Statistical Methods for Economists

Lecture 4

Multiple Linear Regression

David Bartl Statistical Methods for Economists INM/BASTE

- Introduction: Simple Linear Regression & Least Squares Method
- Multiple Linear Regression: Introduction
- Multiple Linear Regression: Summary & Background
- The Classical Assumptions
- The Coefficient of Determination (R^2)
- Further Theorems, Tests of Hypotheses and Confidence Intervals
- Two-sample *t*-test for the difference of the population means // $\sigma_X = \sigma_Y$
- Simple linear regression without the intercept term

Introduction

- Simple Linear Regression
- Motivation
- Example
- Least Squares Method
- Generalization
- Multiple Linear Regression: Introduction
- Multiple Linear Regression: Notation

Motivation:

Assume a dataset $(y_i, x_{i1})_{i=1}^n$ of n statistical units, i.e. we are given n pairs $(y_1, x_{11}), (y_2, x_{21}), \dots, (y_n, x_{n1})$ of quantitative variables $(x_{i1}, y_i \in \mathbb{R})$, such as

- x_{i1} = investments and y_i = the resulting revenues
- x_{i1} = particular times and y_i = the price of a stock at the given time
- x_{i1} = the quantity of some goods supplied to a market

and y_i = the resulting unit price for the goods

• etc.

Given the *n* pairs (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) of the measurements, we assume that there is a <u>simple linear relationship</u> between the values of X_1 and Y of the form

 $Y \approx \beta_0 + \beta_1 X_1$ for some $\beta_0, \beta_1 \in \mathbb{R}$

or rather

 $Y = \beta_0 + \beta_1 X_1 + \varepsilon \quad \text{for some} \quad \beta_0, \beta_1 \in \mathbb{R}$

where ε is a random deviation.

We do not know the parameters β_0 and β_1 , however...

Based on the *n* pairs (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) of the measurements, it is our purpose to find

of	the estimates	b ₀	and	b 1	
	the unknown	β_0	and	β_1	

The estimates b_0 and b_1 are also denoted by $\hat{\beta}_0$ and $\hat{\beta}_1$, respectively, sometimes, i.e. the estimates are

$$b_0 = \hat{\beta}_0$$
 and $b_1 = \hat{\beta}_1$

We have got a sample of n = 10 observations:

i	<i>x</i> _{i1}	${\mathcal Y}_i$
□ 1	8.01	7.24
□ 2	7.81	6.62
□ 3	4.38	5.53
□ 4	3.54	4.47
□ 5	6.17	6.35
□ 6	6.64	6.56
□ 7	7.58	6.68
□ 8	8.98	7.46
□ 9	1.01	3.53
10	5.88	5.56

E.g.:

 x_{i1} = temperature & y_i = the length of a metal rod

Simple Linear Regression: Example

We have got the *n* pairs (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) of the observations. For any $b_0, b_1 \in \mathbb{R}$, the *i*-th estimated value is

$$\hat{y}_i = b_0 + b_1 x_{i1}$$
 for $i = 1, 2, ..., n$

The *i*-th residual is the difference

$$\hat{\varepsilon}_i = e_i = y_i - \hat{y}_i$$
 for $i = 1, 2, ..., n$

The residual sum of squares is

RSS =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_{i1})^2$$

Given the *n* pairs (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) of the observations,

find $b_0, b_1 \in \mathbb{R}$ so that the residual sum of squares

$$RSS = \sum_{i=1}^{n} (b_0 + b_1 x_{i1} - y_i)^2 \quad \longrightarrow \quad \min$$

is minimized.

The first-order optimality conditions are

$$\frac{\partial RSS}{\partial b_0} = 0 \quad \text{and} \quad \frac{\partial RSS}{\partial b_1} = 0$$

Given RSS = $\sum_{i=1}^{n} (b_0 + b_1 x_{i1} - y_i)^2$, we obtain the system of two equations of two unknowns:

$$\frac{\partial RSS}{\partial b_0} = \sum_{i=1}^n 2(b_0 + b_1 x_{i1} - y_i) = 0 \quad \text{and} \quad \frac{\partial RSS}{\partial b_1} = \sum_{i=1}^n 2(b_0 + b_1 x_{i1} - y_i) x_i = 0$$

Or

Hence,

given the observations (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) , the estimates are:

$$\hat{\beta}_0 = b_0 = \frac{1}{n} \left(\sum_{i=1}^n y_i - \sum_{i=1}^n x_{i1} b_1 \right) =$$

$$=\frac{\sum_{i=1}^{n} x_{i1} x_{i1} \sum_{j=1}^{n} y_j - \sum_{i=1}^{n} x_{i1} \sum_{j=1}^{n} x_{j1} y_j}{n \sum_{i=1}^{n} x_{i1} x_{i1} - \sum_{i=1}^{n} x_{i1} \sum_{j=1}^{n} x_{j1}}$$

and

$$\hat{\beta}_1 = b_1 = \frac{n \sum_{i=1}^n x_{i1} y_i - \sum_{i=1}^n x_{i1} \sum_{j=1}^n y_j}{n \sum_{i=1}^n x_{i1} x_{i1} - \sum_{i=1}^n x_{i1} \sum_{j=1}^n x_{j1}}$$

Given the *n* pairs (y_1, x_{11}) , (y_2, x_{21}) , ..., (y_n, x_{n1}) of the measurements, we have assumed the simple linear relationship of the form

 $Y \approx \beta_0 + \beta_1 X_1$ for some $\beta_0, \beta_1 \in \mathbb{R}$

The simple linear relationship can be generalized to the form

$$Y \approx \beta_0 X_0 + \beta_1 X_1$$
 with $X_0 = 1$
for some $\beta_0, \beta_1 \in \mathbb{R}$

In general, we can have any *n* triples $(y_1, x_{10}, x_{11}), (y_2, x_{20}, x_{21}), \dots, (y_n, x_{n0}, x_{n1})$

Simple Linear Regression: Generalization

We shall now study

Multiple Linear Regression

That is, we are given a dataset $(y_i, x_{i0}, x_{i1}, x_{i2}, ..., x_{ik})_{i=1}^n$ of *n* statistical units ((k + 2)-tuples):

$$(y_1, x_{10}, x_{11}, x_{12}, ..., x_{1k})$$

$$(y_2, x_{20}, x_{21}, x_{22}, ..., x_{2k})$$

•••

$$(y_n, x_{n0}, x_{n1}, x_{n2}, ..., x_{nk})$$

where

$$y_i, x_{i0}, x_{i1}, x_{i2}, \dots, x_{ik} \in \mathbb{R}$$
 for every $i = 1, 2, \dots, n$.

Given the *n* (*k* + 2)-tuples $(y_i, x_{i0}, x_{i1}, ..., x_{ik})_{i=1}^n$, such as measurements, we assume the <u>multiple linear relationship</u> between the values of $X_0, X_1, ..., X_k$ and *Y* of the form

$$Y \approx \beta_0 X_0 + \beta_1 X_1 + \dots + \beta_k X_k \qquad \text{for some} \quad \beta_0, \beta_1, \dots, \beta_k \in \mathbb{R}$$

or rather

$$Y = \beta_0 X_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon \quad \text{for some} \quad \beta_0, \beta_1, \dots, \beta_k \in \mathbb{R}$$

where ε is a random deviation.

We do not know the parameters $\beta_0, \beta_1, ..., \beta_k$, however...

We have the dataset of the n (k+2)-tuples $(y_i, x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n$.

The values $(y_i)_{i=1}^n$ constitute an *n*-component column vector y, which is an $n \times 1$ matrix, and the (k + 1)-tuples $(x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n$ constitute an $n \times (1 + k)$ matrix X:

$$\mathbf{y} = (y_i)_{i=1}^n = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \qquad \mathbf{X} = (x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1k} \\ x_{20} & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \dots & x_{nk} \end{pmatrix}$$

We often have $x_{i0} = 1$ for every i = 1, 2, ..., n,

Assuming the multiple linear relationship between the values of X_0, X_1, \dots, X_k and Y of the form

$$Y \approx X_0 \beta_0 + X_1 \beta_1 + \dots + X_k \beta_k$$

<u>the unknown parameters</u> $\beta_0, \beta_1, ..., \beta_k \in \mathbb{R}$ constitute a (k + 1)-component column vector β , which is a $(k + 1) \times 1$ matrix:

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$$

N

All in all, we have the n equations

$$y_{1} = x_{10}\beta_{0} + x_{11}\beta_{1} + x_{12}\beta_{2} + \dots + x_{1k}\beta_{k} + \varepsilon_{1}$$

$$y_{2} = x_{20}\beta_{0} + x_{21}\beta_{1} + x_{22}\beta_{2} + \dots + x_{2k}\beta_{k} + \varepsilon_{2}$$

$$\vdots$$

$$y_n = x_{n0}\beta_0 + x_{n1}\beta_1 + x_{n2}\beta_2 + \dots + x_{nk}\beta_k + \varepsilon_n$$

where

- the dataset $(y_i, x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n$ is given,
- the parameters $\beta_0, \beta_1, ..., \beta_k \in \mathbb{R}$ are unknown (to be estimated), and
- the values $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n \in \mathbb{R}$ are <u>random deviations</u> (random errors).

The (unknown) <u>random deviations</u> $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n \in \mathbb{R}$ constitute an *n*-component column vector ε , which is an $n \times 1$ matrix:

$$\boldsymbol{\varepsilon} = (\varepsilon_i)_{i=1}^n = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Moreover, the values $(x_{i0}, x_{i1}, ..., x_{ik})$ are seen as a (1 + k)-component row vector x_i , which is a $1 \times (1 + k)$ matrix:

$$x_i = (x_{i0} \ x_{i1} \ \dots \ x_{ik})$$
 for $i = 1, 2, \dots, n$

To sum up, assuming $n \ge 2$ and $k \ge 0$, we have:

$$y = (y_i)_{i=1}^n = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad X = (x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1k} \\ x_{20} & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \dots & x_{nk} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} \qquad \boldsymbol{\varepsilon} = (\varepsilon_i)_{i=1}^n = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

The *n* equations

$$y_{1} = x_{10}\beta_{0} + x_{11}\beta_{1} + x_{12}\beta_{2} + \dots + x_{1k}\beta_{k} + \varepsilon_{1} = x_{1}\beta + \varepsilon_{1}$$

$$y_{2} = x_{20}\beta_{0} + x_{21}\beta_{1} + x_{22}\beta_{2} + \dots + x_{2k}\beta_{k} + \varepsilon_{2} = x_{2}\beta + \varepsilon_{2}$$

$$\vdots$$

$$y_{n} = x_{n0}\beta_{0} + x_{n1}\beta_{1} + x_{n2}\beta_{2} + \dots + x_{nk}\beta_{k} + \varepsilon_{n} = x_{n}\beta + \varepsilon_{n}$$

can then be written briefly as

$$y = X\beta + \varepsilon$$

Random vectors

- Random variable
- Random vector
- Mean value
- Variance-covariance matrix
- Uncorrelated random variables
- Independent random variables

Let (Ω, \mathcal{F}, P) be a **probability space**. That is,

- Ω the <u>sample space</u> (a non-empty set),
- \mathcal{F} the <u>event space</u> (a σ -algebra on the sample space Ω)
- P the probability measure on (Ω, \mathcal{F}) .

