regression: Theorem 8: Remark

Theorem 8

-1
(Ab — a)T(ACAT) “(Ab —a) r
p=a = RSS / n—Get D TG

is at the heart of the ANOVA method

and other results.




The Coefficient
of Determination
(R?)

« Assumption: 1 € {XB : B € R1tk}

* Motivation
 Some facts
* Theorem 8: Corollary

» F-test for the null hypothesis
Hy: B4=...=B,~0




The Coefficient of Determination (R?): Assumption

Assume throughout this section that

1€ {XB: B c RIt*}

where 1 is the vector of n ones:

1
1=(1
1
For example, assume that
Xo=1

thatis S, is the infercept term.




The Coefficient of Determination (R?): Th. 8: Corollary

If X, =1, thatis S, is the intercept term, then it may be desirable to

test the null hypothesis
Hy: pr==p=0

that is without the test for the parameter g,.

To this end, apply Theorem 8 with the k x (k + 1) matrix and the k-vector

0 0 .. 0
1 0 .. 0
0 1 0 and a=

O — W R
N - Y=
N - —-E=



The Coefficient of Determination (R?): Th. 8: Corollary

Recall our assumption that
1€ {XB: B € RItk}

Then the line
{12: e R} c {XB : B € RI*k}

In particular, if X, =1, thatis

1 x93 X1k 0 1 0 O 0 0
1 X921 = X2k 0 01 0 0 0
X=]1 x5 Xax A=|0 0 0 1 0 and a=|0
1 x4 Xni 0 0 0 O 1 0



The Coefficient of Determination (R?): Th. 8: Corollary

{XB: BRI}

(the orthogonal
complement =
= the space of
the residuals)

subspace
of dimension

n—(k+1)

{11: A€ R}

n

1

Let: [y=—=) y; By Theorem 8:

ns

the line is a subspace

of dimension

1

the dimension of its complement within
the subspace of dimension k+1 is ok

k
(cotang)?/ n— G+ 1) Fr, n—(k+1)

F-1)T'F-1y) R
RSS ~ 1—R2

cotan? ¢ =

{XB: B eR™}
(the linear hull of the columns of X))
subspace of dimension
k+1




The Coefficient of Determination (R?): Th. 8: Corollary

{XB: BRI}

(the orthogonal
complement =
= the space of
the residuals)

subspace
of dimension

n—(k+1)

Let:

_ 1
y=_

n

ns

{11: A€ R}
the line is a subspace

of dimension | 1

The Coefficient of Determination:

2 _ 2 _@_13_’)1'@_13_’)
R“ = cos“¢@ = T —
-1y —-1y)
RE _cos®o cotan?
1—R?2 sin2¢ L4

the dimension of its complement within
the subspace of dimension k+1 is ok

{XB: B eR™}
(the linear hull of the columns of X))
subspace of dimension
k+1




The Coefficient of Determination (R?): TSS=RSS+RegSS

Introduce the Total Sum of Squares:

1SS = (y - 1) - 19) = ) O - 77
i=1

Introduce the Regression Sum of Squares:
n
RegSS = (3 — 17)7(9 — 17) = Z(ﬁi 2%
=1
Recall the Resldual Sum of Squares:

RS=eTe= ) 7 =(y-F)"G-9 =) Gi—9)
i=1 i=1




The Coefficient of Determination (R?): TSS=RSS+RegSS

n

Lot | 7= 1 y TSS = (y — 19)T(y — 1¥)

: = i

{XB:BeR™M}H e RegsS = (3 — 1)@ — 1)

(the orthogonal RSS=(y— PI(y— P)=e'e
complement =

= the space of

the residuals)
subspace

of dimension

n—(k+1)

By the Pythagoras Theorem:

TSS = RSS + RegSS

{XB: B eR™}
(the linear hull of the columns of X))
{12: 1€ R} subspace of dimension

the line is a subspace  the dimension of its complement within k+1
of dimension | 1 the subspace of dimension k+1 is ok




The Coefficient of Determination (R?): Some facts

Proposition: Under the assumption 1 € {Xg : g € R1*%}, it holds

1715 = 1Ty = 1Ty

In words:
All three points 1y, y, ¥ liein the hyperplane

{B = R1+k . 1Tﬂ — 1T137}
which is perpendicularto the line {141: 1 € R}.



The Coefficient of Determination (R?): Some facts

Proposition: Under the assumption 1 € {Xg : g € R1*%}, it holds

1T137 = 1Ty = 1T57
Corollary:

=

1"y -y =1'e= ) ¢
=1

0



The Coefficient of Determination (R?): Some facts

Proposition: Under the assumption 1 € {X8 : g € R1**}, it holds

1T15 =1Ty =17
Proof;
The assumption equivalently says H1 = 1, where H is the matrix
of the orthogonal projection onto the subspace {Xg : g € R1t*},
Recall the matrix H is symmetric (H' = H), therefore 1TH' = 1TH = 1T,
Therefore 1Ty = 1THy = 1Ty,
The first equality is obvious:
1My =32, 1x1x¥ yi/n=nx XL, yi/n=3,y =1y.



