

Silesian University in Opava

School of Business Administration in Karviné

PORTAL AND ITS

MANAGEMENT

Klepněte sem a zadejte text.

For the full-time study form

Petr Suchánek

Jan Górecki

Karviná 2014

OP VK No. CZ.1.07/2.2.00/28.0017 Project „Innovation of study programes at Silesian

university in Opava, School of Business Administration in Karvina“

Subject: Computer science.

Annotation: Currently, web portals can be considered as a key interface in the Internet. Web portals can be

used as the mere presentation of content, as well as for business purposes such as online shops,

access to corporate information systems, management of branch offices, communication and

management support content within the intranet, etc. This study textbook is focused on the

presentation of web portals development using technologies such as HTML, PHP, MySQL and

Apache local server. The primary objective is to familiarize students with the creation of

dynamic web sites, methods of work with scripts and linking dynamic websites with databases.

After studying study textbook, students will be able to create simple portal solutions that will

function both, with using the local server, and within the web hosting.

Key words: Web portal, script, database, web forms, data transmission.

© Doplní oddělení vědy a výzkumu.

Author: Doc. Mgr. Petr Suchánek, Ph.D.

Ing. Jan Górecki

Recenzenti: Doc. RNDr. Petr Šaloun, Ph.D.

RNDr. Ing. Roman Šperka, Ph.D.

ISBN Doplní oddělení vědy a výzkumu.

- 3 -

CONTENT

INTRODUCTION .. 7

1 WEB & INTERNET PORTAL ... 8

1.1 DEFINITION OF WEB PORTAL AND RELATED TERMS ... 8
1.2 TYPES OF WEB PORTALS .. 9

1.2.1 HORIZONTAL WEB PORTALS .. 9
1.2.2 VERTICAL WEB PORTALS ... 9
1.2.3 COMBINATION OF A HORIZONTAL AND VERTICAL WEB PORTAL 10

1.3 WEB PORTAL DEVELOPMENT ... 10
1.4 TOOLS AND TECHNOLOGIES FOR A WEB PORTAL DEVELOPMENT .. 12
1.5 PSPAD ... 13

2 HTML .. 15

2.1 CHARACTERISTICS OF HTML .. 15
2.2 CHARACTERISTICS OF XHTML ... 15
2.3 FUNDAMENTAL DIFFERENCES BETWEEN HTML AND XHTML .. 15
2.4 HTML TAGS AND ELEMENTS ... 15
2.5 HTML DOCUMENT ... 16
2.6 HTML ELEMENT SYNTAX ... 17
2.7 HTML PARAGRAPHS AND LINE BREAKS .. 17
2.8 HTML HEADINGS .. 18
2.9 HTML FONT .. 18
2.10 HTML LISTS ... 20
2.11 HTML IMAGES ... 22
2.12 HTML TABLES ... 23
2.13 HTML LINKS .. 27
2.14 FRAMES .. 29

2.14.1 CREATING FRAMES ... 29
2.14.2 THE <FRAMESET> ELEMENT ATTRIBUTES .. 30
2.14.3 LOADING CONTENT .. 31
2.14.4 THE <FRAME> ELEMENT ATTRIBUTES ... 31
2.14.5 FRAME'S NAME AND TARGET ATTRIBUTES ... 31

2.15 FORMS .. 32

2.15.1 TEXT INPUT CONTROLS .. 33
2.15.2 SINGLE-LINE TEXT INPUT CONTROLS .. 33
2.15.3 PASSWORD INPUT CONTROLS .. 34
2.15.4 MULTIPLE-LINE TEXT INPUT CONTROLS .. 34
2.15.5 CREATING BUTTON .. 35
2.15.6 CHECKBOXES CONTROL ... 35
2.15.7 RADIO BOX CONTROL ... 36
2.15.8 SELECT BOX CONTROL ... 36
2.15.9 FILE SELECT BOXES ... 37
2.15.10 HIDDEN CONTROLS .. 37
2.15.11 SUBMIT AND RESET BUTTON .. 37

3 CSS (CASCADING STYLE SHEETS) ... 39

3.1 CSS SYNTAX .. 39
3.2 CSS SELECTORS ... 39

3.2.1 THE ELEMENT SELECTOR ... 39
3.2.2 THE ID SELECTOR .. 39

- 4 -

3.2.3 THE CLASS SELECTOR .. 40
3.2.4 GROUPING SELECTORS .. 40

3.3 WAYS TO INSERT CSS .. 41

3.3.1 EXTERNAL STYLE SHEET ... 41
3.3.2 INTERNAL STYLE SHEET .. 42
3.3.3 INLINE STYLES .. 42
3.3.4 MULTIPLE STYLE SHEETS ... 42

3.4 CSS BACKGROUND .. 43

3.4.1 BACKGROUND COLOR .. 43
3.4.2 BACKGROUND IMAGE .. 44

3.5 CSS TEXT ... 45

3.5.1 TEXT COLOR .. 45
3.5.2 TEXT ALIGNMENT ... 45
3.5.3 TEXT DECORATION .. 46
3.5.4 TEXT TRANSFORMATION ... 46
3.5.5 TEXT INDENTATION .. 47

3.6 CSS FONT ... 47

3.6.1 FONT FAMILY ... 47
3.6.2 FONT STYLE ... 47
3.6.3 FONT SIZE .. 48

3.7 CSS LINKS ... 49
3.8 CSS LISTS .. 49

3.8.1 DIFFERENT LIST ITEM MARKERS .. 49
3.8.2 AN IMAGE AS THE LIST ITEM MARKER .. 50
3.8.3 CROSSBROWSER SOLUTION .. 50
3.8.4 LIST - SHORTHAND PROPERTY .. 51

3.9 CSS TABLES ... 51

3.9.1 COLLAPSE BORDERS .. 51
3.9.2 TABLE WIDTH AND HEIGHT .. 52
3.9.3 TABLE TEXT ALIGNMENT .. 52
3.9.4 TABLE PADDING .. 52
3.9.5 TABLE COLOR .. 53

4 PHP .. 54

4.1 INSTALLATION OF A LOCAL SERVER... 54
4.2 YOUR FIRST PHP PAGE... 55
4.3 PHP BASICS ... 56
4.4 VARIABLES ... 58
4.5 CONDITIONAL STATEMENTS .. 59

4.5.1 IF ... 59
4.5.2 IF… ELSE ... 59
4.5.3 IF...ELSEIF....ELSE .. 60
4.5.4 SWITCH STATEMENT ... 61

4.6 LOOPS ... 62

4.6.1 THE WHILE LOOP ... 62
4.6.2 THE DO...WHILE STATEMENT .. 63
4.6.3 THE FOR LOOP ... 64
4.6.4 THE FOREACH LOOP .. 65

- 5 -

4.7 PHP FUNCTIONS ... 66

4.7.1 PHP FUNCTIONS ... 66
4.7.2 CREATE A PHP FUNCTION ... 66
4.7.3 PHP FU NCTIONS – ADDING PARAMETERS ... 67
4.7.4 PHP FUNCTIONS - RETURN VALUES ... 68

4.8 ARRAYS .. 68

4.8.1 INDEXED ARRAYS ... 69
4.8.2 GET THE LENGTH OF AN ARRAY - THE COUNT() FUNCTION 70
4.8.3 LOOP THROUGH AN INDEXED ARRAY ... 70
4.8.4 ASSOCIATIVE ARRAYS ... 70
4.8.5 LOOP THROUGH AN ASSOCIATIVE ARRAY ... 71

