Statistical Methods @
- SILESIAN
for Economists S NLOERSITY

SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

Lecture 5

Correlation Analysis

David Bartl
Statistical Methods for Economists

INM/BASTE
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Simple Linear Regression: Summary

We are given an underlying probability space ({),F,P) and n independent
random variables

Yll Yz, anm ) Yn: 1-R
such that
Y; ~ N(By + Bx;,6%) for i=1,2,..,n

We then perform n random experiments and obtain the outcomes
Wy, Wy, ..., W, € ) as well as the n numerical outcomes y,, v, -.., ¥n
of the random experiments (y; = Yi(wy) for i =1,2,..,n).



Simple Linear Correlation: Motivation

We are given the underlying probability space (Q},F,P) and

two random variables
Y:0-R and X:0-R

We then perform n random experiments and obtain the outcomes
w1, Wy, ---, Wy, € () as well as the comresponding numerical outcomes
y; = Y{(w;) and x; = X(w;) for i=1,2,..,n

The purpose is to decide whether there is (linear) correlation between

the values of the random variable X and the values of the random variable Y.



Multiple Linear Regression: Summary

We are given the underlying probability space (), F,P) and n independent

random variables
Y Yo e, Vi 2> R
such that
Y; ~N(x;8,0%) for i=1,2..,n

We then perform n random experiments and obtain the outcomes
Wy, Wy, ..., W, € ) as well as the n numerical outcomes y,, v, -.., ¥n
of the random experiments (y; = Yi(wy) for i =1,2,..,n).



Multiple Linear Correlation: Motivation

We are given the underlying probability space (), F,P) and

k + 2 random variables
:0-R and Xy X1, i X > R

We then perform n random experiments and obtain the cutcomes
Wy, Wy, --., Wy € £} as well as the comresponding numerical outcomes

Yi = Yi(wi) and Xip = Xu(wi). Xi1 = X]_(ﬁdi), vy Xip = Xk(wi) for
i=1,2,..,n
The purpose is to decide whether there is (linear) correlation between

the values of the group of the random variables X,, X, ..., Xz and
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Revision: Scalar Product & the Length of a vector

The scalar product of two vectors x,y € R" is
n

(x,y) =xTy = Z XiYi

i=1

The (Euclidean) length of the vector x € R® is

Il = VG = V7x = qZT’ x?

By the Pythagoras Theorem: x = [xq,%,]

D s

% = [x4]* + | %22 W

0 |x4] X1



Revision: Scalar Product & the Length of a vector

The (Euclidean) length of the vector x € R" is

Il = @) = a7z = JZ“ x?

1=1

|x3]

By the Pythagoras Theorem:
IxlZ= " ldlI* +|xs]? =

= |x4|% + |x2]% + |x3]4

0 |x1| [x1J OJO]



Revision: Scalar Product: Geometrical interpretation

Given two vectors x,y € R", we have:

(x,y) = xTy = |[x]| x ll¥ll X cos @
y
0 Il x

Remark:
The (absolute value of the) scalar product (x,¥) = xTy = |lx|| X lly]l X cos ¢



Revision: Scalar Product: Why cos ¢ ?

Let x,y € R? N
ﬁ:lrlicn;:;ai . % cos @ = cos(a — B) =

=cosacosf +sinasinf =

= X1Y1 T X2¥>

0 X1 Y1 axis 1
cosa cosf



Revision: Scalar Product

Let x,¥ € R® be non-zero vectors (x # 0 # y). Since (x,¥y) = llxll X llyll X cos ¢,

it follows
(x,5)
=Ny = %%

Therefore, it always holds:

( ,¥)
< +1
IIxII 184

Recall:
cosg =+1 if and only if p= 0°

cosg =—1 ifand onlyif ¢ = 180°



Revision: Scalar Product

Let x,y € R™ be non-zero vectors (x # 0 = y).

It then holds:
(x,5) = 41 if and only if y=Ax  forsome A>0
llxll [yl
(x:y) — _1 1fand Dl‘lly lf y — ﬂx fOI‘ some 2. < 0 z
0
otherwise -1 . ) 1

< —
Il Iyl
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Revision: Expected value

Let an underlying probability space ({},F,P)

and a random variable X:Q - R be given.

+ |fthe sample space {1 isfinite {1 = {1,2,..., N}) orcountable (@ =1{1,2,3,..})
and p: £ - R is the probability mass function of the probability measure P,
then

ux =ElX] = ) p(@)X(w)

wef)



Revision: Expected value

Let an underlying probability space (Q,F, P)

and a random variable X:Q — R be given.

 f Q=R and £f:0 — R is the probability density function
of the probability measure P, then

+c0
px = E[X] = flw)X(w)do =) f(x)X(x)dx

wel) -0

o If X(x)==x, then
100
px = E[X] = f_ xf (x) dx



Revision: Covariance & Variance

Let an underlying probability space (Q,F, P)

and fwo random variables X,Y:{l = R be given.

The covariance of the random variables X and Y is

cov(X,Y) = E[(X —E[X]D(Y — E[Y])] =

= E[xY — XE[Y] — E[X]Y + E[X]E[Y]] =

X]E
X|E

Y] - E[X]E[Y] + E[X]E[Y] =

Y]




Variance: Geometrical interpretation

Assume for simplicity that the sample space is finite (2 ={1,2,...,N}) and
that the probability mass function is uniform (p(w) = 1/N forevery w € Q).