Recall that a random variable is a function

 $X:\Omega \longrightarrow \mathbb{R}$

which is measurable, i.e. the preimage of any open interval is an event $(X^{-1}((a, b)) = \{ \omega \in \Omega : X(\omega) \in (a, b) \} \in \mathcal{F}$ for every $a, b \in \mathbb{R}$ such that a < b.

Let (Ω, \mathcal{F}, P) be the probability space as above, and let *n* random variables $X_1, X_2, ..., X_n$ be given. We can then stack the random variables into an *n*-dimensional **random vector**

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$$

which is a (measurable) mapping

$$X:\Omega \to \mathbb{R}^n$$

<u>Remark</u>: The fact that the mapping $X: \Omega \to \mathbb{R}^n$ is measurable means that the preimage of any open set is an event:

 $X^{-1}(G) = \{ \omega \in \Omega : X(\omega) \in G \} \in \mathcal{F} \quad \text{for every open } G \subseteq \mathbb{R}^n$

We assume for simplicity that $\Omega = \mathbb{R}^n$ and that the mapping is the identity:

 $X: \omega \mapsto \omega$

(the event space \mathcal{F} is the collection of all Lebesgue measurable subsets of \mathbb{R}^n)

<u>Remark</u>: The mapping $X: \Omega \to \mathbb{R}^n$ is measurable if and only if

Given the random variables X_1, X_2, \ldots, X_n ,

the expected value of the random vector X is:

$$\mathbf{E}[\mathbf{X}] = \begin{pmatrix} \mathbf{E}[X_1] \\ \mathbf{E}[X_2] \\ \vdots \\ \mathbf{E}[X_n] \end{pmatrix}$$

Given the probability space (Ω, \mathcal{F}, P) , let $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$ be some two random variables.

The variance of the random variable X is:

 $Var(X) = E[(X - E[X])^2]$

The **<u>covariance</u>** of the random variables X and Y is:

$$\operatorname{cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Observation:

Given the random variables $X_1, X_2, ..., X_n$,

the variance-covariance matrix of the random vector X is:

$$\operatorname{Var}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{cov}(X_1, X_2) & \operatorname{cov}(X_1, X_3) & \dots & \operatorname{cov}(X_1, X_n) \\ \operatorname{cov}(X_2, X_1) & \operatorname{Var}(X_2) & \operatorname{cov}(X_2, X_3) & \dots & \operatorname{cov}(X_2, X_n) \\ \operatorname{cov}(X_3, X_1) & \operatorname{cov}(X_3, X_2) & \operatorname{Var}(X_3) & \dots & \operatorname{cov}(X_3, X_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \operatorname{cov}(X_n, X_2) & \operatorname{cov}(X_n, X_3) & \dots & \operatorname{Var}(X_n) \end{pmatrix}$$

where

$$\operatorname{cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$$
 and $\operatorname{Var}(X_i) = \operatorname{cov}(X_i, X_i)$

The random variables $X_1, X_2, ..., X_n$ are (pairwise) uncorrelated if and only if

$$\operatorname{cov}(X_i, X_j) = 0$$
 if $i \neq j$ for all $i, j = 1, 2, ..., n$

Let (Ω, \mathcal{F}, P) be a probability space and let $A_1, A_2, ..., A_n \in \mathcal{F}$ be events. Recall that the events $A_1, A_2, ..., A_n$ are **mutually independent** if and only if

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \times P(A_2) \times \cdots \times P(A_n)$$

Let (Ω, \mathcal{F}, P) be the underlying probability space and let $X_1, X_2, ..., X_n: \Omega \to \mathbb{R}$ be random variables.

The random variables $X_1, X_2, ..., X_n$ are mutually independent if and only if

$$P\begin{pmatrix} \left(\{\omega \in \Omega : a_1 < X_1(\omega) < b_1 \} \cap \right) \\ \cap \{\omega \in \Omega : a_2 < X_2(\omega) < b_2 \} \cap \\ \dots \\ \cap \{\omega \in \Omega : a_n < X_n(\omega) < b_n \} \cap \end{pmatrix} = P\{\omega \in \Omega : a_1 < X_1(\omega) < b_1 \} \times P\{\omega \in \Omega : a_2 < X_2(\omega) < b_2 \} \times \dots \\ \dots \\ \times P\{\omega \in \Omega : a_n < X_n(\omega) < b_n \} \cap \end{pmatrix}$$

for every $a_1, b_1, a_2, b_2, \dots, a_n, b_n \in \mathbb{R} \cup \{-\infty, +\infty\}$ such that $a_i < b_i$

Theorem: If the random variables

 X_1, X_2, \dots, X_n are mutually independent, then they are pairwise uncorrelated.

Remark: ¡The converse does not hold true in general !

<u>Remark:</u> The proof of the theorem is easy if the sample space is finite $(\Omega = \{1, 2, ..., N\})$ or countable $(\Omega = \{1, 2, 3, ...\})$. The proof is somewhat involved in the general case (requires some knowledge of the theory of the Lebesgue integral, uses limiting steps – Levi's Theorem).

Multivariate normal distribution

Consider a probability space (Ω, \mathcal{F}, P) where the sample space $\Omega = \mathbb{R}$, the event space \mathcal{F} is the collection of all Lebesgue measurable subsets of \mathbb{R} , and the probability *P* is given by its probability density function

$$\varphi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{for } x \in \mathbb{R}$$

for some $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$, so that $\sigma^2 > 0$. That is, the probability is

$$P(A) = \int_A \varphi(x) \, \mathrm{d}x \quad \text{for any} \quad A \in \mathcal{F}$$

Given the above probability space (Ω, \mathcal{F}, P) , the probability P being given by its density

$$\varphi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{for } x \in \mathbb{R}$$

then the identity random variable $X: \mathbb{R} \to \mathbb{R}$

$$X(x) = x \quad \text{for} \quad x \in \mathbb{R}$$

follows the Gaussian normal distribution.

We then say that X is a Gaussian normal random variable and write

 $X \sim \mathcal{N}(\mu, \sigma^2)$

<u>Theorem</u>: Let (Ω, \mathcal{F}, P) be a probability space. (Consider $\Omega = \mathbb{R}^n$ for simplicity.) If the random variables $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, ..., $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ are **mutually independent** and normally distributed, then

$$X_1 + X_2 + \dots + X_n \sim \mathcal{N}(\mu_1 + \mu_2 + \dots + \mu_n, \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2)$$

that is, their sum is also normally distributed.

<u>Theorem</u>: Let (Ω, \mathcal{F}, P) be a probability space (with $\Omega = \mathbb{R}^n$ for simplicity) and let $X_1, X_2, ..., X_n \colon \Omega \to \mathbb{R}$ be any random variables, which are stacked into a random vector *X*. Then its <u>variance-covariance matrix</u>

 $\Sigma = Var(X)$

is symmetric and positively semi-definite.

That is, it holds

$$\Sigma^{\mathrm{T}} = \Sigma$$
 and $\boldsymbol{u}^{\mathrm{T}} \Sigma \boldsymbol{u} \ge 0$ for every $\boldsymbol{u} \in \mathbb{R}^{n}$

Theorem:

Let $\Sigma \in \mathbb{R}^{n \times n}$ be any symmetric and positively semi-definite matrix, and let

 $k = \operatorname{rank}(\Sigma)$

Then there exists a matrix $A \in \mathbb{R}^{n \times k}$ such that

$$\Sigma = AA^{\mathrm{T}}$$

<u>Remark:</u> The matrix *A* can be obtained • either from the spectral decomposition / eigendecomposition of the matrix Σ : $\Sigma = Q \Lambda Q^T$ where *A* is diagonal and *Q* is orthonormal ($QQ^T = I$); • or from the Cholesky decomposition: $\Sigma = LL^T$ where

Consider a probability space (Ω, \mathcal{F}, P) where the sample space $\Omega = \mathbb{R}^k$, the event space \mathcal{F} is the collection of all Lebesgue measurable subsets of \mathbb{R}^k , and the probability P is given by the standardized normal density function

$$\varphi_k(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k}} e^{\frac{\mathbf{x}^T \mathbf{x}}{2}} \quad \text{for } \mathbf{x} \in \mathbb{R}^k$$

That is, the probability is

$$P(A) = \int_{A} \varphi_{k}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \qquad \text{for any} \quad A \in \mathcal{F}$$

Given the above probability space (Ω, \mathcal{F}, P) , the probability P being given by its density

$$\varphi_k(x) = \frac{1}{\sqrt{(2\pi)^k}} e^{\frac{x^T x}{2}} \quad \text{for } x \in \mathbb{R}^k$$

then the identity random vector $Z: \mathbb{R}^k \to \mathbb{R}^k$

$$Z(x) = x$$
 for $x \in \mathbb{R}^k$

follows the standard Gaussian multivariate normal distribution.

We then say that Z is a standard multivariate normal random vector and write

 $\boldsymbol{Z} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{I})$

Let a vector $\mu \in \mathbb{R}^n$ (mean values) and a symmetric positively semi-definite matrix $\Sigma \in \mathbb{R}^{n \times n}$ (variance-covariance matrix) of rank k be given. Moreover, let $A \in \mathbb{R}^{n \times k}$ be a matrix such that $\Sigma = AA^T$. Finally, consider the probability space (Ω, \mathcal{F}, P) with the sample space $\Omega = \mathbb{R}^k$ and the standard multivariate normal random variable $Z \sim \mathcal{N}(0, I)$.

Then the random vector $X: \mathbb{R}^k \to \mathbb{R}^n$ defined so that

X(x) = AZ(x) for $x \in \mathbb{R}^k$

follows the standard Gaussian multivariate normal distribution.

We then say that X is a multivariate normal random vector and write

If the variance-covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ is <u>non-singular</u>,

that is $rank(\Sigma) = k = n$, then the **probability density function** of the multivariate normal probability distribution

 $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$

is

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^k \det(\boldsymbol{\Sigma})}} e^{\frac{(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}} \quad \text{for } \boldsymbol{x} \in \mathbb{R}^n$$

If the variance-covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ is <u>singular</u>, that is rank(Σ) = k < n, then the **probability density function** of the multivariate normal probability

Let (Ω, \mathcal{F}, P) be a probability space and let $X: \Omega \to \mathbb{R}^n$ be a random vector.