4.9 PHP INCLUDE FILES ... 71

4.9.1 PHP INCLUDE AND REQUIRE STATEMENT ... 72

5 FORM HANDLING USING PHP ... 74

5.1 PHP $_GET VARIABLE.. 74
5.2 PHP $_POST FUNCTION ... 75
5.3 PHP $_REQUEST FUNCTION .. 76

6 MYSQL .. 77

6.1 CREATE DATABASE.. 77

6.1.1 INTEGER VALUES ... 79
6.1.2 TEXT TYPES .. 80
6.1.3 CHAR .. 80

6.2 CONNECT TO THEMYSQL SERVER .. 82

6.2.1 OPEN A CONNECTION TO THE MYSQL SERVER ... 82
6.2.2 CLOSE A CONNECTION ... 83

6.3 CREATE DATABASE AND TABLES .. 83

6.3.1 CREATE A DATABASE .. 83
6.3.2 CREATE A TABLE .. 84
6.3.3 PRIMARY KEYS AND AUTO INCREMENT FIELDS ... 85

6.4 INSERT INTO ... 85

6.4.1 INSERT DATA INTO A DATABASE TABLE .. 85
6.4.2 INSERT DATA FROM A FORMINTO A DATABASE ... 86

6.5 SELECT ... 87

6.5.1 SELECT DATA FROM A DATABASE TABLE .. 87
6.5.2 DISPLAY THE RESULT IN AN HTML TABLE .. 88

6.6 THE WHERE CLAUSE ... 89
6.7 ORDER BY KEYWORD .. 90
6.8 THE UPDATE STATEMENT .. 91
6.9 THE DELETE STATEMENT ... 92

7 USER REGISTRATION AND AUTHENTICATION .. 94

7.1 USER REGISTRATION .. 94

7.1.1 HTML – REGISTRATION FORM .. 94
7.1.2 PHP SCRIPT FOR THE USER’S INFORMATION PROCESSING .. 96
7.1.3 STORING THE INFORMATION INTO DATABASE .. 97

- 6 -

7.1.4 PASSWORD ENCRYPTION ... 98

7.2 USER AUTHENTICATION ... 98

7.2.1 LOGIN FORM .. 98
7.2.2 AUTHENTICATION SCRIPT IN PHP .. 99

SUMMARY ... 105

THE LIST OF LITERATURE ... 106

- 7 -

INTRODUCTION

One of the subjects that is taught in the field of "Managerial Informatics", program of

study "System Engineering and Informatics" at the Silesian University in Opava, School of

Business Administration in Karviná is the subject of "Portal and its management A". This

course as a free elective can be chosen by students of other fields of study. By monitoring of

long-term interest, it is a popular subject for anyone interested in the issue of web pages

respectively dynamic web pages and better web portals, which are now the primary

communication interface in the Internet.

Current tools and technologies are increasingly closer to users and even people with

non-informatics education are able to create a quality website that can be used for personal or

professional purposes. And this is one of the primary objectives of the course "Portal and its

management”, in which students of field of study "Managerial Informatics" deepen your

knowledge of dynamic websites and portals development and students of other disciplines, in

our case related to economics, marketing, etc., penetrate into this issue and will get at least the

basic knowledge and skills that they can, according to their own interests and needs, develop

in the future.

In terms of content, subject is focused on promoting practical activities. From this

perspective, main goal of this study textbook is presentation of web portal development using

HTML (HyperText Markup Language (or XHTML (eXtensible HyperText Markup

Language)), and CSS (Cascading Style Sheets), development of web forms, insertion of

dynamic elements in the form of PHP (Hypertext Preprocessor) scripts, creation a database in

MySQL, and basic methods of communication of web portals with databases MySQL

(transmission of values between databases and web forms).

1Web & internet portal

- 8 -

1 WEB & INTERNET PORTAL

If we start from the most general point of view, the term "portal" comes from the Latin

porta (gate) and has a large number of meanings. Term “portal” can be used for example to

describe architectural or other artistic features an ornate frame the entrance to major, usually

public buildings such as the cathedral, exposed framing theatrical stage, which is suspended

from a theater curtain, the entrance to a cave or other objects. In connection with the teaching

of the subject “Portal and its management” we will discuss different meaning of this term in

this text. We will address the issue called a web or internet portal. In this publication authors

will, for reasons of uniformity and consistency of the text, use the term Web portal.

1.1 DEFINITION OF WEB PORTAL AND RELATED TERMS

The web portal can be defined from different perspectives based mainly on

technologies, areas of application, target groups and functions (Definitions 1 – 3)

DEFINITION 1

As a portal in connection to information technology (IT) we consider web application

that provides the user uniform and centralized information from various sources that the user

is interested in or information relating to the user.

Another definition says that:

DEFINITION 2

Technically, the web portal is internet application connected to different data sources

and working with him through an Internet browser.

In terms of functionality, usability and target groups may be further web portal defined

as a:

DEFINITION 3

The web portal provides a secure and single point of interaction with diverse

information, business processes and people adapted to the individual needs of particular users.

To further refine the definition of 1-3, it is necessary to define the term web applications

(Definition 4) and following this definition even the concept of a Web server (Definition 5).

DEFINITION 4

In software engineering, web application is an application delivered to users from a web

server over a computer network Internet, or its equivalent in-house (intranet).

DEFINITION 5

5 a) The web server is a computer that is responsible for handling HTTP requests from

clients - program called a web browser.

Petr Suchánek, Jan Górecki; Portal and its Management

- 9 -

5 b) The web server is a computer program that performs the activities described in the

preceding paragraph (a demon).

Web portals are primarily based on client-server communication (Definition 6).

DEFINITION 6

The client-server is a network architecture, which separates the client (often an

application with a graphical user interface), and a server who communicate over a computer

network.

Client-server describes the relationship between two computer programs in which the

first program, the client requests the services of another program called the server. An

example is a Web browser, ie the client program on the user's computer that can access

information at any web server in the world (the Internet) (of course with regard to authorize

access).

1.2 TYPES OF WEB PORTALS

Web portals offer a wide range of services and information with possibilities of their

customization according to personal needs and interests (personalization). In terms of services

and focus on the target group, web portals are divided into three types, which are horizontal,

vertical and combined.

1.2.1 HORIZONTAL WEB PORTALS

Horizontal web portals contain broad thematic focus and are oriented to the widest

possible audience. This category includes traditional web search engines, for example:

 www.seznam.cz;

 www.google.com;

 www.centrum.cz;

 www.atlas.cz;

 www.volny.cz;

 www.yahoo.com;

 www.msn.com;

 www.aol.com;

 www.altavista.com;

 www.go.com;

 www.dogpile.com;

 and other.

1.2.2 VERTICAL WEB PORTALS

This type of web portals is aimed at a particular group of users (eg the community

portals serve users in a particular region) or is oriented to a specific theme, again with the

interests of certain groups of users. In terms of terminology this type of web portals is referred

to as branch portals (vortals). As examples can be mentioned:

 www.diit.cz;

 www.statnisprava.cz;

 www.itnews.sk;

 management.blog.cz;

 www.microsoft.com;

 www.cd.cz;

 www.vodafone.cz;

 www.opf.slu.cz;

 www.idos.cz;

 and other.

Vertical web portals can be also specifically divided into the following types:

1Web & internet portal

- 10 -

 Personal portals offering the option of personalizing the presentation and selection of

information for its users (such as social networks, etc.);

 Regional portals;

 News portals;

 Government portals;

 Commercial and business portals;

 Enterprise portals (often used as an intranet);

1.2.3 COMBINATION OF A HORIZONTAL AND VERTICAL WEB PORTAL

As a special case of combined web portal we can present online stores that are oriented

to different target groups (either a broad target group, or a narrow) and offer either specific

products or a very wide range of products.

For vertical portals is to be noted that the study text will not focus on the issue of

enterprise portals, but only those which are created for the purpose of providing and sharing

information on the Internet.

Just for clarification we state that enterprise portals are viewed as a web page (usually

dynamic web pages) that is used to improve the publishing and sharing of information within

the company. Basically, the terms enterprise, business, or internal portal is used to describe

an application called intranet or extranet. Corporate portals are typically built on content

management systems of type ECM (Enterprise Content Management) that can aggregate data

from multiple data sources.