Then, given a random variable X:{ -» R, we have:

ax =[] = ) p(@)X(w) = %in
=1

WEL
and

of = Var() = EL(X - 10?1 = ) p(@)X(@) - ﬂx]z=—Z[X ~ )’

wel)



Variance: Geometrical interpretation

Wae have:

of = Var(0) = E[(X - )?] = ) p(@)[X(w) - px]? = NZ[’“ - uxl?

well

The random variable X can be seen as a vector X € R¥.

Let

Hx
Hx

O S

1= be the vector of N ones, so 1px =| :
1 X



Variance: Geometrical interpretation

We then have:

N
of = Var(x) = E[(X — p)?] = ) p(@)[X(@) — g2 = ¥ [X; = iig]? =
i=1

WEL]

1
=5 (X - 1p)T(X — 1puy) = ((X — 1py), (X — 1py)) — scalar product

The standard deviation:

Ox = 0f = J ((X —1py), X —1py)) | thelength
of the vector
Y = X — 1/JX




Standard deviation: Geometrical interpretation

The standard deviation

1
oy = J (X —1py), X—1pp) = ‘lﬁ (X — 1ux)T(X — 1py) =

_ V& —1p)T(X — 1pty) /
VN
is the length of the vector ¥ =X — 1y

that is the Euclidean length of the vector divided by +/N.




Standard deviation: Geometrical interpretation

We assume here {11: 1€ R} — the “diagonal” line
0=1{1,2,..,N}

axis 2

Notice:

The point 1uy is always the orthogonal
projection of the random variable X
onto the “diagonal”’ line {11:1 € R}.

0 axis 1




Standard deviation: Geometrical interpretation

We assume here {11: 1€ R} — the “diagonal” line
0=1{1,2,..,N}

axis 2

Notice:

The standard deviation

ox = ||IZ|| = V (®, %) is the length
of the vector ¥ = X — 1uy, thatis

the distance of the random variable X
from the “diagonal” line {11: 1€ R}.

0 axis 1




Covariance: Geometrical interpretation - e%

Assume for simplicity that the sample space is finite (2 ={1,2,...,N}) and
that the probability mass function is uniform (p(w) = 1/N forevery w € Q).

Then, given two random variables X,Y:Q - R, we have:

N N
1

ux=E[X]=%ZX: and FY=E[Y]=EZYE
=1

=1
and also

N
Gxy = cov(X,Y) = E[(X = ) (¥ = )] = %Zcxi - = i)
=1



Covariance: Geometrical interpretation - e%

We then have:

N
oy = cov(X,¥) = B[ — ) (¥ — )] = ) (= i) (O = i) =
i=1

1
=5 & — 1)V — 1py) = (X — L), (¥ — 1)) =
= |[#||[[¥llcos¢ = oxoycosg

The covariance is the scalar product of the vectors ¥ =X —1uyand ¥y =Y — 1yy.



Covariance: Geometrical interpretation

We assume here {11: 1€ R} — the “diagonal” line
0=1{1,2,..,N}

axis 1




Covariance: Geometrical interpretation

We assume here .
axis 2
O=1{1,2, .. N} A

This view is onto the (hyper)plane
perpendicular (orthogonal) to the
“diagonal”’ line {11: A€ R}.

The “diagonal’line {11: A€ R} is
orthogonal to this hyperplane. 1@’ 0

cov(X,Y) = (x,y) =

%] [[¥l cos ¢ =
Ox Oy COS @

\
)
1
1
1
1
|}
\
\
1
1
1
1
\
\
\
)
1
1
1
\
\
\
1
1

It is seen as a single point now.

axis 3 axis 1



iii Notice !!!
We assume here {11: 1€ R} — the “diagonal” line
0=1{1,2,..,N}

axis 2
Notice:

We have assumed Q ={1,2,...,N}
and p(w) = 1/N for simplicity here.
iii The interpretation is analogous
in the more general cases, including
the cases when Q ={1,2,3,...} and
Q=R M

0 axis 1




The geometrical interpretations: jjj Notice !l!

For simplicity, we have assumed Q ={1,2,..,N} and p(w) = 1/N,
s0 the expected value has been

px=EX] =% ) X(@)

wef)

In the more general cases, when @ ={1,2,..,N} or ={1,2,3,...} and
the expected value is

px =ElX] = )" p(w)X(w)

well
or =R and

= EIX] = | FGOX() ax
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Revision: Covariance

Recall that, if the random variables X and Y are independent, that is

( {wEﬂ:a<X(¢o)<b}n)_ T Plwe:a<X(w)<hb} X
N{weN:c<Y(w)<d} /] xXP{wel:c<Y(w)<d))

for every a,b,c,d € RU{+o} suchthat a<b and ¢ <d
then

cov(iX,Y) =0 *=X—1uy

that is, y=Y—1u

the random variables X and Y are uncorrelated:



Pearson’s Correlation Coefficient

Let the underlying probability space (Q,F,P)

and fwo random variables X,Y:{ - R be given.