Then X follows a multivariate normal distribution, that is $X \sim \mathcal{N}(\mu, \Sigma)$

for some $\mu \in \mathbb{R}^n$ and for some symmetric and positively semi-definite $\Sigma \in \mathbb{R}^{n \times n}$

if and only if,

for every $a \in \mathbb{R}^n$, the random variable $a^T X$ is normally distributed; that is, there exist a $\mu_a \in \mathbb{R}$ and a non-negative $\sigma_a^2 \in \mathbb{R}$ such that

$$a_1X_1 + a_2X_2 + \dots + a_nX_n \sim \mathcal{N}(\mu_a, \sigma_a^2)$$
 for every $a \in \mathbb{R}^n$

<u>Theorem</u>: Let (Ω, \mathcal{F}, P) be a probability space and let $X: \Omega \to \mathbb{R}^n$ be a <u>multivariate normally distributed random vector</u>, that is $X \sim \mathcal{N}(\mu, \Sigma)$ for some $\mu \in \mathbb{R}^n$ and for some symmetric and positively semi-definite $\Sigma \in \mathbb{R}^{n \times n}$. Then

$$AX \sim \mathcal{N}(A\mu, A\Sigma A^{\mathrm{T}})$$
 for any matrix $A \in \mathbb{R}^{m \times n}$

<u>Theorem</u>: Let random variables $X_1, X_2, ..., X_n$ be stacked into a multivariate <u>normally distributed random vector</u> X, that is $X \sim \mathcal{N}(\mu, \Sigma)$ for some $\mu \in \mathbb{R}^n$ and for some symmetric and positively semi-definite $\Sigma \in \mathbb{R}^{n \times n}$. Then the random variables $X_1, X_2, ..., X_n$ are **mutually independent**

<u>if and only if</u>

the random variables X_1, X_2, \dots, X_n are pairwise uncorrelated

(that is, the variance-covariance matrix Σ is diagonal).

Remark:

 \Rightarrow holds true in general, see above

Multiple Linear Regression: Summary & Background

- Summary
- Terminology
- Assumptions
- Random vectors
- The classical assumptions
- Notation

We have got the sample of the n (k+2)-tuples

$$(y_i, x_i) = (y_i, x_{i0}, x_{i1}, x_{i2}, ..., x_{ik})$$
 for $i = 1, 2, ..., n$

of the observations, where $y_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^{1 \times (1+k)}$ or $x_{i0}, x_{i1}, \dots, x_{ik} \in \mathbb{R}$ for $i = 1, 2, \dots, n$.

The sample could have been obtained in either of the following two ways:

(see the next two slides)

First:

- A sample of n statistical units was selected from a larger population.
- Each of the statistical units was measured and we have obtained the pairs (y_i, x_i) for i = 1, 2, ..., n thus.
- iii The values $x_i \in \mathbb{R}^{1 \times (1+k)}$ were measured / are known exactly !!! (That is, the values x_i are <u>non-random</u>.)
- We assume $y_i \approx x_i \beta$ and we have $y_i = x_i \beta + \varepsilon_i$, where ε_i is a <u>random deviation</u> (error).
- The random deviation is caused by the intrinsic properties of the statistical unit

Second:

- We prepared the values $x_1, x_2, ..., x_n \in \mathbb{R}^{1 \times (1+k)}$ at the beginning.
- iii These values $x_1, x_2, ..., x_n$ are known exactly therefore !!!
- When making the *i*-th measurement,

we set up the system (adjust the system's setting to x_i exactly) first and we measure the value y_i of the dependent variable then.

— The random deviation ε_i here is caused <u>either</u> by the intrinsic properties of the system (further unknown / "random" / unconsidered factors),

Remarks:

- In practice, the data may be obtained in either way (first or second).
- In either case (first or second), the independent values x₁, x₂, ..., x_n are assumed to be known exactly, i.e. without any measurement errors.
- Assuming $y_i \approx x_i \beta$, even the dependent values y_i may be measured exactly, i.e. without any measurement error, the random deviation $\varepsilon_i = y_i - x_i \beta$ being caused by the intrinsic properties (other unknown / "random" / unconsidered factors).
- For the purpose of the mathematical analysis, we assume the second case only.

Multiple Linear Regression: Assumptions

• We have n random variables Y_1, Y_2, \dots, Y_n

and *n* random variables $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$.

- We assume that the random variables $Y_1, Y_2, ..., Y_n$ are independent and the random variables $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are independent.
- <u>Remark:</u>

It is enough to assume that the random variables $Y_1, Y_2, ..., Y_n$ are uncorrelated and the random variables $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are uncorrelated.

- Let (Ω, \mathcal{F}, P) be the underlying probability space.
- We stack the random variables $Y_1, Y_2, ..., Y_n$ and $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ into random vectors:

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \quad \text{and} \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

which are (measurable) mappings

$$\mathbf{Y}: \Omega \to \mathbb{R}^n \qquad \text{and} \qquad \boldsymbol{\varepsilon}: \Omega \to \mathbb{R}^n$$

• We assume for simplicity that $\Omega = \mathbb{R}^n$ and that the mappings are identities:

 $Y: \omega \mapsto \omega \quad \text{and} \quad \varepsilon: \omega \mapsto \omega$

(the event space \mathcal{F} is the collection of all Lebesgue measurable subsets of \mathbb{R}^n)

• The expected values of the random vectors Y and ε are:

$$E[Y] = \begin{pmatrix} E[Y_1] \\ E[Y_2] \\ \vdots \\ E[Y_n] \end{pmatrix} \quad \text{and} \quad E[\varepsilon] = \begin{pmatrix} E[\varepsilon_1] \\ E[\varepsilon_2] \\ \vdots \\ E[\varepsilon_n] \end{pmatrix}$$

• The variance-covariance matrix of the random vector Y is:

$$\operatorname{Var}(\mathbf{Y}) = \begin{pmatrix} \operatorname{Var}(Y_1) & \operatorname{cov}(Y_1, Y_2) & \operatorname{cov}(Y_1, Y_3) & \dots & \operatorname{cov}(Y_1, Y_n) \\ \operatorname{cov}(Y_2, Y_1) & \operatorname{Var}(Y_2) & \operatorname{cov}(Y_2, Y_3) & \dots & \operatorname{cov}(Y_2, Y_n) \\ \operatorname{cov}(Y_3, Y_1) & \operatorname{cov}(Y_3, Y_2) & \operatorname{Var}(Y_3) & \dots & \operatorname{cov}(Y_3, Y_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(Y_n, Y_1) & \operatorname{cov}(Y_n, Y_2) & \operatorname{cov}(Y_n, Y_3) & \dots & \operatorname{Var}(Y_n) \end{pmatrix}$$

Recall that

$$\operatorname{cov}(Y_i, Y_j) = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])]$$
 and $\operatorname{Var}(Y_i) = \operatorname{cov}(Y_i, Y_i)$

• The variance-covariance matrix of the random vector $\boldsymbol{\varepsilon}$ is:

$$\operatorname{Var}(\boldsymbol{\varepsilon}) = \begin{pmatrix} \operatorname{Var}(\varepsilon_1) & \operatorname{cov}(\varepsilon_1, \varepsilon_2) & \operatorname{cov}(\varepsilon_1, \varepsilon_3) & \dots & \operatorname{cov}(\varepsilon_1, \varepsilon_n) \\ \operatorname{cov}(\varepsilon_2, \varepsilon_1) & \operatorname{Var}(\varepsilon_2) & \operatorname{cov}(\varepsilon_2, \varepsilon_3) & \dots & \operatorname{cov}(\varepsilon_2, \varepsilon_n) \\ \operatorname{cov}(\varepsilon_3, \varepsilon_1) & \operatorname{cov}(\varepsilon_3, \varepsilon_2) & \operatorname{Var}(\varepsilon_3) & \dots & \operatorname{cov}(\varepsilon_3, \varepsilon_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(\varepsilon_n, \varepsilon_1) & \operatorname{cov}(\varepsilon_n, \varepsilon_2) & \operatorname{cov}(\varepsilon_n, \varepsilon_3) & \dots & \operatorname{Var}(\varepsilon_n) \end{pmatrix}$$

Recall that

$$\operatorname{cov}(\varepsilon_i, \varepsilon_j) = \mathbb{E}[(\varepsilon_i - \mathbb{E}[\varepsilon_i])(\varepsilon_j - \mathbb{E}[\varepsilon_j])]$$
 and $\operatorname{Var}(\varepsilon_i) = \operatorname{cov}(\varepsilon_i, \varepsilon_i)$

- We have the underlying probability space (Ω, \mathcal{F}, P) , with $\Omega = \mathbb{R}^n$ for simplicity.
- Let $\omega \in \Omega$ be the outcome of the random experiment.
- Recalling that X is the $n \times (1+k)$ design matrix, we have

 $y = Y(\omega) = X\beta + \varepsilon(\omega)$

In other words:

- The measured values $y_1, y_2, ..., y_n$ are the numerical outcomes $Y_1(\omega), Y_2(\omega), ..., Y_n(\omega)$ of the random experiment.
- The numerical outcomes $Y_1(\omega), Y_2(\omega), ..., Y_n(\omega)$ are obtained so that the numerical outcomes $\varepsilon_1(\omega), \varepsilon_2(\omega), ..., \varepsilon_n(\omega)$ of the random experiment

Recall:

iii The values of the regressors $x_1, x_2, ..., x_n$ are <u>non-random and known</u> !!! iii The values of the parameters $\beta_0, \beta_1, ..., \beta_k$ are <u>non-random but **unknown**</u> !!!

We assume that

$$Y \sim \mathcal{N}(X\beta, \sigma^2 I)$$
 and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ for some $\sigma^2 \in \mathbb{R}_0^+$

where I denotes the $n \times n$ identity matrix

and 0 denotes the $n \times 1$ zero vector.