1.3 WEB PORTAL DEVELOPMENT

As result from the preceding text, web portals are in their concept of "dynamic web

pages" presenting the user interface provides the user not only static content, but also a wide

range of services, such as mail box, search, news in the mail, weather reports, discussion ,

chat, events calendar, catalogue and other sources. If we want to create a portal on their own

or with help of an external supply, it is always necessary to conduct a detailed needs analysis

based on a clear vision and strategy. Assumptions of the success of the project creating a web

portal are:

 Identifying the needs of potential portal users;

 Specification of usability and user-friendliness;

 Technological options;

 Security;

 Stability;

 Reduction of technologies necessary for the functioning of the web portal;

 Maximizing flexibility portal for the needs of ongoing changes, improvements and

additions;

 Timetable of portal development;

 Financial budget;

 The possibilities of web portal personalization;

 The testing of usability and user-friendliness.

In terms of development must be taken into account:

 Usability - a visitor has to easily find the information for which the web has come.

Particularly the contacts, the demand or ordering goods must be after hands;

 Easy web site navigation - based on the above site usability. In particular the logical

structure design and intuitive navigation for visitor;

Petr Suchánek, Jan Górecki; Portal and its Management

- 11 -

 Web accessibility – it includes (not only) the technical requirements of such a significant

and logical menu control of sites, alternative descriptions of images, font size, color

references, etc.

 Valid code - search engines are now very sophisticated indexing algorithms that can cope

with inappropriate code, but not the only reason to complicate them the work.

The basis is an orientation to the web site users. In seminars students will be create

various projects in the form of web portals, respectively dynamic web pages. When you will

create or manage web portal creation now or at any time later in practice, you should always

follow some important principles that have become or are becoming standard and their

applications in your semester projects can help you to try it in practice. In particular, the

following list of basic principles relates to the above four areas:

 Website content is accessible and readable:

o Each non-text element carrying information has a text alternative;

o Information provided via scripts, objects, applets, cascading style sheets, images and

other accessories to the user are available without any of these accessories;

o Information provided by colors are also available without color resolution;

o Foreground and background colors are sufficient contrast. The background is not

a sample which reduces the readability;

o Regulations specifying the font size do not use absolute units;

o Determining the type of font contain general font family.

 Work with the website is managed by the user:

o The web page content changes only when the user activates some elements;

o Website without direct user command not manipulate the user interface;

o New windows open only in justified cases and the user is warned in advance;

o On the website, no blinking faster than once per second;

o Website does not prevents the user from scrolling of frames;

o Content or code of web pages does not even require a specific method of use or specific

output or control devices.

 Information is clear and understandable:

o Website information are presented using simple language and understandable form;

o Home website clearly describes the meaning and purpose of the site. Name of the

website or its operator is clear;

o Website and individual elements of the text content present the key message at the

beginning;

o Extensive content blocks are divided into smaller, aptly titled units;

o Information disclosed under the Act are available as text content of a webpage;

o A separate web page includes contact to technical support and a statement clearly

defining the accessibility level of the site and its parts. Each page of the site refers to

this website;

 Website navigation is clear and understandable:

o Each website has a meaningful name reflects its content;

o Navigation and content information on the website are clearly separated;

o Navigation is clear and consistent on all websites;

o Each web page (except the homepage website) contains a link to a higher level in the

hierarchy of the site and link to the homepage;

o All websites contain extensive site links to a clear site map;

o Content or code of web pages does not imply that the user has already visited another

page;

1Web & internet portal

- 12 -

o Each form element has a descriptive label assigned;

o Each frame has a suitable name or description which expresses its meaning and

function.

 Links are clear and provide guidance:

o The labeling of each link clearly describes its target without the surrounding context;

o Just tagged links have the same goal;

o Links are distinguished from other text, not only in color;

o Side image maps are used only in the event that it was not possible with the available

geometric shape defined areas in the image map. In other cases, image maps are used on

the client side. An image map on the server side is always accompanied by alternative

text links;

o The user is clearly informed in advance when a link leads to a content type other than

the website. Such a link is complemented by an information on the type and size of the

target file;

 The code is technically competent and structured:

o Web page code corresponds to published final specifications of HTML and XHTML. It

does not contain syntax errors, which is the webmaster can remove;

o In the meta tags is specified used character set of document;

o The elements making headlines and lists are correctly marked in the source code;

Elements which do not headings or lists, while in the source code are not marked;

o For a description of the appearance of the website are the preferred style sheets;

o If a table is used for layout of the web site does not contain header of rows or columns.

All tables displaying tabular data however the header rows and / or columns contain;

o All tables make sense when read line by line from left to right.

1.4 TOOLS AND TECHNOLOGIES FOR A WEB PORTAL DEVELOPMENT

For the development of a web portal it is possible to use a variety of technologies and

tools we can use to creation of web pages with dynamic content. In terms of languages and

scripting languages we can use HTML (HyperText Markup Language), XHTML (Extensible

HyperText Markup Language), CSS (Cascading Style Sheets), Java Script, AJAX

(Asynchronous JavaScript and XML (Extensible Markup Language)) PHP (Hypertext

Preprocessor), JSP (JavaServer Pages), Java, Ruby, Python, Perl, ASP.NET, etc. They are

now common languages that are mostly used in the latest versions, but in some cases the

transition to a newer version usually does not cause any major problems.

In this textbook we will use:

 HTML or XHTML (the text using HTML with the fact that almost all codes correspond to

the standard XHTML);

 Local server Apache;

 PHP;

 MySQL.

In terms of software support all the demos and examples will be implemented using

PSPad and EasyPHP. In order to have right from the start interpreting test individual

examples, in the preceding sentence above software PSPad will be first described. There is

possible in this software without any supplements and other software, try the codes presented

in Chapters HTML and CSS.

Petr Suchánek, Jan Górecki; Portal and its Management

- 13 -

1.5 PSPAD

PSPad is a comprehensive text and code editor that provides not only advanced text

editing functions, but also many tools addressed to developers, regardless of the programming

language they use. The application has been specifically designed to serve a double purpose.

It can easily replace the popular Wordpad and Notepad tools included in Windows and, in the

same time, PSPad will prove its worth when dealing with complicated code syntax. The ace

up its sleeve is actually a mix between the excellent bundle of features and its quite easy to

use and friendly interface. Since it was designed to help all types of users, PSPad comes with

an impressive list of templates that includes PHP, Python, HTML, C++, Foxpro, XHTML and

many others. Here are some key features of "PSPad":

 work with projects;

 work on several documents at the same time (MDI);

 Save desktop session to later reopen all open files;

 FTP client - you can edit files directly from the web;

 macro recorder to record, save and load macros;

 search and replace in files;

 text difference with color-coded differences highlighted;

 templates (HTML tags, scripts, code templates...);

 installation contains templates for HTML, PHP, Pascal, JScript, VBScript, MySQL, MS-

Dos, Perl,...;

 syntax highlighting auto set by file type;

 user-defined highlighters for exotic environments;

 auto correction;

 inteligent internal HTML preview using IE and Mozilla;

 full HEX editor;

 call external programs, different for each environment;

 external compiler with catch command output, log window, log parser for each

environment for "IDE" effect;

 color syntax highlight printing and print preview;

 integrated TiDy library for formatting and checking HTML code, conversion to CSS,

XML, XHTML;

 integrated free version of top CSS editor TopStyle Lite;

 export with highlight to RTF, HTML, TeX format into file or clipboard;

 column block select, bookmarks, line numbers, ...;

 reformat and compress HTML code, tags char case change;

 line sorting with ability to sort on defined column, with option to drop duplicates;

 ASCII chart with HTML entities;

 Code explorer for Pascal, INI, HTML, XML, PHP, and more in future;

 spell checker;

 internal web browser with APACHE support;

 matching bracket highlighting.