Pearson’s Correlation Coefficient between the two random variables X and Y is

X,
Pxy = s g coviX, Y) if Var(X) # 0 # Var(Y)
%=X — 1uy Ox0y f/Var(X)./Var(¥)
Y=Y=l actually:
Oxy cov(X,Y) (x,3)

= COS¢

0 " ooy J Var(X) /Var(Y) B ETLE



Pearson’s Correlation Coefficient

We have:

Oxy cov(X,Y) X, 5)

PR oxoy - Var Jvar(@) | IEIIDN

Notice:

* |t holds Pxy = Pyx

* It holds -1 < pyy £ +1

* It holds Pa+bx c+ay = Sgn(bd) X pxy if b+0=%d

forevery a,b,c,d €R



Pearson’s Correlation Coefficient

We have:
_ Oxy _ Cov(xl Y) _ (_x.lj'.) = cos
Pxt = xor . (VarD) JVarr) TR v
It holds
Pxy = +1 if and only if y=5bx  forsome b>0

that is . y
Y — 1yy = b(X — 1uy) 0/

Y — py = b(X — py)
Y = bX + (py — uix)



Pearson’s Correlation Coefficient

We have:
_ Oxy _ Cov(xl Y) _ (_x.lj'.) = cos
Pxt = xor . (VarD) JVarr) TR v
It holds
pxy = —1 if and only if y=5bxX  forsome b<0

that is y
Y — uy = b(X — uy) %

Y =bX + (py — kix)



Pearson’s Correlation Coefficient

We have:

Oxy cov(X,Y) (X, ¥)
Pxy = —— = COsS¢Q

" ox0y  JVar() JVar®)  IENII

It holds
-1 < pyy < +1 otherwise
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Regression Coefficient

Let the underlying probability space ({,F,P) and two random variables

X:Q-R and Y- R

be given.

Let us find the best (linear) approximation of the random variable Y

by the random variable X, thatis

Y=a+ pX forsome a,FE€ER

in such a way that
E [(Y —(a+ BX))Z] — min
that is:

1

"

Y

IY — (a1 + BX)|| — min

X

the linear subspace {al+ X :a,B € R}



Regression Coefficient

Denote and calculate:
f(@,p) =E|(Y - (@ + pX))°| = EIY? + a® + B2X? — 2aY — 2BXY + 2apX] =
= E[Y?] + a? + B2E[X?] — 2aE[Y] — 2BE[XY] + 2afE[X]

To find the minimum, calculate:

% = 2a — 2E[Y] + 2BE[X]

E = 2BE[X?] — 2E[XY] + 2cE[X]

ab



Regression Coefficient

Woe thus have:

2a — 2E[Y] + 2BE[X] =0

2PE[X?] — 2E[XY] + 2aE[X] = 0

Hence

a = E[Y] — BE[X]
and

BE[X?] — E[XY] + (E[Y] — BE[XDE[X] = 0
B(E[X?] — E*[X]) = E[XY] — E[Y]E[X]
cov(X,Y) _ AVar(X) = cov(X,Y)
Byx = Var(x) if Var(X) #0

the regression coefficient of the random variable Y on X




Regression Coefficient

Our purpose has been to approximate the random variable Y by using

the random variable X linearly {Y = a + X for some «,8 € R o be found).
We have found the coefficient of regression of Y on X as follows:

3 cov(X,Y)
ﬁYX - VBI'(X)

if Var(X) =0



Regression Coefficient

Similarly, we can define the coefficient of regressionof X on Y:

N cov(¥,X)
Pry = Var(Y)

if Var(Y) #0

We observe that

B X Bry = cov(X,Y)xcov(Y,X) _ cov(X,Y) . o,
XIS Va0 Var® | \Namvam )



The Regression Lines 5&%

1 =1—tg¢xytg¢yx= 1—pgy
tg(WPxy + Yyx) t8Yxy +t8Yyx  Bxy + Brx

tgy =tg (g — Yxy — 'PYX) = cotg(YPxy + Pyx) =

y

X = ux+ Bxy(y — ty)

¥y = py + Pyx(x — ux)

Hy

Byx = tg¥yx
Bxy = t8Yxy

Ux



Coefficients of Regression

More generally, let n4+ 1 random variables

Xi, X0, 0, X0 1 > R and Y:0-R
be given.

Let us find the best (linear) approximation of the random variable Y
by the random variables X;,X5,...,X,, thatis
Y=a +ﬁ1X1 + ﬂzXz + et ﬁan for some a,ﬁl,ﬁz, ,ﬁn ER

in such a way that
2 :
E [(Y — (@ + BiXy + BoXo + - + X)) ] — min



Coefficients of Regression

We stack the random variables X,,X,, ..., X,; into a random vector:

And we rewrite the problem: find a € R and g € R" so that

| 4

’ E [(Y —(a + BTX))Z] — min

IY — (a1 + B1 Xy + B2X5 + -+ B Xp)ll — min

K g XX

the linear subspace {al+ g, X; + B Xo + -+ B, X, : a,B1, P2, .., frn E R}



Coefficients of Regression

Denoting
£ (@, B1, Bos wer B) = E[(¥ — (@ + BX))’]
and letting Y af af of
=" 3" " " o8 "
we obtain
a = E[Y] — BIxE[X]
and

Byx = By, x,.x,) = (Var(x))_lmv(x,y)
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Multiple Correlation Coefficient

Let the underlying probability space (,F,P) and n+ 1 random variables

Xi, X0, 0, X0 1 > R and Y:0-R
be given, and stack the random variables X,,X,, ..., X,, into the random vector X.

