Statistical Methods for Economists

Lecture (7 & 8)a

One-Way Analysis of Variance (ANOVA)

David Bartl Statistical Methods for Economists INM/BASTE

- One-Way ANOVA: Introduction and Motivation
- One-Way ANOVA: Summary, Assumptions, and the Goal of the analysis
- One-Way ANOVA as a model of Multiple Linear Regression
- One-Way ANOVA: the F-test

The methods of the Analysis of Variance (ANOVA) are

special cases of the methods of the Multiple Linear Regression.

- In essence, we measure <u>one numerical statistical variable</u>, denoted by "y", that is a quantitative data item of some statistical data units.
- In addition, we consider one or more (qualitative / quantitative) factors.
- Depending upon the number of the factors, we distinguish:
 - one-factor = one-way ANOVA
 - two-factor = two-way ANOVA

- We assume that each of the factors can attain only finitely many distinct values.
- Hence, there are only finitely many possible combinations (a Cartesian product) of all possible values of the factors.
- · Each combination of the values constitutes one group of the statistical units.
- The purpose is to study whether the expected value E[y] of the statistical variable "y" depends upon the values of the parameters, or not; that is, whether the expected value in each group is the same, or not.
- ANOVA is based upon the theory of Multiple Linear Regression.
- We shall study one-factor ANOVA in this lecture.

Consider a gross sample of n patients who have been cured for some disease. The patients were divided into k groups:

- There are n_1 patients in the 1st group.
- There are n_2 patients in the 2nd group.

. . .

— There are n_k patients in the k^{th} group.

 \rightarrow There are $n_1 + n_2 + \dots + n_k = n$ patients in total.

Each of the n_1 patients in the 1st group has been cured by method no. 1. Each of the n_2 patients in the 2nd group has been cured by method no. 2. ... Each of the n_k patients in the k^{th} group has been cured by method no. k.

We then measure the success of the medical treatment.

That is, let "y" be a (quantitative) variable meaning the health of the patient.

Measuring the health of each of the n_1 patients in the 1st group,

we have the values $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$

Measuring the health of each of the n_2 patients in the 2nd group,

we have the values

...

...

 $y_{21}, y_{22}, \dots, y_{2n_2}$

Measuring the health of each of the n_k patients in the k^{th} group, we have the values $y_{k1}, y_{k2}, y_{k3}, y_{k4}, \dots, y_{kn_k}$

秋

Having got the results of the measurements of the health

group no. 1: $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$ group no. 2: $y_{21}, y_{22}, \dots, y_{2n_2}$ group no. 3: $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_3}$... group no. k: $y_{k1}, y_{k2}, \dots, y_{kn_k}$

we test the null hypothesis that:

- there are no differences among the treatments, that is
- the expected values of the health in the groups are approximately the same

We test k distinct cars. We test the 1st car n_1 times, we test the 2nd car n_2 times, etc., and we test the k^{th} car n_k times

for mileage (fuel consumption per 100 km).

Then $y_{11}, y_{12}, ..., y_{1n_1}, y_{21}, y_{22}, ..., y_{2n_2}$, etc., $y_{k1}, y_{k2}, ..., y_{kn_k}$ are the results of the measurements, i.e. the fuel consumptions per 100 km.

We test the null hypothesis that:

the average fuel consumption of each car is the same.

One-Way ANOVA

- Summary
- Assumptions
- The classical assumptions
- The purpose of the Analysis of Variance

We have got the sample of the k groups of the $n = n_1 + n_2 + \dots + n_k$ observations $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$ $y_{21}, y_{22}, \dots, y_{2n_2}$ $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_3}$ \dots $y_{k1}, y_{k2}, \dots, y_{kn_k}$

where $y_{ij} \in \mathbb{R}$ for $j = 1, 2, ..., n_i$ for i = 1, 2, ..., k.

The sample could have been obtained in either of the following two ways:

First:

- A sample of n statistical units was selected from a larger population.
- Each of the statistical units was placed into its respective group $i \in \{1, 2, ..., k\}$ and measured, so we have obtained the values y_{ij} for $j = 1, 2, ..., n_i$ for i = 1, 2, ..., k. (Where n_i is the number of the units finally found in the *i*-th group for i = 1, 2, ..., k. In the end, it holds $n = n_1 + n_2 + \cdots + n_k$.)
- We assume $y_{ij} \approx \mu_i$ and we have $y_{ij} = \mu_i + \varepsilon_{ij}$, where ε_{ij} is a <u>random deviation</u> (error).
- The random deviation is caused by the intrinsic properties of the statistical unit

Second:

- We prepare the groups i = 1, 2, ..., k at the beginning.
- When measuring the value y_{ij} , we select a unit from the group *i* first and measure its value y_{ij} then for $j = 1, 2, ..., n_i$ for i = 1, 2, ..., k.
- The random deviation ε_l here is caused

either by the intrinsic properties of the system (further unknown / "random" / unconsidered factors),

or by random errors in the measurement itself. (!)