There is no complex installation process. PSPad is ready to work immediately without

requiring customization. PSPad Software can be downloaded from a number of links. The

basic link is http://www.pspad.com/cz/, but we can use, for example,

http://download.famouswhy.com/pspad/. Installation steps are:

1) Download and run the .exe file from your computer.

2) Press "Next".

1Web & internet portal

- 14 -

3) Read the license agreement and select "I accept the agreement". Press next to continue.

4) Select the installation folder and press "Next".

5) Select "Full installation" and press "Next".

6) Press "Install".

7) After the installation is complete, press "Finish" to exit setup.

Petr Suchánek, Jan Górecki; Portal and its Management

- 15 -

2 HTML

2.1 CHARACTERISTICS OF HTML

Short for HyperText Markup Language, the authoring language used to create

documents on the World Wide Web. HTML is similar to SGML (Standard Generalized

Markup Language), although it is not a strict subset. Development of HTML was influenced

by web browsers, which in turn back influenced the definition of the language.

2.2 CHARACTERISTICS OF XHTML

XHTML is almost identical to HTML 4.01 with only few differences. This is a cleaner

and more strict version of HTML 4.01. If you already know HTML then you need to give

littel attention to learn this latest variant of HTML. XHTML stands for EXtensible HyperText

Markup Language and is the next step in the evolution of the Internet. The XHTML 1.0 is the

first document type in the XHTML family. XHTML was developed by the W3C to help web

developers make the transition from HTML to XML. By migrating to XHTML today, web

developers can enter the XML world with all of its attendant benefits, while still remaining

confident in their content's backward and future compatibility. Developers who migrate their

content to XHTML 1.0 will realize the following benefits:

 XHTML documents are XML conforming. As such, they are readily viewed, edited, and

validated with standard XML tools.

 XHTML documents can be written to operate better than they did before in existing

browsers as well as in new browsers.

 XHTML documents can utilize applications like scripts and applets that rely upon either

the HTML Document Object Model or the XML Document Object Model.

2.3 FUNDAMENTAL DIFFERENCES BETWEEN HTML AND XHTML

XML syntax rules are far more rigorous than HTML. As a result, XHTML makes

authors work more precisely, having to address issues such as:

 all elements and attribute names must appear in lower case;

 all attribute values must be quoted;

 non-Empty Elements require a closing tag;

 empty elements are terminated using a space and a trailing slash;

 no attribute minimization is allowed;

 in strict XHTML, all inline elements must be contained in a block element.

In HTML, case, quotes, termination of many elements and uncontained elements are

allowed and commonplace. The margin for errors in HTML is much broader than in XHTML,

where the rules are very clear. As a result, XHTML is easier to author and to maintain, since

the structure is more apparent and problem syntax is easier to spot.

2.4 HTML TAGS AND ELEMENTS

Every tag consists of a tag name, sometimes followed by an optional list of tag

attributes, all placed between opening and closing brackets (< and >). The simplest tag is

nothing more than a name appropriately enclosed in brackets, such as <head> and <i>.

2HTML

- 16 -

More complicated tags contain one or more attributes, which specify or modify the behavior

of the tag.

EXAMPLE 1

General notation:

<tagname>content</tagname>

Specific example:
<p>This is a paragraph.</p>

According to the HTML standard, tag and attribute names are not case-sensitive.

There's no difference in effect between <head>, <Head>, <HEAD>, or even <HeaD>;

they are all equivalent. But with XHTML, case is important: all current standard tag and

attribute names are in lowercase.

The purpose of a web browser (such as Google Chrome, Internet Explorer, Firefox,

Safari) is to read HTML documents and display them as web pages. "HTML tags" and

"HTML elements" are often used to describe the same thing. But strictly speaking, an HTML

element is everything between the start tag and the end tag, including the tags.

A very good quality associated with all the browsers is that they would not give any

error if you have not put any HTML tag or attribute properly. They will just ignore that tag or

attribute and will apply only correct tags and attributes before displaying the result.

2.5 HTML DOCUMENT

To begin coding HTML you need only two things: a simple editor (we will use PsPad)

and a web browser.

The DOCTYPE declaration defines the document type. The first line on the top,

<!DOCTYPE html>, is a document type declaration and it lets the browser know which

flavor of HTML we are using. <html> is the opening tag that kicks things off and tells the

browser that everything between that and the </html> closing tag is an HTML document.

The stuff between <body> and </body> is the main content of the document that will

appear in the browser window. The </body> and </html> put a close to their respective

elements.

EXAMPLE 2

<!DOCTYPE html>

<html>

<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>

</html>

Petr Suchánek, Jan Górecki; Portal and its Management

- 17 -

The <!DOCTYPE> declaration must be the very first thing in your HTML document, before

the <html> tag. The <!DOCTYPE> declaration is not an HTML tag; it is an instruction to

the web browser about what version of HTML the page is written in. In HTML 4.01, the

<!DOCTYPE> declaration refers to a DTD, because HTML 4.01 was based on SGML

(Standard Generalized Markup Language). The DTD specifies the rules for the markup

language, so that the browsers render the content correctly. HTML5 is not based on SGML,

and therefore does not require a reference to a DTD.

2.6 HTML ELEMENT SYNTAX

 An HTML element starts with a start tag / opening tag.

 An HTML element ends with an end tag / closing tag.

 The element content is everything between the start and the end tag.

 Some HTML elements have empty content.

 Empty elements are closed in the start tag.

 Most HTML elements can have attributes.

Not all tags have closing tags like this (<html></html>) some tags, which do not

wrap around content will close themselves. The line-break tag for example, looks like this:

 - a line break doesn’t hold any content so the tag merrily sits by its lonely self.

In Example 2 there are two basic tags. The elements h1, h2, h3, h4, h5 and h6 is used to

make headings (h stands for "heading"), where h1 is the first level and normally the largest

text, h2 is the second level and normally slightly smaller text, and h6 is the sixth and last in

the hierarchy of headings and normally the smallest text.

The p in <p> is short for "paragraph" which is exactly what it is - a text paragraph.

2.7 HTML PARAGRAPHS AND LINE BREAKS

Paragraphs are defined with the <p> tag.

EXAMPLE 3

<p>This is a paragraph</p>

<p>This is another paragraph</p>

2HTML

- 18 -

Note that browsers automatically add an empty line before and after a paragraph. Most

browsers will display HTML correctly even if you forget the end tag:

EXAMPLE 4

<p>This is a paragraph

<p>This is another paragraph

The example 4 will work in most browsers, but don't rely on it. Forgetting the end tag

can produce unexpected results or errors. Future version of HTML will not allow you to skip

end tags.

If you want a line break (a new line) without starting a new paragraph, use the

tag. The
 element is an empty HTML element. It has no end tag.

EXAMPLE 5

<p>This is
a para
graph with line breaks</p>

Just as
 we can use tag <hr>. The <hr> tag creates a horizontal line in an HTML

page.

EXAMPLE 6

<p>This is a paragraph.</p>

 <hr>

<p>This is a paragraph.</p>

 <hr>

<p>This is a paragraph.</p>

2.8 HTML HEADINGS

As was already indicated in Example 2Headings are defined with the <h1> to <h6>

tags. <h1> defines the most important heading. <h6> defines the least important heading.

EXAMPLE 7

<h1>This is a heading</h1>

<h2>This is a heading</h2>

<h3>This is a heading</h3>

Use HTML headings for headings only. Don't use headings to make text BIG or bold.

Search engines use your headings to index the structure and content of your web pages. Since

users may skim your pages by its headings, it is important to use headings to show the

document structure. H1 headings should be used as main headings, followed by H2 headings,

then the less important H3 headings, and so on.

2.9 HTML FONT

The tag provides no real functionality by itself, but with the help of a few

attributes, this tag is used to change the style, size, and color of HTML text elements. The

Petr Suchánek, Jan Górecki; Portal and its Management

- 19 -

size, color, and face attributes can be used all at once or individually, providing users with the

ability to create dynamic font styles for any HTML element.