Assume that the variance-covariance matrix Var(X) is non-singularand

calculate the regression coefficients
-1
Bvx = Brx,x,.x) = (Var(X)) cov(X,Y) and  a=E[Y]- BIxE[X]

The multiple correlation coefficient is

PY(X) = PY(X1Xo-Xn) = Py,a+B8TxX



Multiple Correlation Coefficient

In other words, the multiple correlation coefficient
PrX) = Pr(xuXp.Xn) = Py, a+8fxx
is Pearson’s Correlation Coefficient

of the random variable ¥ and its best linear approximation & + g3xX.

Nofice that the multiple correlation coefficient

prcx) is always non-negative: k¢

E Y — (a1 + B1X; + B, X5+ -+ BrXp)|| — min

/l 1 X, X, . X
® o o

py(x)20

: o
the linear subspace {al+ B, X + X + -+ B, X, : a, b1, B2, .., P E R}



Multiple Correlation Coefficient

In other words, the multiple correlation coefficient

PY(X) = PY(x,X;.%n) = Py,a+pTx
is Pearson’s Cormrelation Coefficient

of the random variable Y and its best linear approximation a + S7xX.

Substituting and calculating, we obtain:

_ By (Var(X))Byx B cov(l’,X)(Var(X))_lcov(X, Y)
O =T varyy Var(Y)




Coefficient of Partial Correlation

Motivation:
Consider two random variables X and Y.

It happens sometimes that the random variables X and Y are highly correlated
(thatis pyy is close to 1), but there Is no statistical dependence between them
acfually. For example:

« X = the birth-rate (i.e. natality) in some region in Germany

« Y = the size of the population of stork in the region

The correlation may be caused by the effect of some other factors Z behind.
Our purpose is 1o eliminate the effect of the factors Z (the controlling variables).



Coefficient of Partial Correlation

Let the underlying probability space (Q,F, P), the two random variables

X:0-R and Y: - R

and a random vector
Z: - R
be given.

Assuming that the variance-covariance matrix Var(Z) is non-singular,
find the best linear approximations of X and Y basedon Z. Thatis,
calculate

ayz = E[X] - B%zE[Z] and Birz= (Var(Z))_icov(Z,X)

and



Coefficient of Partial Correlation

Then

axz+PrzZ and  ayz+PBrzZ

is the best linear approximation of X and Y based on Z, respectively.

The Coefficient of Partial Correlation between the random variables X and Y

with the effect of the controlling random variables Z removed is
Pxvz = P X—-axz—PYzZ, Y-ayz—PyzZ

In words, it is Pearson’s Cormrelation Coefficient between the residuals
X — (axz + ﬂ}zZ) and Y — ((Iyz + ﬂ;:Z)



Coefficient of Partial Correlation

If n=1, thatis Z =Z, = Z, then the Coefficient of Partial Correlation between

the random variables X and Y subject to a fixed value of Z takes the form

Oyyz = Pxy — PxzPyz
3/1 sz\fl PYz
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Hypothesis Testing: Motivation

Until now, we have presented the theoretical correlation coefficients:

» Pearson’s correlation coefficient pyy
* Multiple correlation coefficient py(x,

» Partial comrelation coefficient pyy.z

Notice that these coefficients are defined by the intrinsic properties of the random

variables X and Y (or X or Z) themselves.
That is, no random experiments were necessary to define their values.



Hypothesis Testing: Motivation

The true values of the coefficients pxy, pyx), pxv.z do existin theory,
but are often unknown to us in practice. This is because we do not know
the true functions (random variables) X,Y:Q —» R, perhaps not even the
underlying probability space (Q,F, P), very well.
This is the reason why we explore the properties of the random variables
by the means of doing random experiments.
We wish to test the null hypotheses that

Hy: pxy=0 or Hy: pyxy=0 or Hy: pxyz=0
respectively.




Pearson’s sample correlation coefficient

Consider the underlying probability space (Q,F, P) and the two random variables
X:0-R and YV:0- R
Perform the underlying random experiment n-times, where n = 3.

Let wq, o, ..., w, € 2 be the outcomes of the frials.
(It is assumed that each trial is independent of the others.)

Then, let
x1=X(w) x2=X(wy) Xn = X{(wn)

1 =Y(w) y2=Y(wz) Vn = Y{(wy)

be the numerical outcomes of the trials; that is, we have n pairs



Pearson’s sample correlation coefficient - a%

Having the sample (x{,y4), (x2,¥2), ..., (X, Vyy,) oOf the observations
of the random variables X,Y, we define Pearson’s sample correlation coefficient

like Pearson’s correlation coefficient, but the sample variance and the sample
covariance is used instead of the variance and the covariance, respectively.

Pearson’s sample comrelation coefficient is:

Ly - D)1 -7
1

O W

Tyy =

where



Pearson’s sample correlation coefficient - QE

Equivalently, Pearson’s sample correlation coefficient is:

i xi =)y —¥)
V2t (s — X)2 X Oy — 7)?

Tyy =

_ N Njeq Xi¥i — Dieq X Nieq Vi

n Yt (x)? — (T2, x;) anz*:i D2 — (T, v)”
1v 1v
f=;in and ?=EZJ’£

i=1 i=1

where



Pearson’s sample correlation coefficient: Theorem - e%

Let the random vector (‘;‘;) follow a bivariate normal (Gaussian) distribution,
that is

(X) ~ N( ‘"“f) (0 p’“"”f“")) with 6Z > 0 and 62 > 0
Ox0y

and let (xq,y1), (x3,v2), ..., (xn,y,) be a sample of n observations of the
random vector. If the null hypothesis

Hy: pxy =0
holds true, then




Pearson’s sample correlation coefficient: Hyp. Test

The null hypothesis is Hy: pyy = 0 and the alternative hypothesis is Hy: pxy # 0.