The classical assumptions $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ mean that

$$E[Y] = X\beta$$
 and $E[\varepsilon] = 0$

that is

$$\mathbf{E}[\mathbf{Y}] = \begin{pmatrix} \mathbf{E}[Y_1] \\ \mathbf{E}[Y_2] \\ \vdots \\ \mathbf{E}[Y_n] \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \boldsymbol{\beta} \\ \mathbf{x}_2 \boldsymbol{\beta} \\ \vdots \\ \mathbf{x}_n \boldsymbol{\beta} \end{pmatrix} \quad \text{and} \quad \mathbf{E}[\boldsymbol{\varepsilon}] = \begin{pmatrix} \mathbf{E}[\varepsilon_1] \\ \mathbf{E}[\varepsilon_2] \\ \vdots \\ \mathbf{E}[\varepsilon_n] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \mathbf{E}[\varepsilon_n] \end{pmatrix}$$

That is

$$E[Y_i] = x_i \beta$$
 and $E[\varepsilon_i] = 0$ for $i = 1, 2, ..., n$

The classical assumptions $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ also mean that

$$\operatorname{Var}(\mathbf{Y}) = \operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I} = \begin{pmatrix} \sigma^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma^2 \end{pmatrix}$$

That is,

- $Var(Y_i) = Var(\varepsilon_i) = \sigma^2$ for i = 1, 2, ..., n for some $\sigma^2 \in \mathbb{R}^+_0$
- and the random variables $Y_1, Y_2, ..., Y_n$ or $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are (pairwise) <u>uncorrelated</u>.

The classical assumptions $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ finally mean that

• $Y_i \sim \mathcal{N}(\mathbf{x}_i \boldsymbol{\beta}, \sigma^2)$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ for i = 1, 2, ..., nwhere $\mathcal{N}(\mu, \sigma^2)$ denotes the normal (Gaussian) probability distribution

with mean μ and variance σ^2 and that

• the random variables $Y_1, Y_2, ..., Y_n$ or $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are (pairwise) <u>uncorrelated</u>.

<u>Remark:</u> It always holds: If the random variables $Y_1, Y_2, ..., Y_n$ or $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are mutually independent, then they are (pairwise) uncorrelated. It also holds: If $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$, then the random variables

The classical assumption $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ implies that

- The unknown quantities
 - unknown parameters $\beta_0, \beta_1, \dots, \beta_k$
 - unknown (random) deviations $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$

are denoted by Greek letters

The <u>estimates</u> of the unknown parameters β₀, β₁, ..., β_k are denoted by the respective <u>Latin letters</u> b₀, b₁, ..., b_k or by the <u>hat</u> "^Λ" β̂₀, β̂₁, ..., β̂_k, so that b₀ = β̂₀, b₁ = β̂₁, ..., b_k = β̂_k

The predicted values of the dependent variable are denoted by the hat "^":

$$\hat{y}_i = x_i b = x_{i0} b_0 + x_{i1} b_1 + \dots + x_{ik} b_k$$
 for $i = 1, 2, \dots, n$

 The unknown (random) deviations ε₁, ε₂, ..., ε_n are denoted by Greek letters. The <u>residuals</u> are denoted by the respective <u>Latin letters</u> e₁, e₂, ..., e_n or by the <u>hat</u> "^Λ" ê₁, ê₂, ..., ê_n, so that

$$e_1 = \hat{\varepsilon}_1 = y_1 - \hat{y}_1$$
 $e_2 = \hat{\varepsilon}_2 = y_2 - \hat{y}_2$... $e_n = \hat{\varepsilon}_n = y_n - \hat{y}_n$

Basic Results (Theorems)

- The normal equation
- The predicted values
- Orthogonal projections
- Theorem 1: \hat{y} and e are independent
- Theorem 2: $\hat{y} \sim \mathcal{N}(X\beta, \sigma^2 H)$
- Theorem 3: $e \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{M})$
- Theorem 4: $\boldsymbol{b} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 \boldsymbol{C})$ if rank $(\boldsymbol{X}) = k+1$

Given the *n* pairs (y_1, x_1) , (y_2, x_2) , ..., (y_n, x_n) of the observations, the **Residual Sum of Squares** for the estimates $b_0, b_1, ..., b_k \in \mathbb{R}$ is

$$RSS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - x_{i0}b_0 - x_{i1}b_1 - \dots - x_{ik}b_k)^2 \quad \to \min$$

It is our purpose to find the estimates $b_0, b_1, ..., b_k \in \mathbb{R}$ so that the Residual Sum of Squares RSS is <u>minimized</u>. To this end, we let

$$\frac{\partial RSS}{\partial b_j} = \sum_{i=1}^n -2x_{ij}(y_i - x_{i0}b_0 - x_{i1}b_1 - \dots - x_{ik}b_k) = 0 \quad \text{for} \quad j = 0, 1, \dots, k$$

From
$$\frac{\partial RSS}{\partial b_j} = \sum_{i=1}^n -2x_{ij}(y_i - x_{i0}b_0 - x_{i1}b_1 - \dots - x_{ik}b_k) = 0$$
, we obtain

the Normal Equation:

$$\sum_{i=1}^{n} x_{ij}(x_{i0}b_0 + x_{i1}b_1 + \dots + x_{ik}b_k) = \sum_{i=1}^{n} x_{ij}y_i \quad \text{for} \quad j = 0, 1, \dots, k$$

Multiple Linear Regression: The Normal Equation

Recall the notation:

$$X = (x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^{n} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1k} \\ x_{20} & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \dots & x_{nk} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

and

$$\mathbf{y} = (y_i)_{i=1}^n = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

秋

Multiple Linear Regression: The Normal Equation

So the normal equation

$$\sum_{i=1}^{n} x_{ij}(x_{i0}b_0 + x_{i1}b_1 + \dots + x_{ik}b_k) = \sum_{i=1}^{n} x_{ij}y_i \quad \text{for} \quad j = 0, 1, \dots, k$$
$$\sum_{i=1}^{n} x_{ij}(x_ib) = \sum_{i=1}^{n} x_{ij}y_i \quad \text{for} \quad j = 0, 1, \dots, k$$

can be written as

$$X^{\mathrm{T}}Xb = X^{\mathrm{T}}y$$

Having the normal equation $(X^T X b = X^T y)$, where X is an $n \times (1 + k)$ matrix, let

 $p = \operatorname{rank}(X)$

Assume for simplicity that the matrix X is of full rank, that is,

$$p = \operatorname{rank}(X) = k + 1 \le n$$

The matrix $X^T X$ is then non-singular; let:

$$\boldsymbol{C} = \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1}$$

Multiple Linear Regression: The Normal Equation

We have

$$\boldsymbol{C} = \left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right)^{-1} = \begin{pmatrix} c_{00} & c_{01} & c_{02} & \dots & c_{0k} \\ c_{10} & c_{11} & c_{12} & \dots & c_{1k} \\ c_{20} & c_{21} & c_{22} & \dots & c_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{k0} & c_{k1} & c_{k2} & \dots & c_{kk} \end{pmatrix}$$

The solution to the normal equation

$$X^{\mathrm{T}}Xb = X^{\mathrm{T}}y$$
$$b = CX^{\mathrm{T}}y$$

is then

Recall the n equations

$$y_{1} = x_{10}\beta_{0} + x_{11}\beta_{1} + x_{12}\beta_{2} + \dots + x_{1k}\beta_{k} + \varepsilon_{1}$$
$$y_{2} = x_{20}\beta_{0} + x_{21}\beta_{1} + x_{22}\beta_{2} + \dots + x_{2k}\beta_{k} + \varepsilon_{2}$$
$$\vdots$$

$$y_n = x_{n0}\beta_0 + x_{n1}\beta_1 + x_{n2}\beta_2 + \dots + x_{nk}\beta_k + \varepsilon_n$$

where

- the dataset $(y_i, x_{i0}, x_{i1}, \dots, x_{ik})_{i=1}^n$ is given,
- the parameters $\beta_0, \beta_1, ..., \beta_k \in \mathbb{R}$ are unknown (to be estimated), and
- the values $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n \in \mathbb{R}$ are <u>random deviations</u> (random errors).

Now the **predicted values** are:

$$\hat{y}_{1} = x_{10}b_{0} + x_{11}b_{1} + x_{12}b_{2} + \dots + x_{1k}b_{k}$$
$$\hat{y}_{2} = x_{20}b_{0} + x_{21}b_{1} + x_{22}b_{2} + \dots + x_{2k}b_{k}$$
$$\vdots$$
$$\hat{y}_{n} = x_{n0}b_{0} + x_{n1}b_{1} + x_{n2}b_{2} + \dots + x_{nk}b_{k}$$

where

- $b_0 = \hat{\beta}_0$, $b_1 = \hat{\beta}_1$, ..., $b_k = \hat{\beta}_k$ are the estimates of the unknown parameters $\beta_0, \beta_1, ..., \beta_k \in \mathbb{R}$,
- $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are the predicted values.

Shortly:

- the solution to the normal equation is

$$\boldsymbol{b} = \boldsymbol{C}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

- the predicted values are

$$\widehat{\boldsymbol{y}} = \boldsymbol{X}\boldsymbol{b} = \boldsymbol{X}\boldsymbol{C}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

Introduce the notation:

$$H = XCX^{\mathrm{T}} = X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}$$

The letter "H" stands for "hat":

$$\widehat{y} = Hy$$

By the construction (by the Least Squares Method: the vector \hat{y} lies in the linear hull of the columns of the matrix X and is as close to y as possible in the Euclidean distance), the matrix

$$H = XCX^{\mathrm{T}} = X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}$$

is the matrix of the orthogonal projection onto the linear subspace

```
\{\boldsymbol{X\boldsymbol{\beta}}:\boldsymbol{\beta}\in\mathbb{R}^{1+k}\}
```

(the linear hull of the columns of the matrix X)

moreover

$$(I - H)$$

is the matrix of the orthogonal projection onto the orthogonal complement

The matrix
$$H = XCX^{T} = X(X^{T}X)^{-1}X^{T}$$
 therefore is:

- idempotent:

$$H = HH$$

- symmetric:

$$H = H^{\mathrm{T}}$$

— and:

$$HX = X$$

The residuals are:

$$\boldsymbol{e} = \boldsymbol{y} - \boldsymbol{\hat{y}} = \boldsymbol{y} - \boldsymbol{H}\boldsymbol{y} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{y}$$

ŷ⊥e

Therefore:

Multiple Linear Regression: some properties of *H*

Residual Sum of Squares: RSS = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = e^T e$

Recalling that the regressors $x_1, x_2, ..., x_n \in \mathbb{R}^{1 \times (1+k)}$ are given, that we assume

$$Y_i = \mathbf{x}_i \boldsymbol{\beta} + \varepsilon_i$$
 for $i = 1, 2, ..., n$

with

$$\mathbb{E}[Y_i] = \mathbf{x}_i \boldsymbol{\beta}$$
 and $\operatorname{Var}(Y_i) = \sigma^2$ for $i = 1, 2, ..., n$

or

$$\mathbb{E}[\varepsilon_i] = 0$$
 and $\operatorname{Var}(\varepsilon_i) = \sigma^2$ for $i = 1, 2, ..., n$

where the random variables $Y_1, Y_2, ..., Y_n$, or $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$, respectively, are independent (or <u>uncorrelated</u>), and that $y_1, y_2, ..., y_n$ are some observations of the random variables $Y_1, Y_2, ..., Y_n$, **it follows that all the estimates**

$$b_0, b_1, \dots, b_k$$
 $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ RSS etc.