You can set the size of your font with size. The range of accepted values goes from 1 --

the smallest, to 7 -- the largest. The default size of a font is 3.

EXAMPLE 8

<p>

Here is a size 5 font

</p>

Color of your font can be set with color.

EXAMPLE 9

This text is hex color #990000

This text is red

Basic color codes can be found in Table 1. Much more may be found, for example, in:

 http://www.computerhope.com/htmcolor.htm;

 http://www.december.com/html/spec/colorcodes.html;

 http://www.htmlgoodies.com/tutorials/colors/article.php/3478961.

Table 1: Basic colors codes

A different font face can be chosen by specifying any font you have installed. Font face

is synonymous with font type. As a web designer, be aware that if you specify a custom font

type and users viewing the page don't have the exact same font installed, they will not be able

to see it. Instead the chosen font will default to Times New Roman. To reduce the risk of

running into this situation, you may provide a list of several fonts with the face attribute, such

as outlined below.

EXAMPLE 10

<p>

This paragraph

 has had its font...

</p>

http://www.computerhope.com/htmcolor.htm
http://www.december.com/html/spec/colorcodes.html
http://www.htmlgoodies.com/tutorials/colors/article.php/3478961

2HTML

- 20 -

In general, the and <basefont> tags are deprecated and should not be used

for published work. Instead, use CSS (Cascading style sheets) styles to manipulate your font.

CSS will be described in the next section.

2.10 HTML LISTS

HTML lists appear in web browsers as bulleted lines of text. There are actually three

different types of HTML lists, including unordered lists (bullets), ordered lists (numbers), and

definition lists (think: dictionaries). Each list type utilizes its own unique list tag.

EXAMPLE 11

<body>

 I am a list item!>

 I am a list item too!>

 I am a list item also!>

</body>

The actual list tags themselves, such as , are nothing but container elements for

list items (). They work behind the scenes to identify the beginning and ending of an

HTML list element.

An unordered list () signifies to a web browser that all list items contained inside

the tag should be rendered with a bullet preceding the text. The default bullet type for

most web browsers is a full disc (black circle), but this can be adjusted using an HTML

attribute called type.

EXAMPLE 12

<h4 align="center">Shopping List</h4>

 Milk

 Toilet Paper

 Cereal

 Bread

To render a list with a different bullet type, add a type attribute to the unordered list

element. Using the same code in the example above, replace the line from the previous

example with any of the lines listed below to change the bullet from disc shape to another

shape.

EXAMPLE 13

<ul type="square">

<ul type="disc">

Petr Suchánek, Jan Górecki; Portal and its Management

- 21 -

<ul type="circle">

An ordered list is defined using the tag, and list items placed inside of an ordered

list are preceded with numbers instead of bullets.

EXAMPLE 14

<h4 align="center">Goals</h4>

 Find a Job

 Get Money

 Move Out

The numbering of an HTML list can be changed to letters or Roman Numerals by once

again adjusting the type attribute.

EXAMPLE 15

<ol type="a">

<ol type="A">

<ol type="i">

<ol type="I">

The start attribute allows you to further customize an HTML ordered list by setting a

new starting digit for the ordered list element.

EXAMPLE 16

<h4 align="center">Goals</h4>

<ol start="4" >

 Buy Food

 Enroll in College

 Get a Degree

HTML definition lists (<dl>) are list elements that have a unique array of tags and

elements; the resulting listings are similar to those you'd see in a dictionary.

 <dl> - opening clause that defines the start of the list;

 <dt> - list item that defines the definition term;

 <dd> - definition of the list item.

These lists displace the word term (<dt>) in such a way that it rests just above the

definition element (<dd>) to offer a very unique look. For best, results we suggest bolding

the definition terms with the bold tag .

EXAMPLE 17

<dl>

2HTML

- 22 -

 <dt>Fromage</dt>

 <dd>French word for cheese.</dd>

 <dt>Voiture</dt>

 <dd>French word for car.</dd>

 </dt>

</dl>

2.11 HTML IMAGES

In HTML, images are defined with the tag. The tag is empty, which

means that it contains attributes only, and has no closing tag. To display an image on a page,

you need to use the src attribute. Src stands for "source". The value of the src attribute is

the URL of the image you want to display.

EXAMPLE 18

The URL points to the location where the image is stored. For example, an image

named "boat.gif", located in the "images" directory on "www.w3schools.com" has the URL:

http://www.w3schools.com/images/boat.gif. The browser displays the image where the

 tag occurs in the document. If you put an image tag between two paragraphs, the

browser shows the first paragraph, then the image, and then the second paragraph.

The required alt attribute specifies an alternate text for an image, if the image cannot

be displayed. The value of the alt attribute is an author-defined text:

EXAMPLE 19

The alt attribute provides alternative information for an image if a user for some reason

cannot view it (because of slow connection, an error in the src attribute, or if the user uses

a screen reader).

The height and width attributes are used to specify the height and width of an

image. The attribute values are specified in pixels by default:

EXAMPLE 20

<img src="smiley.gif" alt="Smiley face" width="42"

height="42">

It is a good practice to specify both the height and width attributes for an image. If

these attributes are set, the space required for the image is reserved when the page is loaded.

However, without these attributes, the browser does not know the size of the image. The

effect will be that the page layout will change during loading (while the images load).

Above, we've used hard-coded pixel values for the height and width of the sunset

image to ensure that this image will always render 42 pixels high by 42 pixels wide. By hard-

coding these values, we are ensuring that the image will only display 42 pixels high by 42

pixels wide, even if the picture file itself happens to be much larger. If the dimensions of the

http://www.w3schools.com/images/boat.gif

Petr Suchánek, Jan Górecki; Portal and its Management

- 23 -

picture are much larger, then we risk some severe skewing as the browser tries to shrink our

image into our small box.

Height and width values can also be a percentage. Percentage values are relative to

the parent HTML element (usually the body), which means if you have a parent element like

a <body> element that is the whole screen (1024x768), then an image with a height and

width of 100% will take up that entire body element (1024x768). In our example below, we

have placed the image in a table element that is about 400 pixels wide by 200 pixels tall.

Images can be aligned horizontally to the right or to the left of other elements using the

align attribute. Image elements are aligned to the left by default.

EXAMPLE 21

As you can see, the image's right edge has now been aligned with the right edge of the

display box. Since the display box is the parent element, this is the desired behavior for the

align attribute. If we take this example a step further, you can achieve some really great

designs by embedding aligned images inside of paragraph <p> elements.

EXAMPLE 22

<p>This is paragraph 1, yes it is...</p>

<p>

The image will appear along the...isn't it?

</p>

<p>This is the third paragraph that appears...</p>

2.12 HTML TABLES

Tables are defined with the <table> tag. A table is divided into rows with the <tr>

tag (tr stands for table row). A row is divided into data cells with the <td> tag (td stands for

table data). A row can also be divided into headings with the <th> tag (th stands for table

heading). The <td> elements are the data containers in the table. The <td> elements can

contain all sorts of HTML elements like text, images, lists, other tables, etc.

EXAMPLE 23

<table>

 <tr>

 <td>Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 </tr>

 <tr>

 <td>Row 2 Cell 1</td>

 <td>Row 2 Cell 2</td>

 </tr>

</table>

2HTML

- 24 -

If you do not specify a border for the table, it will be displayed without borders.

A border can be added using the border attribute:

EXAMPLE 24

<table border="1">

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

 </tr>

<tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

</tr>

</table>

Table headings are defined with the <th> tag. By default, all major browsers display

table headings as bold and centered:

EXAMPLE 25

<table>

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Points</th>

 </tr>

<tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

</tr>

</table>

Content elements like HTML lists, images, and even other table elements can be placed

inside each table cell. Doing so aligns the elements in a tabular fashion and provides structure.