Choose the level of significance, a small number « > 0, suchas a =5 %.
Calculate the statistic

T = Txy m
N1—15
The critical value is
74
¢ = tn-z(1-3)

where t,_,(g) is the quantile function of Student's &distribution with n —2 d.f.
If T € (—o0,—c]V [+c, +0), the critical region, then reject the null hypothesis.
If T € (—c,+c), then do not reject (or fail to reject) the null hypothesis.



Sample Multiple Correlation Coefficient

Consider the underlying probability space (Q,F, P), the random vector

X:0- RF
and the random variable

Y:0-R where n>k + 2

Perform the underlying random experiment n-times. Let w;, w,, ..., w, € Q) be

the outcomes of the trials. Assume that each trial is independent of the others.

Then, let
x1 = X(w) x; = X(w,) X, = X(wy,)

m=Yw) y2=Y(wy) v Yn=Y(wy,)

be the numerical outcomes of the trials; that is, we have n pairs



Sample Multiple Correlation Coefficient

Having the sample (x1,v41), (x3,%2), ..., (x,,¥,) Of the observations
of the random vector X:Q —» R¥ and of the random variable Y:Q — R,

calculate the sample correlation vectors
x,y
Ix,y
ryx = (Tvyx;, Tvx, - Tyxy) and ryy={ "7
X,y
where

Fow = Ty v = 21—1(xm -fx)(y: J_’)
e AT '\/El-l(xﬁi Xx)? w/_ =1y

is Pearson’s sample correlation coefficient

> for kx=1,2,..,k




Sample Multiple Correlation Coefficient

Having the sample x;, x,, ..., X, ©f the observations of the random

vector X:Q - R*, calculate also the sample correlation matrix

Txi Xy Tx1 Xy v TX:I, X

_ er Xy sz Xy v sz X
Rxx=| .

T'xkxl Txk X, Txkxk

where
}"=1(xpi — fp)(xqi — fq)

J E?=1(xpi - -fp)z J E?=1(xqi = fq)z

is Pearson’s sample correlation coefficient

for pgq=1,2,..,k

TpXq =



Sample Multiple Correlation Coefficient

If the sample correlation matrix Ryy Is hon-singular,

the sample multiple correlation coefficient squared is

2 — -1
Yoy = Tyx X RXX X Tyy

Remark: We know that the multiple correlation coefficient is always non-negative.

S0 we can define the sample multiple comrelation coefficient as

rrx) = T?(X)



Sample Multiple Correlation Coefficient: Theorem

Let the random vector @) follow a (k + 1)-dimensional normal (Gaussian)
distribution, that is
X Hx Var(X) cov(X,Y) . Var(X) cov(X,Y)
(Y) ~ N ((#Y ’ (cov(Y,X) Var(Y) )) with (cnv(Y,X) Var(Y) )

non-singular.
Let (x1,v1), (x3,72), ..., (x,,¥,) be asample of n observations

of the random vector. If the null hypothesis

HO: Pxy) = 0
holds true, then

ler(x) k - F
1 - T%(x-) n-— k - 1 k,n—k-1




Sample Multiple Correlation Coefficient: Hyp. Test

The null hypothesis is Hy: pxoy = 0 and the alternative hypothesis is

Hy: pxony # 0. Choose the level of significance, a small number a > 0,

such as a = 5 %. Calculate the statistic

F= ‘l"lzz(x) k

The critical value is

¢ = Fn-r-1(l1—a) with k and n—k—1 df.
where Fj ,_x-1(q) is the quantile function of Fisher’s F-distribution

If F € (—o,—c]V[+c¢, +0), the critical region, then reject the null hypothesis.
If F e (—c, +c), then do not reject (or fail to reject) the null hypothesis.



Sample Coefficient of Partial Correlation

Consider the underlying probability space (,F,P), the two random variables

X:0-R and Y: - R

and the random vector

Z:0 > Rk
where n>k + 3

Perform the underlying random experiment n-times. Let w,, w5, ..., w, € Q be

the outcomes of the trials. Assume that each trial is independent of the others.

Then, let
X1 =X(w) 2 =X(wy) Xp = X(w,)

1 =Y(w,) y2=Y(wr) v Ya=Y(wy)
z=2Z(w,) z=2Z(w;) v Zp=Z(op)



Sample Coefficient of Partial Correlation

That is, we have n triples of the observations of the random variables and vector:

(x4, V1, 24) (%2, ¥2,22) (X Vs Z1)

Then, calculate the sample correlation vectors
Z1X
Tz,X
rez=0%2z; Txz, - T%z;) and 7= 7
Tz x
where
2i=1(x; — X)(Zy; — Z,)

X7 = Tz = \/E}.L:L(xi - X)? \/E::Li(zﬁi — Zx)?

is Pearson’s sample comrelation coefficient

for x=1,2,..,k




Sample Coefficient of Partial Correlation

Having the n triples of the observations of the random variables and vector

(x4, V1, 24) (%2, ¥2,22) (X Vs Z1)

calculate also the sample cormrelation vectors
TZ,Y
Tzzy
ryz= vz, Tz, - Tyz) and Tzy=|
Tz Y
where