Remarks:

- In practice, the data may be obtained in either way (first or second).
- In either case (first or second), the group which the unit belongs to is assumed to be known exactly, i.e. without any doubts.
- Assuming y_{ij} ≈ μ_i, even the dependent values y_{ij} may be measured exactly,
 i.e. without any measurement error, the random deviation ε_{ij} = y_{ij} μ_i being caused by the intrinsic properties (other unknown / "random" / unconsidered factors).
- For the purpose of the mathematical analysis, we assume the second case only.

- There are k groups of sizes n₁, n₂, ..., n_k given, known, and fixed before the measurements.
- Moreover, we are given k numbers μ₁, μ₂, ..., μ_k ∈ ℝ,
 which are the expected values of the variable "y" in the respective groups.
- We have $n = n_1 + n_2 + \dots + n_k$ random variables

 $Y_{11}, Y_{12}, \dots, Y_{1n_1}, Y_{21}, Y_{22}, \dots, Y_{2n_2}, \dots, Y_{k1}, Y_{k2}, \dots, Y_{kn_k}$

which are assumed to be independent (or uncorrelated).

• We also have *n* random variables

 $\varepsilon_{11}, \varepsilon_{12}, \dots, \varepsilon_{1n_1}, \ \varepsilon_{21}, \varepsilon_{22}, \dots, \varepsilon_{2n_2}, \ \dots \dots, \ \varepsilon_{k1}, \varepsilon_{k2}, \dots, \varepsilon_{kn_k}$

• We stack the group expected values $\mu_1, \mu_2, ..., \mu_k$ into a vector:

$$u = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_1 \\ \mu_2 \\ \vdots \\ \mu_2 \\ \vdots \\ \vdots \\ \vdots \\ \mu_k \\ \vdots \\ \mu_k \end{pmatrix} = n_1 - \text{times}$$

Y =	$\begin{pmatrix} Y_{11} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \end{pmatrix}$	n_1 -times
	$\begin{array}{c}Y_{21}\\\vdots\\Y_{2n_2}\end{array}$	n_2 -times
		}times
	$\begin{pmatrix} Y_{k1} \\ \vdots \\ Y_{k-} \end{pmatrix}$	n_k -times

• We stack the random variables $\varepsilon_{11}, ..., \varepsilon_{1n_1}, \varepsilon_{21}, ..., \varepsilon_{2n_2}, ..., \varepsilon_{k1}, ..., \varepsilon_{kn_k}$ into a random vector:

	$egin{pmatrix} arepsilon_{11}\dots\ arepsilon\ a$	n_1 -times
ε =	$arepsilon_{21} \ arepsilon_{2n_2} \ areps$	n_2 -times
	:	}times
	$\left(\begin{array}{c} \varepsilon_{k1} \\ \vdots \\ \varepsilon_{kn} \end{array} \right)$	n_k -times

- We have the underlying probability space (Ω, \mathcal{F}, P) .
- Let $\omega \in \Omega$ be the outcome of the random experiment.
- We have

$$y = Y(\omega) = \mu + \varepsilon(\omega)$$

In other words:

- The measured values $y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}, \dots, y_{k1}, \dots, y_{kn_k}$ are the numerical outcomes $Y_{11}(\omega), \dots, Y_{kn_k}(\omega)$ of the random experiment.
- The numerical outcomes $Y_{11}(\omega), \dots, Y_{kn_k}(\omega)$ are obtained so that the numerical outcomes $\varepsilon_{11}(\omega), \dots, \varepsilon_{kn_k}(\omega)$ of the random experiment

The classical assumptions of One-Way ANOVA are:

$$Y \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$$
 and $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$

where I denotes the $n \times n$ identity matrix

and 0 denotes the $n \times 1$ zero vector.

It follows that:

$$\mathbf{E}[Y_{ij}] = \mu_i$$
 and $\mathbf{E}[\varepsilon_{ij}] = 0$

The classical assumptions $Y \sim \mathcal{N}(\mu, \sigma^2 I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ also mean that

$$\operatorname{Var}(\mathbf{Y}) = \operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I} = \begin{pmatrix} \sigma^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma^2 \end{pmatrix}$$