EXAMPLE 26

<table border="1">

 <tr>

 <td width="50%">

 List Item 1

 List Item 2

 List Item 3

 </td>

 <td>

Petr Suchánek, Jan Górecki; Portal and its Management

- 25 -

 List Item 4

 List Item 5

 List Item 6

 </td>

 </tr>

 <tr>

 <td>

 <p>Avoid losing floppy disks with important

school...</p>

 </td>

 <td>

 <a href="http://www.espn.com" target="_blank"

rel="nofollow">

 </td>

 </tr>

</table>

HTML tables allow the web designer to align page content in a tabular fashion while

spanning elements horizontally across the web page, rather than stacking them up one on top

of another.

A table can contain an infinite number of table rows. Each table row is essentially

a table element itself, with an opening and closing tag (<tr> </tr>). Table columns are

also considered child elements of HTML tables, and like table rows, an HTML table may

contain an infinite number of table data cells (<td> <tr>).

Table rows and columns are container elements that house other HTML elements such

as text links, images, and lists, as we've seen in previous examples. Below, we've applied

a background color to the table example in order to help distinguish the different table

elements.

EXAMPLE 27

<table border="1">

 <tr title="You are looking at Row 1" bgcolor="silver">

 <td>Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 </tr>

 <tr title="You are looking at Row 2" bgcolor="aqua">

 <td>Row 2 Cell 1</td>

 <td>Row 2 Cell 2</td>

 </tr>

</table>

You can use rowspan to span multiple rows merging together table rows and

colspan to span across multiple columns.

EXAMPLE 28

<table border="1">

2HTML

- 26 -

 <tr>

 <td>Column 1</td>

 <td>Column 2</td>

 <td>Column 3</td>

 </tr>

 <tr>

 <td rowspan="2">Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 <td>Row 1 Cell 3</td>

 </tr>

 <tr>

 <td>Row 2 Cell 2</td>

 <td>Row 2 Cell 3</td>

 </tr>

 <tr>

 <td colspan="3">Row 3 Cell 1</td>

 </tr>

</table>

With the cellpadding and cellspacing attributes, you will be able to adjust the

spacing between table cells. Setting the cellpadding attribute determines how much space

will exist between a table cell border and the elements contained within it, whereas

cellspacing determines how much space will exist between each table cell. Color has

been added to the table below to emphasize these attributes.

EXAMPLE 29

<table border="1" cellspacing="10" bgcolor="rgb(0,255,0)">

 <tr>

 <td>Column 1</td>

 <td>Column 2</td>

 </tr>

 <tr>

 <td>Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 </tr>

 <tr>

 <td>Row 2 Cell 1</td>

 <td>Row 2 Cell 2</td>

 </tr>

</table>

And now we will change the cellpadding of the table and remove the

cellspacing from the previous example. This should clearly demonstrate the difference

between cellpadding and cellspacing.

EXAMPLE 30

<table border="1" cellpadding="10" bgcolor="rgb(0,255,0)">

 <tr>

 <td>Column 1</td>

Petr Suchánek, Jan Górecki; Portal and its Management

- 27 -

 <td>Column 2</td>

 </tr>

 <tr>

 <td>Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 </tr>

 <tr>

 <td>Row 2 Cell 1</td>

 <td>Row 2 Cell 2</td>

 </tr>

</table>

2.13 HTML LINKS

The HTML <a> tag defines a hyperlink. A hyperlink (or link) is a word, group of

words, or image that you can click on to jump to another document. When you move the

cursor over a link in a Web page, the arrow will turn into a little hand. The most important

attribute of the <a> element is the href attribute, which indicates the link's destination. By

default, links will appear as follows in all browsers:

 An unvisited link is underlined and blue;

 A visited link is underlined and purple;

 An active link is underlined and red.

EXAMPLE 31

Link text

The href attribute specifies the destination of a link.

EXAMPLE 32

Visit W3Schools

The target attribute specifies where to open the linked document. The example below

will open the linked document in a new browser window or a new tab:

EXAMPLE 33

Visit

W3Schools!

The id attribute can be used to create a bookmark inside an HTML document. An

anchor with an id inside an HTML document:

EXAMPLE 34

Useful Tips Section

Create a link to the "Useful Tips Section" inside the same document:

2HTML

- 28 -

EXAMPLE 35

Visit the Useful Tips Section

Or, create a link to the "Useful Tips Section" from another page:

EXAMPLE 36

 Visit the Useful Tips Section

Placing files available for download is done in exactly the same fashion as placing text

links. However, things become complicated if we want to place image links for download.

EXAMPLE 37

Text

Document

We can also use image links. Image links are constructed as you might expect, by

embedding an tag inside of an anchor element <a>. Like HTML text links, image

links require opening and closing anchor tags, but instead of placing text between these

opening and closing tags, the developer needs to place an image tag -- with a valid source

attribute value of course.

EXAMPLE 38

By default, many browsers add a small border around image links. This default behavior

is intended to give web viewers the ability to quickly decipher the difference between

ordinary images and image links. Since this default is different from web browser to web

browser, it may be best to squelch this ambiguity and set the border attribute of the image tag

to 0 or 1.

EXAMPLE 39

Thumbnails are by far the most common type of image link seen in today's world. To

create a thumbnail, one must save a low-quality version of a picture with smaller dimensions.

Then, one should link this low-quality picture to its higher-quality counterpart. Thumbnails

are intended to give your audience quick previews of images without them having to wait for

the larger, higher-quality image to load. Photo galleries make heavy use of thumbnails, and

they will allow you to display multiple pictures on one page with ease.

EXAMPLE 40

Petr Suchánek, Jan Górecki; Portal and its Management

- 29 -

Use the <base> tag in the head element to set a default URL for all links on a page to

go to. It's always a good i-dea to set a base tag just in case your links become bugged

somewhere down the line. Usually, you should set your base to your home page.

EXAMPLE 41

<head>

 <base href="http://www.tizag.com/" />

</head>

2.14 FRAMES

Frames divide a browser window into several pieces or panes, each pane containing a

separate XHTML/HTML document. One of the key advantages that frames offer is that you

can then load and reload single panes without having to reload the entire contents of the

browser window. A collection of frames in the browser window is known as a frameset. The

window is divided up into frames in a similar pattern to the way tables are organized: into

rows and columns. The simplest of framesets might just divide the screen into two rows,

while a complex frameset could use several rows and columns. There are few drawbacks also

you should be aware of with frames are as follows:

 Some browsers do not print well from framesets.

 Some smaller devices cannot cope with frames, often because their screen is not big

enough to be divided up.

 Some time your page will be displayed differently on different computers due to different

screen resolution.

 The browser's back button might not work as the user hopes.

 There are still few browsers who do not support frame technology.

To create a frameset document, first you need the <frameset> element, which is used

instead of the <body> element. The frameset defines the rows and columns your page is

divided into, which in turn specify where each individual frame will go. Each frame is then

represented by a <frame> element.

You also need to learn the <noframes> element, which provides a message for users

whose browsers do not support frames.

2.14.1 CREATING FRAMES

 The <frameset> tag replaces the <body> element in frameset documents.

 The <frameset> tag defines how to divide the window into frames.

 Each frameset defines a set of rows or columns. If you define frames by using rows then

horizontal frames are created. If you define frames by using columns then vertical frames

are created.

 The values of the rows/columns indicate the amount of screen area each row/column will

occupy.

 Each frame is indicated by <frame> tag and it defines what HTML document to put into

the frame.

Following is the example to create three horizontal frames:

2HTML

- 30 -

EXAMPLE 42

<html>

<head>

<title>Frames example</title>

</head>

 <frameset rows="10%,80%,10%">

 <frame src="/html/top_frame.htm" />

 <frame src="/html/main_frame.htm" />

 <frame src="/html/bottom_frame.htm" />

 <noframes>

 <body>

 Your browser does not support frames.