Yor =T v = z::!l=1(yi - J_’)(zmi — z_rc)
e "/E}Ll iy )z_\/_?=1(zmi - fm)z_

is Pearson’s sample comrelation coefficient

for x=1,2,...k




Sample Coefficient of Partial Correlation

And, having the sample z,, z,, ..., z, of the observations of the random

vector Z:Q —» R¥, calculate the sample correlation matrix

ZyZy V2,2, -~ Tz,7;
_ Tzz Zy Tzz Zy, 'l"zz Z,

Rzz =\ .
T'zk Z, T’zk Zp e Tzk Zy,

where
i 1(Zpi — z_p)(zqi — z_q)

JE L 1(2Zpi — Zp) le—i(qu zq)

is Pearson’s sample correlation coefficient

for p,gq=1,2, ..,k

224 =



Sample Coefficient of Partial Correlation

If the sample correlation matrix Rzz is non-singular,

the sample coefficient of partial correlation is

—1
Tyy — TxzRz77zy

J 1—rxzRz37zx J 1—ryzRz772y

xyz —




Sample Coefficient of Partial Correlation

If k=1, thatis Z =2Z; = Z, then the sample coefficient of partial cormrelation
fakes the form

Yxy — Ixztvz




Sample Coefficient of Partial Correlation: Theorem...

X
Let the random vector (Y) follow a (k + 2)-dimensional normal (Gaussian)

Z
distribution, that is

X iy Var(X) cov(X,Y) cov(X,Z)
(Y) ~ N (::Y), cov(Y,X) Var(Y) cov(¥,Z)
Z Z cov(Z,X) cov(Z,Y) Var(Z)
with

Var(X) cov(X,Y) cov(X,Z)
cov(Y,X) Var(Y) cov(Y,Z) being non—singular
cov(Z,X) cov(Z,Y) Var(Z)



Sample Coefficient of Partial Correlation: ...Theorem

X
Let the random vector (Y) follow a (k + 2)-dimensional normal (Gaussian)

Z
distribution with a non-singular variance-covariance matrix.
Let (x1,¥1,21), (X2,¥2.22), ..., (Xn,¥n.Z,) be a sample of n observations
of the random vector. If the null hypothesis

Hy: Pxy.z = 0
holds frue, then

Tyy.

Jl ~Tivz




Sample Coefficient of Partial Correlation: Hyp. Test

The null hypothesisis Hjy: pxy.z =0 and the alt. hypothesisis H;: pyy.z ¥ 0.

Choose the level of significance, a small number a > 0, suchas a =5%.
Calculate the statistic

rxy.z

T Vn—k—2

The critical value is
a

€= tni-2 (1 - z)

where t,_;—2(q) is the quantile function of Student's distrib. with n —k — 2 d.f.
If T € (—oo,—c]V [+¢,+), the critical region, then reject the null hypothesis.
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Spearman’s rank correlation coefficient: Introduction - QE

Given the underlying probability space ({},F,P) and two random variables
X:0-R and Y:l- R

and asking whether there is a (linear) correlation between the variables X and Y:

* We can use Pearson’s sample correlation coefficient ryy
under the assumption that the vector () follows a bivariate

normal (Gaussian) distribution with ¢Z > 0 and ¢¢ > 0.

* [f we are not sure whether the distribution of the random vector (ﬁ) is normal,

then the use of Pearson’s sample correlation coefficient is questionable,



Spearman’s rank correlation coefficient: Introduction - e%

Recall also that Pearson’s sample correlation coefficient is an estimate of the
cosine of the angle between the vectors ¥ = (X — 1uy) and ¥ = (¥ — 1uy).

Therefore, Pearson’s (sample) correlation coefficient can detect
only the linear dependence between the variables X and Y.

The idea behind Spearman’s rank correlation coefficient is different.



Spearman’s rank correlation coefficient: Introduction - QE

« Spearman’s rank correlation coefficient detects whether there is any monotonic
dependence between the variables X and Y, which means:
if one variable increases, then the other variable increases too (linearly or not);

if one variable decreases, then the other variable decreases too (linearly or not).

 Thatis, Spearman’s rank correlation coefficient is more general

than Pearson’s sample correlation coefficient {in the above sense).



Spearman’s rank correlation coefficient - Q%

Let the underlying probability space (Q,F,P) and random variables

X, X0, 0, X 2> R and Y,Y0, ., i 0 - R
be given. We test the following null hypothesis H,:
* the random variables X, X, ...,X,, are mutually independent and
their cumulative distribution functions are all the same F:R - R, and
* the random variables Y,,Y;, ..., Y, are mutually independent and
their cumulative distribution functions are all the same G:R — R, and
+ the random vectors (X;,X5,..,X,)T and (¥, %,..,¥,)T are

mutually independent.



Spearman’s rank correlation coefficient - a%

Given the random variables X,,X5, ..., X,,:) = R, define
new random variables

Ri,Ry, . ,Rp:l = N
as follows;

Ri/(w) = |{; €1{1,2,..,n}: X(w) < Xj(w) }| for i=1,2,..,n
and w €

The variable R; is the rank of the variable X;.

It is the number of the variables X; that are less than or equalto X; (atw € Q).



Spearman’s rank correlation coefficient - a%

Given the random variables Yi, Y5, ..,Y,: 0 = R, define
new random variables

Qll QZ! LLN Qn: {1->N
as follows;

Q@ ={je{L,2,..n}: w) <K@} for i=12..,n
and w € Q)

The variable @; is the rank of the variable Y;.