That is,

• $\operatorname{Var}(Y_{ij}) = \operatorname{Var}(\varepsilon_{ij}) = \sigma^2$ for $j = 1, 2, ..., n_i$

for i = 1, 2, ..., k for some $\sigma^2 \in \mathbb{R}$

• and the random variables Y_{11}, \ldots, Y_{kn_k} or $\varepsilon_1, \ldots, \varepsilon_{kn_k}$

homoscedasticity, i.e. the variance is the same

By the Classical Assumptions, we have:

$$E[Y_{11}] = E[Y_{12}] = \dots = E[Y_{1n_1}] = \mu_1$$
$$E[Y_{21}] = E[Y_{22}] = \dots = E[Y_{2n_2}] = \mu_2$$

$$\mathbf{E}[Y_{k1}] = \mathbf{E}[Y_{k2}] = \cdots = \mathbf{E}[y_{kn_k}] = \mu_k$$

The purpose is to test the null hypothesis

$$H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_k$$

Given the sample

 $y_{11}, y_{12}, y_{13}, \dots, y_{1n_1}$ $y_{21}, y_{22}, \dots, y_{2n_2}$ $y_{31}, y_{32}, y_{33}, y_{34}, y_{35}, \dots, y_{3n_3}$... $y_{k1}, y_{k2}, \dots, y_{kn_k}$

of the random variables

 $Y_{21}, Y_{22}, \dots, Y_{2n_2}$ $Y_{31}, Y_{32}, Y_{33}, Y_{34}, Y_{35}, \dots, Y_{3n_3}$... $Y_{k1}, Y_{k2}, \dots, Y_{kn_k}$

 $Y_{11}, Y_{12}, Y_{13}, \dots, Y_{1n_1}$

...and

assuming (among others) that the expected values are the same in each group

$$E[Y_{ij}] = \mu_i$$
 for $j = 1, 2, ..., n_i$ for $i = 1, 2, ..., k$

it is our purpose to test the null hypothesis that

$$H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_k$$

SOLUTION:

- We shall express this situation as a model of Multiple Linear Regression.
- We shall then use the theory of Multiple Linear Regression ("Theorem 8") to make up an *F*-test for the null hypothesis H₀.

One-Way ANOVA as a model of Multiple Linear Regression

Given the random variables $Y_{11}, Y_{12}, ..., Y_{1n_1}, Y_{21}, Y_{22}, ..., Y_{2n_2}, ..., ..., Y_{k1}, Y_{k2}, ..., Y_{kn_k}$, we can express the original assumption (on the left) in terms of Multiple Linear Regression (on the right):

$$\begin{split} & \mathbf{E}[Y_{1j}] = \mu_1 \quad \to \quad \mathbf{E}[Y_{1j}] = \mu_1 & \text{for } j = 1, 2, \dots, n_1 \\ & \mathbf{E}[Y_{2j}] = \mu_2 \quad \to \quad \mathbf{E}[Y_{2j}] = \mu_1 + \beta_2 & \text{for } j = 1, 2, \dots, n_2 \\ & \mathbf{E}[Y_{3j}] = \mu_3 \quad \to \quad \mathbf{E}[Y_{3j}] = \mu_1 & + \beta_3 & \text{for } j = 1, 2, \dots, n_3 \\ & \vdots & \vdots & \ddots \\ & \mathbf{E}[Y_{kj}] = \mu_k \quad \to \quad \mathbf{E}[Y_{kj}] = \mu_1 & + \beta_k & \text{for } j = 1, 2, \dots, n_k \end{split}$$

Having

$$E[Y_{1j}] = \mu_1 \qquad \text{for} \quad j = 1, 2, ..., n_1$$
$$E[Y_{ij}] = \mu_i = \mu_1 + \beta_j \qquad \text{for} \quad j = 1, 2, ..., n_i \qquad \text{for} \quad i = 2, ..., k$$

the original hypothesis

$$H_0: \quad \mu_1 = \mu_2 = \dots = \mu_k$$
$$H_0: \quad \beta_2 = \dots = \beta_k = 0$$

is equivalent with

Putting yet $\beta_1 = \mu_1$ and by using the notation

... and by considering the matrix

Notice that

 $\operatorname{rank}(X) = k$

... we can write the One-Way ANOVA in terms of Multiple Linear Regression as follows:

$$Y = X\beta + \varepsilon$$

where $\beta_1 = \mu_1$ plays the rôle of the intercept term and $\beta_2 = \mu_2 - \mu_1$, ..., $\beta_k = \mu_k - \mu_1$ are the other regression coefficients.