 </body>

 </noframes>

 </frameset>

</html>

2.14.2 THE <FRAMESET> ELEMENT ATTRIBUTES

Following are important attributes of <frameset> and should be known to you to use

frameset.

 cols: specifies how many columns are contained in the frameset and the size of each

column. You can specify the width of each column in one of four ways:

o Absolute values in pixels. For example to create three vertical frames, use cols="100,

500,100".

o A percentage of the browser window. For example to create three vertical frames, use

cols="10%, 80%,10%".

o Using a wildcard symbol. For example to create three vertical frames, use cols="10%,

*,10%". In this case wildcard takes remainder of the window.

o As relative widths of the browser window. For example to create three vertical frames,

use cols="3*,2*,1*". This is an alternative to percentages. You can use relative widths

of the browser window. Here the window is divided into sixths: the first column takes

up half of the window, the second takes one third, and the third takes one sixth.

 rows: attribute works just like the cols attribute and can take the same values, but it is used

to specify the rows in the frameset. For example to create two horizontal frames, use

rows="10%, 90%". You can specify the height of each row in the same way as explained

above for columns.

 border: attribute specifies the width of the border of each frame in pixels. For example

border="5". A value of zero specifies that no border should be there.

 frameborder: specifies whether a three-dimensional border should be displayed between

frames. This attrubute takes value either 1 (yes) or 0 (no). For example frameborder="0"

specifies no border.

 framespacing: specifies the amount of space between frames in a frameset. This can take

any integer value. For example framespacing="10" means there should be 10 pixels

spacing between each frames.

Petr Suchánek, Jan Górecki; Portal and its Management

- 31 -

2.14.3 LOADING CONTENT

The <frame> element indicates what goes in each frame of the frameset. The <frame>

element is always an empty element, and therefore should not have any content, although

each <frame> element should always carry one attribute, src, to indicate the page that

should represent that frame. From the above example, lets take small snippet:

EXAMPLE 43

<frame src="/html/top_frame.htm" />

 <frame src="/html/main_frame.htm" />

 <frame src="/html/bottom_frame.htm" />

2.14.4 THE <FRAME> ELEMENT ATTRIBUTES

Following are important attributes of and should be known to you to use frames.

 src: indicates the file that should be used in the frame. Its value can be any URL. For

example, src="/html/top_frame.htm" will load an HTML file avaible in html

directory.

 name: attribute allows you to give a name to a frame. It is used to indicate which frame

a document should be loaded into. This is especially important when you want to create

links in one frame that load pages into a second frame, in which case the second frame

needs a name to identify itself as the target of the link.

 frameborder: attribute specifies whether or not the borders of that frame are shown; it

overrides the value given in the frameborder attribute on the <frameset> element if

one is given, and the possible values are the same. This can take values either 1 (yes) or 0

(no).

 marginwidth: allows you to specify the width of the space between the left and right of

the frame's borders and the frame's content. The value is given in pixels. For example

marginwidth="10".

 marginheight: allows you to specify the height of the space between the top and bottom of

the frame's borders and its contents. The value is given in pixels. For example

marginheight="10".

 noresize: By default you can resize any frame by clicking and dragging on the borders of

a frame. The noresize attribute prevents a user from being able to resize the frame. For

example noresize="noresize".

 scrolling: controls the appearance of the scrollbars that appear on the frame. This takes

values either "yes", "no" or "auto". For example scrolling="no" means it should not

have scroll bars.

 longdesc: allows you to provide a link to another page containing a long description of the

contents of the frame. For example longdesc="framedescription.htm".

2.14.5 FRAME'S NAME AND TARGET ATTRIBUTES

One of the most popular uses of frames is to place navigation bars in one frame and then

load the pages with the content into a separate frame.

As you have already seen, each <frame> element can carry the name attribute to give

each frame a name. This name is used in the links to indicate which frame the new page

2HTML

- 32 -

should load into. Consider this very simple example, create following content in index.htm

file:

EXAMPLE 44

<frameset cols="200, *">

 <frame src="/html/menu.htm" name="menu_page" />

 <frame src="/html/main.htm" name="main_page" />

</frameset>

There are two columns in this example. The first is 200 pixels wide and will contain the

navigation bar. The second column or frame will contain the main part of the page. The links

on the left side navigation bar will load pages into the right side main page. Keep some

content in main.htm file and the links in the menu.htm file look like this:

EXAMPLE 45

Google

<a href=http://www.microsoft.com

target="main_page">Microsoft

BBC

News

2.15 FORMS

HTML Forms are required when you want to collect some data from the site visitor. For

example registration information: name, email address, credit card, etc. A form will take input

from the site visitor and then will post your back-end application such as CGI (Common

Gateway Interface), ASP (Active Server Pages) Script or PHP (Hypertext Preprocessor) script

etc. Then your back-end application will do required processing on that data in whatever way

you like. Form elements are like text fields, textarea fields, drop-down menus, radio buttons,

checkboxes, etc. which are used to take information from the user. A simple syntax of using

<form> is as follows:

EXAMPLE 46

<form action="back-end script" method="posting method">

 form elements like input, textarea etc.

</form>

Most frequently used form attributes are:

 name: This is the name of the form.

 action: Here you will specify any script URL which will receive uploaded data.

 method: Here you will specify method to be used to upload data. It can take various values

but most frequently used are GET and POST.

 target: It specifies the target page where the result of the script will be displayed. It takes

values like _blank, _self, _parent etc.

http://www.microsoft.com/

Petr Suchánek, Jan Górecki; Portal and its Management

- 33 -

 enctype: You can use the enctype attribute to specify how the browser encodes the data

before it sends it to the server. Possible values are like:

o application/x-www-form-urlencoded - This is the standard method most forms use. It

converts spaces to the plus sign and non-alphanumeric characters into the hexadecimal

code for that character in ASCII text.

o mutlipart/form-data - This allows the data to be sent in parts, with each consecutive part

corresponding the a form control, in the order they appear in the form. Each part can

have an optional content-type header of its own indicating the type of data for that form

control.

There are different types of form controls that you can use to collect data from a visitor

to your site.

 Text input controls;

 Buttons;

 Checkboxes and radio buttons;

 Select boxes;

 File select boxes;

 Hidden controls;

 Submit and reset button.

2.15.1 TEXT INPUT CONTROLS

There are actually three types of text input used on forms:

 Single-line text input controls: Used for items that require only one line of user input,

such as search boxes or names. They are created using the <input> element.

 Password input controls: Single-line text input that mask the characters a user enters.

 Multi-line text input controls: Used when the user is required to give details that may be

longer than a single sentence. Multi-line input controls are created with the <textarea>

element.

2.15.2 SINGLE-LINE TEXT INPUT CONTROLS

Single-line text input controls are created using an <input> element whose type

attribute has a value of text. Here is a basic example of a single-line text input used to take

first name and last name:

EXAMPLE 47

<form action="/cgi-bin/hello_get.cgi" method="get">

First name:

<input type="text" name="first_name" />

Last name:

<input type="text" name="last_name" />

<input type="submit" value="submit" />

</form>

Following is the list of attributes for <input> tag.

 type: Indicates the type of input control you want to create. This element is also used to

create other form controls such as radio buttons and checkboxes.

2HTML

- 34 -

 name: Used to give the name part of the name/value pair that is sent to the server,

representing each form control and the value the user entered.

 value: Provides an initial value for the text input control that the user will see when the

form loads.

 size: Allows you to specify the width of the text-input control in terms of characters.

 maxlength: Allows you to specify the maximum number of characters a user can enter into

the text box.