It is the number of the variables Y; that are less than orequalto Y; (atw € 02).



Spearman’s rank correlation coefficient - Q%

Given the underlying probability space ({1, F, P), the random variables

XIJ Xz, ...,Xn: O0-R and Yll Yz, aun Yn: N1-R
with their ranks
R, Ry, ..y R‘.ﬂ.: l-R and 01, Q) .., Qn:ﬂ. - R

perform the underlying random experiment.

Let @ € Q1 be the outcome of the random experiment.

Then the ranks R4, R,,...,R, and Q4,Q,,..,Q, can be seen as random variables
ontheset ' ={1,2,..,n}:

R(w): {1,2,..,n}—R and Qw): {1,2,..,n} — R



Spearman’s rank correlation coefficient

Then Spearman’s rank correlation coefficient (at w € Q) is simply
Pearson’s correlation coefficient of the new random variables
R(w): {1,2,..,nt— R  and Q(w): {1,2,...,n}— R

Then Spearman’s rank correlation coefficient (atw € Q) is

cov(R (), Q (aj))
J Var{R(w)) J Var{Q(w))

p(w) = Prw)0w) =




Spearman’s rank correlation coefficient

In other words, Spearman’s rank correlation coefficient (atw € 1) is

cov(R (w), Q(m)) _
J Var(R(w)) J Var(Q(w))

p(w) = prw)0@) =

1R - BR@D(@) - ER@D
J 1_11 T 1(Ri(w) — E[R(w)])? J % *1(Qi(w) — E[Q(w)])?




Spearman’s rank correlation coefficient: Simplification

From now on, assume for simplicity that the random variables
X1,X2,..X, and Y., Y5, .., Y, are continuous — thatis,
their cumulative distribution functions F:R—= R and G:R — R are continuous.

Then the probability that the values of the random variables X,, X,, ..., X,, and
those of the random variables Y,,Y,, ..., Y;, are pairwise distinct is equal to one:

Ploel: Xj(w) # X(w) if i#j for ij=12.,n})=1
Ploe: Y(w)+ Y(w) if i#j for ij=1,2,..,n}) =1



Spearman’s rank correlation coefficient: Simplification

That is, we may assume (further) for simplicity that @ € Q is such that
* the values X;(w), X;(w), ..., X;;,(w) are pairwise distinct and
e the values Yi(w), Y»(w), ..., ¥,(w) are pairwise distinct.

Recall that R;(w) or Q;(w) is the rank of the value X;(w) or Y;(w), respectively,
that is the number of values X;(w) or Y;(w) that are Jess than X;(w) or Y(w),
respectively.

Observe then that R, (w), Ry(w), ..., R,(w) aswell as ¢,(w), Q2(w), ..., @y (w)
are permutations of 1,2,..,n.



Spearman’s rank correlation coefficient: Simplification

Then, if Ri{(w), Ry(w), ..., Ry(w) aswellas ¢,(w), @;(w), ..., @,,(w) are
permutations of 1,2, ..,n, we can simplify the formula for Spearman’s rank
correlation coefficient:

Lon (Ri(w) — ER@D(@:(w) — B0
5 R~ ER@D? (157 (0iw) ~ ElQ@))?

P(®) = Pr(w)0@) =

Firstly,

1n24+n n+1 n+1

E[R(w)] = %Z k= e and analogously E[Q(w)] = —5—



Spearman’s rank correlation coefficient: Simplification

Secondly,
1% 1{x S o+l e n+ 1)
n n
Var(R(w))=—Z(k—E[R(w)])2=—(zk2—zzk +Z( )):
n n 2 2
k=1 k=1 k=1 k=1
_1/2n°+3n’+n 2n2+nn+1+ (n+ 1%\
“n 6 2 2 T4 )T
_1/2n°+3n°+n  (n+1)%\
“n 6 T )T

_14n3+6n2+2n—3n3—6n2—3n n%—1

n 12 12




Spearman’s rank correlation coefficient: Simplification

Finally,

1 n (R;(w) — E[R()D(Q;(w) — E[Q(w)])
p(w) = B

(A Ri(@) ~ EIR@D? 152, (04(w) ~ E[Q(@))?

1| 12 12 < n+1 n+1
=E\1n2—1\1n2—1Z(Ri(w)_ 5 )(Qi(w)— 5 )=

- (ZR (@)




Spearman’s rank correlation coefficient: Simplification

Finally, p(w) =

12 [\ v ntl o \ntl N (ntl
“nnZ-1) (ZR(w)Qi(a))—Zk 2 Z Z( ))=
=~ k=1 k=1 k=1
1 n n“+nn+1 (n + 1)?
=n(n2 1) (; Ri(w)Qi(w) — 2 2 2 T 4 )=

n3+2n‘+n
- (ZR (@)Qi(@) ——— )=



Spearman’s rank correlation coefficient: Simplification

Finally, p(w) =

n3 + 2n? +n)

n(nz ( Ri(w)Qi(w) — 2

n
6 3n3 + 6n%+ 3n
R (2 Z Ri(w)Q;i(w) — c ) =
l=

6 6 6

6 2n3+3n%4+n
n3d—n

n
2n3+3n¢4+n n3+n
+ ZZRi(O))Qi(GJ) — + =
i—1



Spearman’s rank correlation coefficient: Simplification

Finally, p(w) =
B 6 2n + 3n? +n+ ZR() (@) 2n3 + 3n? +n+n +n B
" n3—-n 6 ®)Qi(w 6 6 B
i=1
6 = = e nd+n
=ng_n(—zkz+ZZRi(w)Qi(w)—Zk2+ c )=
k=1 i=1 k=1

=n36_n( D (Ri(@)’ +zZR(w)Ql(w) Z(Ql(w)) +- +")



Spearman’s rank correlation coefficient: Simplification

Finally, p(w) =
n n n .
= n36_ n (_ Z(Rl(w))z + 2 Z RI(OJ)QI(O)) — Z(Ql(a)))z + n ;_ Tl) —
1=1 =1 i=1
6 n
=1-5C n;(Ri(a)) ~ (@)’



Spearman’s rank correlation coefficient - Q%

In practice, we often do not know the underlying probability space (Q,F, P).