Recall that we wish to test the null hypothesis

$$H_0: \quad \beta_2 = \cdots = \beta_k = 0$$

The Coefficient of Determination (R^2)

Assuming $1 \in \{X\beta : \beta \in \mathbb{R}^k\}$, define the

Coefficient of Determination:

$$TSS = (\mathbf{y} - \mathbf{1}\overline{\mathbf{y}})^{T}(\mathbf{y} - \mathbf{1}\overline{\mathbf{y}})$$

RegSS = $(\widehat{\mathbf{y}} - \mathbf{1}\overline{\mathbf{y}})^{T}(\widehat{\mathbf{y}} - \mathbf{1}\overline{\mathbf{y}})$
RSS = $(\mathbf{y} - \ \widehat{\mathbf{y}})^{T}(\mathbf{y} - \ \widehat{\mathbf{y}}) = \mathbf{e}^{T}\mathbf{e}$

<u>Theorem 8: Corollary:</u> Assume for simplicity that rank(X) = kand assume that $1 \in \{X\beta : \beta \in \mathbb{R}^k\}$. Under the hypothesis that

$$\beta_2 = \cdots = \beta_k = 0$$

it holds

$$(\cot a \, \varphi)^2 / \frac{k-1}{n-k} = \frac{R^2}{1-R^2} / \frac{k-1}{n-k} \sim F_{k-1,n-k}$$
$$= \frac{\text{RegSS}}{\text{RSS}} / \frac{k-1}{n-k} \sim F_{k-1,n-k}$$

We have

RegSS =
$$(\hat{y} - 1\bar{y})^{T}(\hat{y} - 1\bar{y}) = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\hat{y}_{ij} - \bar{y})^{2}$$
 where $\bar{y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{ij}$

where

 $\hat{y} = Hy$

where

 $H = XCX^{\mathrm{T}}$

where

$$\boldsymbol{C} = \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1}$$

One-way ANOVA: Model of Multiple Linear Regression

Calculate:

$$\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} = \begin{pmatrix} n & n_{2} & n_{3} & n_{4} & \dots & n_{k} \\ n_{2} & n_{2} & & & & & \\ n_{3} & & n_{3} & & & & \\ n_{4} & & & n_{4} & & & \\ \vdots & & & & \ddots & & \\ n_{k} & & & & & & n_{k} \end{pmatrix}$$

where

$$n = n_1 + n_2 + \dots + n_k = \sum_{i=1}^k n_i$$

Calculate $C = (X^T X)^{-1}$:

Calculate $H = XCX^{T} = X(X^{T}X)^{-1}X^{T}$:

One-way ANOVA: Model of Multiple Linear Regression

Calculate:

 $\widehat{y} = Hy$

That is:

$$\hat{y}_{ij} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$
 for $i = 1, 2, ..., k$

Denote:

$$\bar{y}_i = \hat{y}_{ij} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$
 for $i = 1, 2, ..., k$

and call this \nearrow quantity the sample mean of the *i*-th group for i = 1, 2, ..., k.

Calculate:

RegSS =
$$(\hat{y} - 1\bar{y})^{\mathrm{T}}(\hat{y} - 1\bar{y}) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\hat{y}_{ij} - \bar{y})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2$$

Denote:

$$SS_B = RegSS = \sum_{i=1}^k n_i \times (\bar{y}_i - \bar{y})^2$$

and call this > quantity the sum of squares "between"

where $\overline{y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}$

and
$$\overline{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$

One-way ANOVA: Model of Multiple Linear Regression

Calculate:

RSS =
$$(\mathbf{y} - \hat{\mathbf{y}})^{\mathrm{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_{ij})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

Denote:

$$SS_W = RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

and call this *>* quantity the sum of squares "within"

where
$$\bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$

One-way ANOVA: Remarks: Sample variances

The quantity

$$MS_{B} = \frac{SS_{B}}{DF_{B}} = \frac{RegSS}{k-1} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{y}_{i} - \bar{y})^{2}}{k-1}$$

is the sample variance between the groups.

The quantity

$$MS_{W} = \frac{SS_{W}}{DF_{W}} = \frac{RSS}{n-k} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2}}{n-k}$$

is the sample variance within the groups.

One-Way ANOVA: The *F*-test

• The *F*-test

To test the null hypothesis

$$H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_k$$

against the alternative hypothesis

 $H_1: \quad \mu_i \neq \mu_j \qquad \text{for some} \quad i, j \in \{1, 2, \dots, k\}$

calculate the statistic

$$F = \frac{SS_{B}}{SS_{W}} / \frac{DF_{B}}{DF_{W}} = \frac{RegSS}{RSS} / \frac{k-1}{n-k} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2}} / \frac{k-1}{n-k}$$

Recall that, if H_0 holds true, then

$$F \sim F_{k-1,n-k}$$

Choose the level of significance, a small number $\alpha > 0$, such as $\alpha = 5$ %.

and calculate the critical value

$$c=F_{k-1,n-k}(1-\alpha)$$

If $F \in [c, +\infty)$, the critical region, then <u>reject</u> the null hypothesis.

If $F \in [0, c)$, then <u>do not reject</u> (or <u>fail to reject</u>) the null hypothesis.