<u>Theorem 1:</u> The random vectors \hat{y} and e are independent.

That is,

$$P\left(\begin{array}{c} \left\{ \omega \in \Omega : \widehat{y}(\omega) \in G_{\widehat{y}} \right\} \cap \\ \cap \left\{ \omega \in \Omega : e(\omega) \in G_{e} \right\} \cap \end{array} \right) = \begin{array}{c} P\left\{ \omega \in \Omega : \widehat{y}(\omega) \in G_{\widehat{y}} \right\} \times \\ \times P\left\{ \omega \in \Omega : e(\omega) \in G_{e} \right\} \cap \end{array} \right)$$

for every open set $G_{\widehat{y}} \subseteq \mathbb{R}^n$ and for every open set $G_e \subseteq \mathbb{R}^n$.

<u>Corollary:</u> The <u>random vector</u> \hat{y} and the <u>random variable</u> RSS are <u>independent</u>.

Recall the **Residual Sum of Squares** is $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = e^T e$

That is,

$$P\left(\begin{array}{c}\left\{\omega \in \Omega : \widehat{y}(\omega) \in G_{\widehat{y}}\right\} \cap \\ \cap \left\{\omega \in \Omega : \mathrm{RSS}(\omega) \in G_{\mathrm{RSS}}\right\} \end{array}\right) = \begin{array}{c} P\left\{\omega \in \Omega : \widehat{y}(\omega) \in G_{\widehat{y}}\right\} \times \\ \times P\left\{\omega \in \Omega : \mathrm{RSS}(\omega) \in G_{\mathrm{RSS}}\right\} \end{array}$$
for every open set $G_{\widehat{y}} \subseteq \mathbb{R}^{n}$ and for every open set $G_{\mathrm{RSS}} \subseteq \mathbb{R}$

Theorem 2: It holds

and

$$\widehat{\mathbf{y}} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{H})$$

It holds in particular hence that

$$E[\hat{y}_i] = E[x_i b] = x_i \beta = E[Y_i] \quad \text{for} \quad i = 1, 2, ..., n$$
$$Var(\hat{y}_i) = \sigma^2 (XCX^T)_{ii} \quad \text{for} \quad i = 1, 2, ..., n$$

$$\operatorname{cov}(\hat{y}_i, \hat{y}_j) = \sigma^2 (\mathbf{X} \mathbf{C} \mathbf{X}^{\mathrm{T}})_{ij}$$
 for $i, j = 1, 2, ..., n$

Theorem 3: It holds

$$\boldsymbol{e} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{M})$$

where

$$M = I - H = I - XCX^{T} = I - X(X^{T}X)^{-1}X^{T}$$

It holds in particular hence that

$$E[e_i] = 0$$
 for $i = 1, 2, ..., n$

and

$$Var(e_i) = \sigma^2 m_{ii} = \sigma^2 - Var(\hat{y}_i) \quad \text{for} \quad i = 1, 2, ..., n$$
$$cov(e_i, e_j) = \sigma^2 m_{ij} \quad \text{for} \quad i, j = 1, 2, ..., n$$

Multiple Linear Regression: Theorem 4

<u>Theorem 4</u>: If rank(X) = k + 1, then

 $\boldsymbol{b} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 \boldsymbol{C})$

It holds in particular hence that

and

 $E[b_j] = \beta_j \qquad \text{for} \quad j = 0, 1, \dots, k$ $Var(b_j) = \sigma^2 c_{jj} \qquad \text{for} \quad j = 0, 1, \dots, k$ $cov(b_j, b_i) = \sigma^2 c_{ji} \qquad \text{for} \quad j, i = 0, 1, \dots, k$

Residual Sum of Squares, χ^2 -test for the variance σ^2 , and confidence intervals

- Residual Sum of Squares (RSS)
- Theorem 5: RSS/ $\sigma^2 \sim \chi^2_{n-p}$
- χ^2 -test for the variance σ^2
- Confidence intervals

Recall the Residual Sum of Squares is

RSS =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - x_i b)^2 = (y - Xb)^T (y - Xb)$$

We know that the matrix H is symmetric $(H^T = H)$ and idempotent (HH = H). Moreover, we know by the Pythagoras Theorem (see above) that

$$e^{\mathsf{T}}e = y^{\mathsf{T}}y - \hat{y}^{\mathsf{T}}\hat{y} = y^{\mathsf{T}}y - y^{\mathsf{T}}H^{\mathsf{T}}Hy =$$
$$= y^{\mathsf{T}}y - y^{\mathsf{T}}Hy = y^{\mathsf{T}}y - y^{\mathsf{T}}\hat{y} = y^{\mathsf{T}}(y - Xb)$$

Put together, the Residual Sum of Squares is

RSS =
$$\sum_{i=1}^{n} e_i^2 = e^T e = (y - Xb)^T (y - Xb) = y^T (y - Xb)$$

Define the residual variance or the Mean Square Error as

$$s^{2} = \frac{\text{RSS}}{n-p} = \frac{\sum_{i=1}^{n} (y_{i} - \boldsymbol{x}_{i} \boldsymbol{b})^{2}}{n-p}$$

where

 $p = \operatorname{rank}(X)$

Multiple Linear Regression: Theorem 5

Theorem 5: It holds

where

$$\frac{\text{RSS}}{\sigma^2} \sim \chi_{n-p}^2$$

$$p = \text{rank}(X) \quad \text{and} \quad \text{RSS} = e^{T}e = y^{T}y - y^{T}Xb$$

Recall that, if $X \sim \chi^2_{n-p}$, then E[X] = n - p. Therefore:

$$E[RSS] = \sigma^{2}(n-p)$$
$$E[s^{2}] = E\left[\frac{RSS}{n-p}\right] = \sigma^{2}$$

<u>Remark:</u> Use Theorem 5 (RSS/ $\sigma^2 \sim \chi^2_{n-p}$)

- to obtain an unbiased estimate of the variance:

$$E[s^2] = \sigma^2$$
 that is $s^2 \approx \sigma^2$

— for a χ^2 -test about the variance:

$$\frac{(n-p)s^2}{\sigma^2} \sim \chi^2_{n-p}$$

— or to establish the confidence intervals for the variance σ^2

Remark:

Theorem 5 (RSS/ $\sigma^2 \sim \chi^2_{n-p}$) can be used to conduct the χ^2 -test for the variance.

- Let $\sigma_0^2 \in \mathbb{R}_0^+$ be a prescribed number.
- Formulate the null hypothesis:

$$H_0: \quad \sigma^2 = \sigma_0^2$$

- Formulate the alternative hypothesis
 - two-sided: $H_1: \sigma^2 \neq \sigma_0^2$
 - one-sided: H_1 : $\sigma^2 < \sigma_0^2$
 - one-sided: H_1 : $\sigma^2 > \sigma_0^2$

Notation: Let

denote the quantile function of Pearson's χ^2 -distribution with n - p d.f., where $p = \operatorname{rank}(X)$.

 $\chi^2_{n-p}(q)$

The quantile function $\chi_{n-p}^2(q)$ is the function inverse to the cumulative distribution function F(x) of **Pearson's \chi^2-distribution** with n-p degrees of freedom, i.e.

$$\chi^2_{n-p}(q) = F^{-1}(q) \quad \text{for} \quad q \in (0,1)$$

Notation: Let

获

 $\chi^2_{n-p}(q)$

denote the quantile function of Pearson's χ^2 -distribution with n - p d.f., where $p = \operatorname{rank}(X)$.

In other words, if 0 < q < 1, then $x = \chi^2_{n-p}(q)$ is the unique value such that

$$\int_{-\infty}^{\chi^2_{n-p}(q)} f(t) \, \mathrm{d}t = \int_{-\infty}^{x} f(t) \, \mathrm{d}t = q$$

where f(t) is the density of Pearson's χ^2 -distribution with n - p d.f.

Having chosen the value $\sigma_0^2 \in \mathbb{R}_0^+$ and assuming the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$ is true, calculate the statistic

$$X^{2} = \frac{\text{RSS}}{\sigma^{2}} = \frac{\text{RSS}}{\sigma_{0}^{2}} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sigma_{0}^{2}}$$

The χ^2 -test for σ^2 with two-sided alternative hypothesis ($\sigma^2 \neq \sigma_0^2$):

• choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.

• the critical values are
$$c = \chi_{n-p}^2 \left(\frac{\alpha}{2}\right)$$
 and $d = \chi_{n-p}^2 \left(1 - \frac{\alpha}{2}\right)$

- if $X^2 \in [0,c] \cup [d, +\infty)$, the critical region, then reject the null hypothesis
- if $X^2 \in (c,d)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

The χ^2 -test for σ^2 with one-sided alternative hypothesis ($\sigma^2 < \sigma_0^2$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- the critical value is $c = \chi_{n-p}^2(\alpha)$
- if $X^2 \in [0, c]$, the critical region, then <u>reject</u> the null hypothesis
- if $X^2 \in (c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

The χ^2 -test for σ^2 with one-sided alternative hypothesis ($\sigma^2 > \sigma_0^2$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- the critical value is $d = \chi_{n-p}^2(1-\alpha)$
- if $X^2 \in [d, +\infty)$, the critical region, then <u>relect</u> the null hypothesis
- if $X^2 \in [0, d)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

Let $x, y \in \mathbb{R}^+$ be any numbers such that x < y and let F(x) be the cumulative distribution function of Pearson's χ^2 -distribution with n - p degrees of freedom. Then, by the definition of the cumulative distribution function and by Theorem 5, the probability

$$P\left(x < \frac{\text{RSS}}{\sigma^2} \le y\right) = F(y) - F(x)$$

Therefore

$$P\left(\frac{\text{RSS}}{y} \le \sigma^2 < \frac{\text{RSS}}{x}\right) = F(y) - F(x)$$

We have:

$$P\left(\frac{\mathrm{RSS}}{y} \le \sigma^2 < \frac{\mathrm{RSS}}{x}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let
$$y = \chi_{n-p}^2 \left(1 - \frac{\alpha}{2}\right)$$
 and let $x = \chi_{n-p}^2 \left(\frac{\alpha}{2}\right)$. Recall that $\chi_{n-p}^2(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\sigma^2 \in \left[\frac{\text{RSS}}{\chi_{n-p}^2 \left(1 - \frac{\alpha}{2}\right)}, \frac{\text{RSS}}{\chi_{n-p}^2 \left(1 - \frac{\alpha}{2}\right)}\right]$$

is about $1-\alpha = 95$ %.