This is the reason why we shall omit the symbol “@” (w € Q) from now on.
In practice, we only have the numerical outcomes
x1=X(w) x=XW . x,=X(0)
w=Vw y=Yw) v Yo =Fp(w)
of the random experiment.
Moreover, we do assume that the values are pairwise distinct:
Xi F Xj if i#j for i,j=1,2,..,n
Vi ¥y if i+#j for i,j=1,2,..,n



Spearman’s rank correlation coefficient - a%

Wae then calculate the ranks:

Ri=|{jief{l.2,.n}:xj<x;}] for i=12..,n

and
g=l{je{t,2,.n}:y;<y} for i=12..,n

And calculate Spearman’s rank correlation coefficient:

ey
[

°
|

=t
|

where



Spearman’s rank correlation coefficient: Hyp. testing

Assume that the null hypothesis H, (the random variables X;,X,, ...,X;, have
the same (continuous) cumulative distributive function, the random variables
Y1, ¥, ..., Y, also have the same (continuous) cumulative distributive function,

and the variables X;,X,,...,X,, and Y,,Y;,...,Y;, are mutually independent)
holds true.

¢ What is the distribution of Spearman’s rank correlation coefficient r; =p ?

— If H, holds true, then every permutation @,,Q,, ...,2, of the numbers
1,2,..,n is equally probable.



Spearman’s rank correlation coefficient: Hyp. testing

We may assume without loss of generalitythat R, =1, R, =2, ..., R, =n.

Then, assuming that every permutation @4, @5, ..., @, of the numbers 1,2,...,n
is equally probable (which is true if H, holds), we shall evaluate the expression

p=1-—"—% -3

n3 —nd«
=1

over all the permutations @4, @, ..., @, of the numbers 1,2,...,n.

We get the values p and their probabilities. If H, holds true, then large values

of |p| areimprobable. Thatis, if |p| = ¢, the critical value, we reject the null hyp.



Spearman’s rank correlation coefficient: Hyp. testing

The above procedure (to evaluate p =1 - 67 ,(i — Q;)%/(n® —n) overall the

permutations) is practically hardly feasible.
Special statistical tables of the critical values (for n < 30) exists.
Or, we can use approximation:

Thecrem: If the null hypothesis H, holds true and n is large, then

Z=1yn—-1~N(0,1) approximately



Spearman’s rank correlation coefficient: Theorems - e%

Theorem: If the null hypothesis H, holds true and n Is large, then

Z=rvn—1~xN(0,1) approximately

Another Theorem: If the null hypothesis H; holds true and n is large, then

T = Vn—2 ~ t, 5 approximately

\/1?'3



Spearman’s rank correlation coefficient: Hyp. test

* The null hypothesis is H, that the values in the pairs (xy,y4), (x2,2), ...,
(xn,vn) Of the sample are monotonically independent.

» The alternative hypothesis H, is "H, (two-sided).
(One-sided alternative hypotheses can also be considered.)

* Choose the level of significance, a small number a > 0, suchas a =5 %.
« Calculate the ranks

Ri=|{je{l2,..n}:x;<x}] for i=12..,n

and
Qi=I{je{lyzr---,ﬂ}=}’j<_‘y§}| for i=1,2,...,ﬂ.



Spearman’s rank correlation coefficient: Hyp. test

« Calculate Spearman’s rank correlation coefficient:

o, 6XR.dP 6
s = 1_*n(n—l) B 1_n(*n—1);(&"_“:"5)2

« Calculate the statistic

Ts

T =
V1-7f

n—2 or Z=1rvn-1




Spearman’s rank correlation coefficient: Hyp. test

 The critical value is

/4 a

c=tn_2(1—§) or c=€b‘1(1—E)

where t,,_,(g) or ®~1(g) is the quantile function of Student’s -distribution with
n — 2 degrees of freedom or the quantile function of the normalized normal
distribution, respectively.

« If TorZ € (—oo,—c] U [+¢, +0),
the critical region, then reject the null hypothesis.

* If TorZ € (—c,+c), then do not reject (or fail to reject) the null hypothesis.



Spearman’s rank correlation coefficient: Remarks - QE

The statistical test by using Spearman’s rank correlation coefficient is suitable

whenever

« we cannot assume the normal distribution of the observed random variables
Xad Y (X,X5,...X, and 1,,Y5,...,7,,);

« the sample is small (the number n is small)
— special statistical tables are necessary then;

» the random variables X and Y are not numerical (quantitative), but take on
qualitative values from linearly ordered scales Sy and Sy (possibly Sy = Sy),
that is X1, X0, 0, Xt ) — Sy and Y1,Y5,..,Y,: 0 — Sy