The Coefficient of Determination (R?): TSS=RSS+RegSS

PP : . 1+k
iFt'L‘:::EI :Ss|t|on. Under the assumption 1€ {Xg: e R""*}, 155 = (v — 107 Cy — 19)

RegSS = (% — 19)T(H — 1)
TSS = RSS + RegSS RSS=(y— PT(y— %) =eTe

Proof:
The point ¥ is the orthogonal projection of the point ¥ onto
{XB: g € R1**}, therefore (y—%) L {XB: p € R1*k}, .
Wehave y € {XB: B € R1**}, and we assume \/ﬁ -
1€ {XB: B € R*k}, whence 15 € {XB: B € RI*k} i

follows, therefore ¥ — 1y € {Xg : B € R***} and

(y — %) L (§ — 1¥). By using the Pythagoras Theorem, iA /

Yo



The Coefficient of Determination (R?): Some facts

Proposition: Under the assumption 1 € {XB: B € R**}| 155- (y— 157y - 15)
it holds RegSS= (- 1)' (¥ — 1¥)
0 -1NTE-17) = G- 17)*G - 17) RS=O- MO~ N=ce

Proof. %

Y-19)"F-19) = (0 -N+G-19) G- 15) =
=(y-NTE-17)+F-19)TG-17) =
=0+GF-1N'GF-1y) =
= (- 157G - 15)

g.e.d. iA a



The Coefficient of Determination (R?)

: . 1+%&
Assuming 1 € {Xp: g € R'**}, define the 5=y — 19— 13)
Coefficient of Determination: RegSS = (3 — 1) (¥ — 1y)

RSS=(y— N (y—- P =e'e
a2 [(y— 157G — 1)) y

-1 -1XxF-1)TF-13)
[ — 19T - 17)]?

CO-O-1xG-1G-1) s | mss
_G-1TG-1p) _ ~ RegsS
“o—To—1n) - ¢ = TTss £

59\ a



The Coefficient of Determination (R?)

Assuming 1 € {XB: g € R1*k} define the
Coefficient of Determination:

_ RegSS _ TSS—RSS

2 — —
R TSS TSS
RegSS RSS
2 — ~ncZ i — — _
R =cos"9 TSS 1=7Tss

TSS= (y -1y 'y — 1)
RegSS = (3 — 1) (§ - 1¥)
RSS=(y— M- F=e'e

}.’..




The Coefficient of Determination (R?): Th. 8: Corollary

Theorem 8: Corollary: Assume for simplicity that rank(X) =k + 1
and assume that 1 € {Xg: B € R*%}. Under the hypothesis that

Br="=Pc=0
it holds

(cotan g)?/ k _ R? / k .

RegSS k .
RSS /n—(k+1) k,n=(k+1)




F-test for the null hypothesis H,: B,=...=8,=0 5&%

« Choose the level of significance, a small number a > 0, suchas a =5 %.
* Find the critlcal value ¢ > 0 so that f:m f(x)dx = a, where f is the density

of the F-distribution with ¥ and n— (k + 1) degrees of freedom.

o Calculate the statistic

R? / k _ RegSs k _ X - y)? / k
n

P m/a—a+D RS /n-G+D T, 90/ n—G+D

« If F € [c,+), the critical region, then reject the null hypothesis.
 If F€[0,c), then do not reject (or fail to reject) the null hypothesis.



The Coefficient of Determination (R?)

Remark: The above F-test is one-factor ANOVA in fact.
The coefficient of determination

nl(yl ?i)z 21_1 i J_’)z

R2=coszfp=1—

N ) S e

RSS RegSS

TSS  TSS

is a “measure” (7) “how well the regression hyperplane Y = by + b Xy + - + b X3,

fits the observed data (yy,x4), (32,%3), ..., (P xn)".

It holds
D<R?<1



The Coefficient of Determination (R?)

R%2 =cos? ¢

If RZ~1

— then

F = R / k 7 +oo
" 1-R%2/n—-(k+1)
— then
— reject the null hypothesis that (8, =--- =, = 0)

— then

— say “thefit is good”




The Coefficient of Determination (R?)

R? =cos? ¢
If RZNO
— then
po X / ko
" 1-R*/n-((k+1)

— then

— fail to reject the null hypothesis that (8, = --- = 8 = 0)

— it may be the case that

Ely:] = Bo forall i=1,2,..,n (cf. ANOVA)

— the sample (y4,%1), (33,%2) ..., (3,,%,) May come from one population
— then