We have:

$$P\left(\frac{\text{RSS}}{y} \le \sigma^2 < \frac{\text{RSS}}{x}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let
$$y = \chi_{n-p}^2(1-\alpha)$$
 and let $x \searrow 0$. Recall that $\chi_{n-p}^2(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\sigma^2 \in \left[\frac{\text{RSS}}{\chi^2_{n-p}(1-\alpha)}, +\infty\right)$$

is about $1-\alpha = 95$ %.

We have:

$$P\left(\frac{RSS}{y} \le \sigma^2 < \frac{RSS}{x}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let
$$y = +\infty$$
 and let $x = \chi^2_{n-p}(\alpha)$. Recall that $\chi^2_{n-p}(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\sigma^2 \in \left[0, \frac{\text{RSS}}{\chi^2_{n-p}(\alpha)}\right]$$

is about $1-\alpha = 95$ %.

t-test for a single linear combination of the parameters $\beta_0, \beta_1, \ldots, \beta_k$ e.g. an individual parameter β_i and confidence interval

Theorem 6:
$$p^{T}b \sim \mathcal{N}(p^{T}\beta, \sigma^{2}p^{T}Cp)$$

and $\frac{p^{T}b-p^{T}\beta}{\sqrt{s^{2}}\sqrt{p^{T}Cp}} \sim t_{n-(k+1)}$ if $\operatorname{rank}(X) = k+1$

- *t*-test for an individual parameter β_i
- Confidence interval for the β_i

<u>Theorem 6:</u> Assume for simplicity that rank(X) = k + 1and let $p^{T} \in \mathbb{R}^{1 \times (1+k)}$ be a non-zero row vector $(p^{T} \neq 0^{T})$. Then

$$\boldsymbol{p}^{\mathrm{T}}\boldsymbol{b} \sim \mathcal{N}(\boldsymbol{p}^{\mathrm{T}}\boldsymbol{\beta}, \sigma^{2}\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p})$$

and

$$\frac{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{b} - \boldsymbol{p}^{\mathrm{T}}\boldsymbol{\beta}}{\sqrt{s^{2}}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}}} \sim t_{n-(k+1)}$$

<u>Remark:</u> The matrix $X^T X$ is positively definite.

<u>Remark</u>: Given a new row vector $x = (x_0, x_1, x_2 \dots, x_k) \in \mathbb{R}^{1 \times (1+k)}$,

which is not included in the matrix X, we may wish to predict (extrapolate) the value of the random variable Y for this new statistical unit (x).

Assuming that the model is true, we should have

 $Y_x \approx x\beta$

or

$$Y_{\boldsymbol{x}} = \boldsymbol{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where ε is the random error.

Not knowing the parameters β , we have to use their estimates **b** instead. Then **the point estimate** of the value Y_x is:

$$\tilde{Y}_x = xb$$

<u>**Remark:**</u> If that rank(X) = k + 1, then we can consider $p^{T} = x$ and Theorem 6

$$\frac{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{b} - \boldsymbol{p}^{\mathrm{T}}\boldsymbol{\beta}}{\sqrt{s^2}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}}} \sim t_{n-(k+1)}$$

to obtain a confidence interval for the true value $x\beta$.

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let c > 0 be the value such that

$$\int_{-c}^{+c} f(t) \, \mathrm{d}t = 1 - \alpha$$

where f(t) is the density of Student's t-distribution with n - (k + 1) d.f.

Then, by Theorem 6,

$$P\left(-c \leq \frac{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{b} - \boldsymbol{p}^{\mathrm{T}}\boldsymbol{\beta}}{\sqrt{s^{2}}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}}} \leq +c\right) = P\left(-c \leq \frac{\boldsymbol{x}\boldsymbol{b} - \boldsymbol{x}\boldsymbol{\beta}}{\sqrt{s^{2}}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}}} \leq +c\right) = 1 - \alpha$$

Multiple Linear Regression: Prediction (Extrapolation)

By Theorem 6:

$$P\left(-c \leq \frac{xb - x\beta}{\sqrt{s^2}\sqrt{p^{\mathrm{T}}Cp}} \leq +c\right) = 1 - \alpha$$

$$P\left(-c\sqrt{s^2}\sqrt{p^{\mathrm{T}}Cp} \leq xb - x\beta \leq +c\sqrt{s^2}\sqrt{p^{\mathrm{T}}Cp}\right) = 1 - \alpha$$

$$P\left(xb - c\sqrt{s^2}\sqrt{p^{\mathrm{T}}Cp} \le x\beta \le xb + c\sqrt{s^2}\sqrt{p^{\mathrm{T}}Cp}\right) = 1 - \alpha$$

Having obtained

$$P\left(\boldsymbol{x}\boldsymbol{b} - c\sqrt{s^2}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}} \leq \boldsymbol{x}\boldsymbol{\beta} \leq \boldsymbol{x}\boldsymbol{b} + c\sqrt{s^2}\sqrt{\boldsymbol{p}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{p}}\right) = 1 - \alpha$$

the probability that the unknown

$$\boldsymbol{x\beta} \in \left[\boldsymbol{xb} - t_{n-(k+1)} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2} \sqrt{\boldsymbol{p}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{p}}, \quad \boldsymbol{xb} + t_{n-(k+1)} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2} \sqrt{\boldsymbol{p}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{p}}\right]$$

is about $1-\alpha = 95$ %,

where $t_{n-(k+1)}(q)$ denotes the quantile function of Student's *t*-distribution

Corollary: By considering

$$p^{T} = (0 \dots 0 1 0 \dots 0)$$
 with the 1 at the *j*-th position

we obtain:

$$\frac{b_j-\beta_j}{\sqrt{s^2}\sqrt{c_{jj}}}\sim t_{n-(k+1)} \qquad \text{for} \quad j=0,1,\ldots,k$$

Remark: Use the Corollary

- for *t*-tests about the parameters $\beta_0, \beta_1, ..., \beta_k$ of the model,
- to establish the confidence intervals for the parameters $\beta_0, \beta_1, \dots, \beta_k$,

- Choose any non-zero $p^T \in \mathbb{R}^{1 \times (1+k)}$ and let $a \in \mathbb{R}$ be a prescribed number.
- We can then use Theorem 5 to test the null hypothesis H_0 that $p^T \beta = a$.

• By taking a particular choice of the non-zero $p^T \in \mathbb{R}^{1 \times (1+k)}$, we can use

the Corollary $(\frac{b_j - \beta_j}{\sqrt{s^2} \sqrt{c_{jj}}} \sim t_{n-(k+1)})$ to test the null hypothesis H_0 that $\beta_j = a$ or $\beta_j = 0$ (if we put a = 0 in particular). Notation: Let

 $t_{n-(k+1)}(q)$

denote the quantile function of Student's *t*-distribution with n - (k + 1) d.f.

The quantile function $t_{n-(k+1)}(q)$ is the function inverse to the cumulative distribution function F(x) of **Student's** *t*-distribution with n - (k + 1) degrees of freedom, i.e.

$$t_{n-(k+1)}(q) = F^{-1}(q)$$
 for $q \in (0,1)$

Notation: Let

 $t_{n-(k+1)}(q)$

denote the quantile function of Student's *t*-distribution with n - (k + 1) d.f.

In other words, if 0 < q < 1, then $x = t_{n-(k+1)}(q)$ is the unique value such that

$$\int_{-\infty}^{t_{n-(k+1)}(q)} f(t) \, \mathrm{d}t = \int_{-\infty}^{x} f(t) \, \mathrm{d}t = q$$

where f(t) is the density of Student's *t*-distribution with n - (k + 1) d.f.

Choosing the index $j \in \{0, 1, ..., k\}$ and a value $b_{j_0} \in \mathbb{R}$,

formulate the null hypothesis

$$H_0: \quad \beta_j = b_{j0}$$

formulate the alternative hypothesis

- two-sided: $H_1: \beta_j \neq b_{j0}$
- one-sided: $H_1: \beta_j < b_{j0}$
- one-sided: H_1 : $\beta_j > b_{j0}$

and use the aforementioned Corollary to conduct the test.

Having chosen the value $b_{j0} \in \mathbb{R}$, such as $b_{j0} = 0$, and assuming the null hypothesis H_0 : $\beta_j = b_{j0}$ is true, calculate the statistic

$$T = \frac{b_j - \beta_j}{\sqrt{s^2} \sqrt{c_{jj}}} = \frac{b_j - b_{j0}}{\sqrt{s^2} \sqrt{c_{jj}}} = \frac{b_j}{\sqrt{s^2} \sqrt{c_{jj}}}$$

The *t*-test for β_j with two-sided alternative hypothesis ($\beta_j \neq b_{j0}$):

• choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.

• the critical value is
$$c = t_{n-(k+1)} \left(1 - \frac{a}{2} \right)$$

- if $T \in (-\infty, -c] \cup [+c, +\infty)$, the critical region, then reject the null hypothesis
- if $T \in (-c, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

The *t*-test for β_j with one-sided alternative hypothesis ($\beta_j < b_{j0}$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- the critical value is $c = t_{n-(k+1)}(1-\alpha)$
- if $T \in (-\infty, -c]$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-c, +\infty)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

The *t*-test for β_j with one-sided alternative hypothesis ($\beta_j > b_{j0}$):

- choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %, other popular values are $\alpha = 10$ % or $\alpha = 1$ % or $\alpha = 0.1$ % etc.
- the critical value is $c = t_{n-(k+1)}(1-\alpha)$
- if $T \in [+c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis
- if $T \in (-\infty, +c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis

IIIWARNING!!! It usually makes no sense to test the null hypothesis $\beta_0 = 0$ if $X_0 = 1$, that is, if β_0 is the intercept term. Do not use the aforementioned test unless you know what and why you are doing.

It can make sense to test the null hypothesis $\beta_0 = 0$ if the independent values $x_1, x_2, ..., x_n$ are from a neighbourhood of zero.

Otherwise (if the cluster of $x_1, x_2, ..., x_n$ is far from zero) it hardly makes sense to test the null hypothesis $\beta_0 = 0$ because the intercept term β_0 is just a constant

Let $x, y \in \mathbb{R}$ be any numbers such that x < y and let F(x) be the cumulative distribution function of Student's *t*-distribution with n - (k + 1) degrees of freedom. Then, by the definition of the cumulative distribution function and by the Corollary, the probability

$$P\left(x < \frac{b_j - \beta_j}{\sqrt{s^2}\sqrt{c_{jj}}} \le y\right) = F(y) - F(x)$$

Therefore

$$P\left(x\sqrt{s^2}\sqrt{c_{jj}} < b_j - \beta_j \le y\sqrt{s^2}\sqrt{c_{jj}}\right) = F(y) - F(x)$$
$$P\left(b_j - y\sqrt{s^2}\sqrt{c_{jj}} \le \beta_j < b_j - x\sqrt{s^2}\sqrt{c_{jj}}\right) = F(y) - F(x)$$

We have:

$$P\left(b_j - y\sqrt{s^2}\sqrt{c_{jj}} \le \beta_j < b_j - x\sqrt{s^2}\sqrt{c_{jj}}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %. Let $y = t_{n-(k+1)} \left(1 - \frac{\alpha}{2}\right)$ and let $x = -y = -t_{n-(k+1)} \left(1 - \frac{\alpha}{2}\right) = t_{n-(k+1)} \left(\frac{\alpha}{2}\right)$. Recall that $t_{n-(k+1)}(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\beta_j \in \left[b_j - t_{n-(k+1)}\left(1 - \frac{\alpha}{2}\right)\sqrt{s^2}\sqrt{c_{jj}}, b_j + t_{n-(k+1)}\left(1 - \frac{\alpha}{2}\right)\sqrt{s^2}\sqrt{c_{jj}}\right]$$

We have:

$$P\left(b_j - y\sqrt{s^2}\sqrt{c_{jj}} \le \beta_j < b_j - x\sqrt{s^2}\sqrt{c_{jj}}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let
$$y = t_{n-(k+1)}(1-\alpha)$$
 and let $x = -\infty$. Recall that $t_{n-(k+1)}(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\beta_j \in \left[b_j - t_{n-(k+1)}(1-\alpha)\sqrt{s^2}\sqrt{c_{jj}}, +\infty\right)$$

is about $1-\alpha = 95$ %.

We have:

$$P\left(b_j - y\sqrt{s^2}\sqrt{c_{jj}} \le \beta_j < b_j - x\sqrt{s^2}\sqrt{c_{jj}}\right) = F(y) - F(x)$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

Let
$$y = +\infty$$
 and let $x = t_{n-(k+1)}(\alpha)$. Recall that $t_{n-(k+1)}(q) = F^{-1}(q)$.

Then, by the continuity of the cumulative distribution function, the probability that

the unknown
$$\beta_j \in \left(-\infty, b_j + t_{n-(k+1)}(\alpha)\sqrt{s^2}\sqrt{c_{jj}}\right)$$

is about $1-\alpha = 95$ %.

iii WARNING !!!

- Never use the above *t*-test for the parameters $\beta_0, \beta_1, \dots, \beta_k$ consecutively!
- Never use the above construction of the confidence intervals consecutively!
- Use the following result (Theorem 7) instead !

F-test for the significance of the model and confidence region **& F-test for** a system of linear combinations of the parameters $\beta_0, \beta_1, \ldots, \beta_k$

• Theorem 7:

$$\frac{(\boldsymbol{b}-\boldsymbol{\beta})^{\mathrm{T}}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{X})(\boldsymbol{b}-\boldsymbol{\beta})}{\mathrm{RSS}} \Big/ \frac{k+1}{n-(k+1)} \sim F_{k+1,\,n-(k+1)}$$

- *F*-test for the significance of the model
- Confidence region
- Theorem 8:

$$\frac{(\boldsymbol{A}\boldsymbol{b}-\boldsymbol{a})^{\mathrm{T}} (\boldsymbol{A}\boldsymbol{C}\boldsymbol{A}^{\mathrm{T}})^{-1} (\boldsymbol{A}\boldsymbol{b}-\boldsymbol{a})}{\mathrm{RSS}} \Big/ \frac{r}{n-(k+1)} \sim F_{r,n-(k+1)}$$

<u>Theorem 7:</u> Assume for simplicity that rank(X) = k + 1. It holds

$$\frac{(\boldsymbol{b}-\boldsymbol{\beta})^{\mathrm{T}}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})(\boldsymbol{b}-\boldsymbol{\beta})}{\mathrm{RSS}}\Big/\frac{k+1}{n-(k+1)} \sim F_{k+1,n-(k+1)}$$

<u>Theorem 7*</u>: Assume for simplicity that rank(X) = k + 1. Let $a \in \mathbb{R}^{1+k}$ be a vector.

then

lf

$$\frac{(\boldsymbol{b}-\boldsymbol{a})^{\mathrm{T}}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})(\boldsymbol{b}-\boldsymbol{a})}{\mathrm{RSS}} / \frac{k+1}{n-(k+1)} \sim F_{k+1,n-(k+1)}$$

 $\beta = a$

Multiple Linear Regression: Theorem 7*

Multiple Linear Regression: Theorem 7*: Corollary

Corollary: By considering

that is the zero vector, we are testing the null hypothesis that

 $H_0: \quad \boldsymbol{\beta} = \boldsymbol{0}$

that is

$$H_0: \qquad \beta_0 = \beta_1 = \cdots = \beta_k = 0$$

that is we are testing the overall significance of the model.

$$a = 0$$

Corollary: By considering

$$a = 0$$

we obtain:

$$\frac{\boldsymbol{b}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{b}}{\mathrm{RSS}} \Big/ \frac{k+1}{n-(k+1)} = \frac{\widehat{\boldsymbol{y}}^{\mathrm{T}}\widehat{\boldsymbol{y}}}{\mathrm{RSS}} \Big/ \frac{k+1}{n-(k+1)} \sim F_{k+1,n-(k+1)}$$

Remark: Use this Corollary

- for F-test about the significance of the model,
- to establish the confidence region.

Multiple Linear Regression: Theorem 7*: Corollary

Notation: Let

$$F_{k+1,n-(k+1)}(q)$$

denote the quantile function of Fisher's *F*-distribution with k + 1 and n - (k + 1) degrees of freedom.

The quantile function $F_{k+1,n-(k+1)}(q)$ is the function inverse to the cumulative distribution function F(x) of **Fisher's F-distribution** with k + 1 and n - (k + 1) degrees of freedom, i.e.

$$F_{k+1,n-(k+1)}(q) = F^{-1}(q)$$
 for $q \in (0,1)$

Notation: Let

$$F_{k+1,n-(k+1)}(q)$$

denote the quantile function of Fisher's *F*-distribution with k + 1 and n - (k + 1) degrees of freedom.

In other words, if 0 < q < 1, then $x = F_{k+1, n-(k+1)}(q)$ is the unique value such that

$$\int_{-\infty}^{F_{k+1,n-(k+1)}(q)} f(t) \, \mathrm{d}t = \int_{-\infty}^{x} f(t) \, \mathrm{d}t = q$$

where f(t) is the density of Fisher's *F*-distribution with k + 1 and n - (k + 1) d.f.

Formulate the null hypothesis

$$H_0: \qquad \beta_0 = \beta_1 = \cdots = \beta_k = 0$$

• <u>Be cautious</u> because it usually makes no sense to test the value of the intercept term β_0 (see above). See also the Coefficient of Determination (R^2) below.

• The alternative hypothesis is simply $H_1 \equiv \neg H_0$, the logical negation of H_0 , that is $\beta_j \neq 0$ for at least one $j \in \{0, 1, ..., k\}$.

Calculate the statistic

$$F = \frac{\widehat{\mathbf{y}}^{\mathrm{T}}\widehat{\mathbf{y}}}{\mathrm{RSS}} / \frac{k+1}{n-(k+1)}$$

- Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.
- The critical value is $c = F_{k+1,n-(k+1)}(1-\alpha)$, that is $\int_{c}^{+\infty} f(x) dx = \alpha$, where f(x) is the density of Fisher's *F*-distribution with k+1 and n-(k+1) degrees of freedom,
- If $F \in [c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis.
- If $F \in (0, c)$, then <u>do not reject</u> (fail to reject) the null hypothesis.

Consider $\overline{\beta} = 0$, let $x \in \mathbb{R}$ be any real number, and let F(x) be the cumulative distribution function of Fisher's *F*-distribution with k + 1 and n - (k + 1) degrees of freedom. Then, by the definition of the cumulative distribution function and by the Corollary, the probability

$$P\left(\frac{(\boldsymbol{b}-\boldsymbol{\beta})^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}(\boldsymbol{b}-\boldsymbol{\beta})}{\mathrm{RSS}} \middle/ \frac{k+1}{n-(k+1)} \le x\right) = F(x) \quad \text{for any} \quad \boldsymbol{\beta} \in \mathbb{R}^{1+k}$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %. Then the probability that

the unknown
$$\boldsymbol{\beta} \in \left\{ \boldsymbol{\beta} \in \mathbb{R}^{1+k} : \frac{(\boldsymbol{b} - \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} (\boldsymbol{b} - \boldsymbol{\beta})}{\mathrm{RSS}} / \frac{k+1}{n - (k+1)} \leq F_{k+1, n - (k+1)} (1 - \alpha) \right\}$$

is about $1 - \alpha = 95$ %.

<u>Remark:</u> This confidence region is an ellipsoid centred at *b*.

The nominator $((b - \beta)^T X^T X (b - \beta))$ is a quadratic expression in β .

To gain a geometrical insight, calculate the spectral / eigendecomposition

<u>Theorem 8:</u> Assume for simplicity that rank(X) = k + 1. Let $a \in \mathbb{R}^r$ be a vector and let $A \in \mathbb{R}^{r \times (1+k)}$ be an $r \times (1+k)$ matrix of full-rank where $r \le 1+k$, that is

$$r = \operatorname{rank}(A) \le \operatorname{rank}(X) = k + 1$$

lf

$$A\beta = a$$

then

$$\frac{(Ab-a)^{\mathrm{T}}(ACA^{\mathrm{T}})^{-1}(Ab-a)}{\mathrm{RSS}} / \frac{r}{n-(k+1)} \sim F_{r,n-(k+1)}$$

Multiple Linear Regression: Theorem 8: Illustration

Theorem 8

$$\boldsymbol{A\beta} = \boldsymbol{a} \qquad \Rightarrow \qquad \frac{(\boldsymbol{Ab} - \boldsymbol{a})^{\mathrm{T}} (\boldsymbol{ACA}^{\mathrm{T}})^{-1} (\boldsymbol{Ab} - \boldsymbol{a})}{\mathrm{RSS}} / \frac{r}{n - (k+1)} \sim F_{r,n-(k+1)}$$

is at the heart of the ANOVA method

and other results.

The Coefficient of Determination (*R*²)

- Assumption: $\mathbf{1} \in \{ X \boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{1+k} \}$
- Motivation
- Some facts
- Theorem 8: Corollary
- *F*-test for the null hypothesis

 $H_0: \beta_1 = \dots = \beta_k = 0$

Assume throughout this section that

$$\mathbf{1} \in \{ \boldsymbol{X}\boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{1+k} \}$$

where 1 is the vector of n ones:

$$\mathbf{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

For example, assume that

$$X_0 = 1$$

that is β_0 is the intercept term.

If $X_0 = 1$, that is β_0 is the intercept term, then it may be desirable to test the null hypothesis

$$H_0: \qquad \beta_1 = \cdots = \beta_k = 0$$

that is without the test for the parameter β_0 .

To this end, apply Theorem 8 with the $k \times (k + 1)$ matrix and the k-vector

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Recall our assumption that

$$\mathbf{1} \in \{ X\boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{1+k} \}$$

Then the line

$$\{\mathbf{1}\lambda:\lambda\in\mathbb{R}\}\subset\{X\boldsymbol{\beta}:\boldsymbol{\beta}\in\mathbb{R}^{1+k}\}$$

In particular, if $X_0 = 1$, that is

$$X = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ 1 & x_{31} & \dots & x_{3k} \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad \text{and} \qquad a = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

then

Introduce the Total Sum of Squares:

$$TSS = (\mathbf{y} - \mathbf{1}\overline{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \mathbf{1}\overline{\mathbf{y}}) = \sum_{i=1}^{n} (y_i - \overline{\mathbf{y}})^2$$

Introduce the Regression Sum of Squares:

$$\operatorname{RegSS} = (\widehat{y} - 1\overline{y})^{\mathrm{T}}(\widehat{y} - 1\overline{y}) = \sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}$$

Recall the Residual Sum of Squares:

$$RSS = \boldsymbol{e}^{\mathrm{T}}\boldsymbol{e} = \sum_{i=1}^{n} e_i^2 = (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\mathrm{T}}(\boldsymbol{y} - \hat{\boldsymbol{y}}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $\mathbf{1}^{\mathrm{T}}\mathbf{1}\bar{y} = \mathbf{1}^{\mathrm{T}}y = \mathbf{1}^{\mathrm{T}}\widehat{y}$

In words:

All three points $1\bar{y}$, y, \hat{y} lie in the hyperplane $\{\beta \in \mathbb{R}^{1+k} : 1^T \beta = 1^T 1 \bar{y}\}$ which is perpendicular to the line $\{1\lambda : \lambda \in \mathbb{R}\}$.

 $\mathbf{1}^{\mathrm{T}}\mathbf{1}\overline{y} = \mathbf{1}^{\mathrm{T}}y = \mathbf{1}^{\mathrm{T}}\widehat{y}$

Corollary:

$$\mathbf{1}^{\mathrm{T}}(\mathbf{y}-\widehat{\mathbf{y}}) = \mathbf{1}^{\mathrm{T}}\mathbf{e} = \sum_{i=1}^{n} e_i = 0$$

$$\mathbf{1}^{\mathrm{T}}\mathbf{1}\overline{y} = \mathbf{1}^{\mathrm{T}}y = \mathbf{1}^{\mathrm{T}}\widehat{y}$$

Proof:

The assumption equivalently says H1 = 1, where H is the matrix of the orthogonal projection onto the subspace $\{X\beta : \beta \in \mathbb{R}^{1+k}\}$. Recall the matrix H is symmetric $(H^T = H)$, therefore $\mathbf{1}^T H^T = \mathbf{1}^T H = \mathbf{1}^T$. Therefore $\mathbf{1}^T y = \mathbf{1}^T H y = \mathbf{1}^T \hat{y}$.

The first equality is obvious:

$$\mathbf{1}^{\mathrm{T}}\mathbf{1}\overline{\mathbf{y}} = \sum_{i=1}^{m} 1 \times 1 \times \sum_{i=1}^{n} y_i/n = n \times \sum_{i=1}^{n} y_i/n = \sum_{i=1}^{n} y_i = \mathbf{1}^{\mathrm{T}}\mathbf{y}.$$

TSS = RSS + RegSS

Proof:

The point \hat{y} is the orthogonal projection of the point y onto $\{X\beta:\beta\in\mathbb{R}^{1+k}\}$, therefore $(y-\hat{y})\perp\{X\beta:\beta\in\mathbb{R}^{1+k}\}$. We have $\hat{y}\in\{X\beta:\beta\in\mathbb{R}^{1+k}\}$, and we assume $1\in\{X\beta:\beta\in\mathbb{R}^{1+k}\}$, whence $1\bar{y}\in\{X\beta:\beta\in\mathbb{R}^{1+k}\}$ follows, therefore $\hat{y}-1\bar{y}\in\{X\beta:\beta\in\mathbb{R}^{1+k}\}$ and $(y-\hat{y})\perp(\hat{y}-1\bar{y})$. By using the Pythagoras Theorem,

 $TSS = (y - 1\overline{y})^{T}(y - 1\overline{y})$

 $TSS = (\mathbf{y} - \mathbf{1}\bar{y})^{\mathrm{T}}(\mathbf{y} - \mathbf{1}\bar{y})$

 $RSS = (\mathbf{y} - \hat{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{e}^{\mathrm{T}}\mathbf{e}$

<u>Proposition</u>: Under the assumption $1 \in \{X\beta : \beta \in \mathbb{R}^{1+k}\},\$ $\operatorname{RegSS} = (\widehat{y} - \mathbf{1}\overline{y})^{\mathrm{T}}(\widehat{y} - \mathbf{1}\overline{y})$ it holds

$$(\mathbf{y} - \mathbf{1}\overline{y})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\overline{y}) = (\mathbf{\hat{y}} - \mathbf{1}\overline{y})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\overline{y})$$

$$(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}) = ((\mathbf{y} - \mathbf{\hat{y}}) + (\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}))^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}) =$$

$$= (\mathbf{y} - \mathbf{\hat{y}})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}) + (\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}) =$$

$$= \mathbf{0} + (\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}}) =$$

$$= (\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{\hat{y}} - \mathbf{1}\bar{\mathbf{y}})$$

$$\mathbf{q.e.d.}$$

$$\mathbf{1}\bar{\mathbf{y}} \qquad (\text{RegSS}) \qquad \mathbf{\hat{y}} = H\mathbf{y}$$

The Coefficient of Determination (R²)

Assuming $1 \in \{X\beta : \beta \in \mathbb{R}^{1+k}\}$, define the

Coefficient of Determination:

$$R^{2} = \frac{[(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})]^{2}}{(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}}) \times (\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})} = \frac{[(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})]^{2}}{(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}}) \times (\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})} = \frac{(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\widehat{\mathbf{y}} - \mathbf{1}\bar{\mathbf{y}})}{(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \mathbf{1}\bar{\mathbf{y}})} = \cos^{2}\varphi = \frac{\operatorname{RegSS}}{\operatorname{TSS}}$$

$$TSS = (\mathbf{y} - \mathbf{1}\overline{\mathbf{y}})^{T}(\mathbf{y} - \mathbf{1}\overline{\mathbf{y}})$$

RegSS = $(\widehat{\mathbf{y}} - \mathbf{1}\overline{\mathbf{y}})^{T}(\widehat{\mathbf{y}} - \mathbf{1}\overline{\mathbf{y}})$
RSS = $(\mathbf{y} - \ \widehat{\mathbf{y}})^{T}(\mathbf{y} - \ \widehat{\mathbf{y}}) = \mathbf{e}^{T}\mathbf{e}$

The Coefficient of Determination (R^2)

Assuming $1 \in \{X\beta : \beta \in \mathbb{R}^{1+k}\}$, define the

Coefficient of Determination:

$$\operatorname{RegSS} = (\widehat{y} - 1\overline{y})^{\mathrm{T}}(\widehat{y} - 1\overline{y})$$
$$\operatorname{RSS} = (y - \widehat{y})^{\mathrm{T}}(y - \widehat{y}) = e^{\mathrm{T}}e$$
$$\sqrt{\mathrm{TSS}}$$
$$\sqrt{\mathrm{TSS}}$$
$$\sqrt{\mathrm{RSS}}$$
$$\sqrt{\mathrm{RSS}}$$
$$\sqrt{\mathrm{RSS}}$$
$$\widehat{y} = Hy$$

Theorem 8: Corollary: Assume for simplicity that rank(X) = k + 1and assume that $1 \in \{X\beta : \beta \in \mathbb{R}^{1+k}\}$. Under the hypothesis that

$$\beta_1=\cdots=\beta_k=0$$

it holds

$$(\cot an \varphi)^2 / \frac{k}{n - (k+1)} = \frac{R^2}{1 - R^2} / \frac{k}{n - (k+1)} \sim F_{k, n - (k+1)}$$

= $\frac{\text{RegSS}}{\text{RSS}} / \frac{k}{n - (k+1)} \sim F_{k, n - (k+1)}$

- Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.
- Find the critical value c > 0 so that $\int_{c}^{+\infty} f(x) dx = \alpha$, where f is the density of the *F*-distribution with k and n (k + 1) degrees of freedom.
- Calculate the statistic

$$F = \frac{R^2}{1 - R^2} \Big/ \frac{k}{n - (k+1)} = \frac{\text{RegSS}}{\text{RSS}} \Big/ \frac{k}{n - (k+1)} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y}_i)^2}{\sum_{i=1}^n (y_i - \hat{y}_i)^2} \Big/ \frac{k}{n - (k+1)}$$

- If $F \in [c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis.
- If $F \in [0, c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis.

Remark: The above F-test is one-factor ANOVA in fact.

The coefficient of determination

$$R^{2} = \cos^{2} \varphi = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}} = \frac{\text{RegSS}}{\text{TSS}}$$

is a "measure" (?) "how well the regression hyperplane $Y = b_0 + b_1 X_1 + \dots + b_k X_k$ fits the observed data $(y_1, x_1), (y_2, x_2), \dots, (y_n, x_n)$ ".

It holds

$$0 \leq R^2 \leq 1$$

The Coefficient of Determination (R²)

$$R^2 = \cos^2 \varphi$$

lf R² ∧ 1

- then

$$F = \frac{R^2}{1-R^2} \Big/ \frac{k}{n-(k+1)} \nearrow +\infty$$

- then

— reject the null hypothesis that $(\beta_1 = \cdots = \beta_k = 0)$

- then
 - say "the fit is good"

The Coefficient of Determination (R²)

$$R^2 = \cos^2 \varphi$$

If $R^2 \searrow 0$

- then

$$F = \frac{R^2}{1-R^2} / \frac{k}{n-(k+1)} > 0$$

- then
 - fail to reject the null hypothesis that $(\beta_1 = \cdots = \beta_k = 0)$
 - it may be the case that

 $E[y_i] = \beta_0$ for all i = 1, 2, ..., n (cf. ANOVA)

— the sample (y_1, x_1) , (y_2, x_2) ..., (y_n, x_n) may come from one population

— then