2.15.3 PASSWORD INPUT CONTROLS

This is also a form of single-line text input controls are created using an <input>

element whose type attribute has a value of password. Here is a basic example of a single-line

password input used to take user password:

EXAMPLE 48

<form action="/cgi-bin/hello_get.cgi" method="get">

Login :

<input type="text" name="login" />

Password:

<input type="text" name="password" />

<input type="submit" value="submit" />

</form>

2.15.4 MULTIPLE-LINE TEXT INPUT CONTROLS

If you want to allow a visitor to your site to enter more than one line of text, you should

create a multiple-line text input control using the <textarea> element. Here is a basic

example of a multi-line text input used to take item description:

EXAMPLE 49

<form action="/cgi-bin/hello_get.cgi" method="get">

Description :

<textarea rows="5" cols="50" name="description">

Enter description here...

</textarea>

<input type="submit" value="submit" />

</form>

Following is the detail of above used attributes for <textarea> tag.

 name: The name of the control. This is used in the name/value pair that is sent to the

server.

 rows: Indicates the number of rows of text area box.

 cols: Indicates the number of columns of text area box.

Petr Suchánek, Jan Górecki; Portal and its Management

- 35 -

2.15.5 CREATING BUTTON

There are various ways in HTML to create clickable buttons. You can create clickable

button using <input> tag. When you use the <input> element to create a button, the type of

button you create is specified using the type attribute. The type attribute can take the

following values:

 submit: This creates a button that automatically submits a form.

 reset: This creates a button that automatically resets form controls to their initial values.

 button: This creates a button that is used to trigger a client-side script when the user clicks

that button.

EXAMPLE 50

<form action="http://www.example.com/test.asp" method="get">

<input type="submit" name="Submit" value="Submit" />

<input type="reset" value="Reset" />

<input type="button" value="Button" />

</form>

You can use an image to create a button.

EXAMPLE 51

<form action="http://www.example.com/test.asp" method="get">

<input type="image" name="imagebutton" src="URL" />

</form>

You can use <button> element to create various buttons.

EXAMPLE 52

<form action="http://www.example.com/test.asp" method="get">

<button type="submit">Submit</button>

<button type="reset"> Reset </button>

<button type="button"> Button </button>

</form>

2.15.6 CHECKBOXES CONTROL

Checkboxes are used when more than one option is required to be selected. They are

created using <input> tag as shown below. Here is example HTML code for a form with

two checkboxes:

EXAMPLE 53

<form action="/cgi-bin/checkbox.cgi" method="get">

<input type="checkbox" name="maths" value="on"> Maths

<input type="checkbox" name="physics" value="on"> Physics

<input type="submit" value="Select Subject" />

2HTML

- 36 -

</form>

Following is the list of important checkbox attributes:

 type: Indicates that you want to create a checkbox.

 name: Name of the control.

 value: The value that will be used if the checkbox is selected. More than one checkbox

should share the same name only if you want to allow users to select several items from the

same list.

 checked: Indicates that when the page loads, the checkbox should be selected.

2.15.7 RADIO BOX CONTROL

Radio Buttons are used when only one option is required to be selected. They are

created using <input> tag as shown below. Here is example HTML code for a form with

two radio button:

EXAMPLE 54

<form action="/cgi-bin/radiobutton.cgi" method="post">

<input type="radio" name="subject" value="maths" /> Maths

<input type="radio" name="subject" value="physics" /> Physics

<input type="submit" value="Select Subject" />

</form>

Following is the list of important radiobox attributes:

 type: Indicates that you want to create a radiobox.

 name: Name of the control.

 value: Used to indicate the value that will be sent to the server if this option is selected.

 checked: Indicates that this option should be selected by default when the page loads.

2.15.8 SELECT BOX CONTROL

Drop Down Box is used when we have many options available to be selected but only

one or two will be selected. Here is example HTML code for a form with one drop down box:

EXAMPLE 55

<form action="/cgi-bin/dropdown.cgi" method="post">

<select name="dropdown">

<option value="Maths" selected>Maths</option>

<option value="Physics">Physics</option>

</select>

<input type="submit" value="Submit" />

</form>

Following is the list of important attributes of <select>:

 name: This is the name for the control.

 size: This can be used to present a scrolling list box.

 multiple: If set to "multiple" then allows a user to select multiple items from the menu.

Petr Suchánek, Jan Górecki; Portal and its Management

- 37 -

Following is the list of important attributes of <option>:

 value: The value that is sent to the server if this option is selected.

 selected: Specifies that this option should be the initially selected value when the page

loads.

 label: An alternative way of labeling options.

2.15.9 FILE SELECT BOXES

If you want to allow a user to upload a file to your web site from his computer, you will

need to use a file upload box, also known as a file select box. This is also created using the

<input> element. Here is example HTML code for a form with one file select box:

EXAMPLE 56

<form action="/cgi-bin/hello_get.cgi" method="post"

 name="fileupload" enctype="multipart/form-data">

<input type="file" name="fileupload" accept="image/*" />

</form>

2.15.10 HIDDEN CONTROLS

If you want to pass information between pages without the user seeing it. Hidden form

controls remain part of any form, but the user cannot see them in the Web browser. They

should not be used for any sensitive information you do not want the user to see because the

user could see this data if she looked in the source of the page. Following hidden form is

being used to keep current page number. When a user will click next page then the value of

hidden form will be sent to the back-end application and it will decide which page has be

displayed next.

EXAMPLE 57

<form action="/cgi-bin/hello_get.cgi"

 method="get" name="pages">

<p>This is page 10</p>

<input type="hidden" name="pgaenumber" value="10" />

<input type="submit" value="Next Page" />

</form>

2.15.11 SUBMIT AND RESET BUTTON

These are special buttons which can be created using <input> When submit button is

clicked then Forms data is submitted to the back-end application. When reset button is clicked

then all the forms control are reset to default state. You already have seen submit button

above, we will give one reset example here:

EXAMPLE 58

<form action="/cgi-bin/hello_get.cgi" method="get">

First name:

2HTML

- 38 -

<input type="text" name="first_name" />

Last name:

<input type="text" name="last_name" />

<input type="submit" value="Submit" />

<input type="reset" value="Reset" />

</form>

Petr Suchánek, Jan Górecki; Portal and its Management

- 39 -

3 CSS (CASCADING STYLE SHEETS)

HTML was never intended to contain tags for formatting a document. HTML was

intended to define the content of a document, like: <h1>This is a heading</h1>,

<p>This is a paragraph.</p>. When tags like , and color attributes were

added to the HTML 3.2 specification, it started a nightmare for web developers. Development

of large web sites, where fonts and color information were added to every single page,

became a long and expensive process. To solve this problem, the World Wide Web

Consortium (W3C) created CSS.

3.1 CSS SYNTAX

A CSS rule set consists of a selector and a declaration block:

Figure 1: CSS Syntax

Source: http://www.w3schools.com/css/css_syntax.asp

The selector points to the HTML element you want to style. The declaration block

contains one or more declarations separated by semicolons. Each declaration includes

a property name and a value, separated by a colon.

3.2 CSS SELECTORS

CSS selectors allow you to select and manipulate HTML element(s). CSS selectors are

used to "find" (or select) HTML elements based on their id, classes, types, attributes, values

of attributes and much more.

3.2.1 THE ELEMENT SELECTOR

The element selector selects elements based on the element name. You can select all

<p> elements on a page like this: (all <p> elements will be center-aligned, with a red text

color).

EXAMPLE 59

p {

 text-align: center;

 color: red;

 }

3.2.2 THE ID SELECTOR

The id selector uses the id attribute of an HTML tag to find the specific element. An id

should be unique within a page, so you should use the id selector when you want to find

a single, unique element. To find an element with a specific id, write a hash character,

3CSS (Cascading Style Sheets)

- 40 -

followed by the id of the element. The style rule below will be applied to the HTML element

with id="para1":

EXAMPLE 60

#para1 {

 text-align: center;

 color: red;

 }

3.2.3 THE CLASS SELECTOR

The class selector finds elements with the specific class. The class selector uses the

HTML class attribute. To find elements with a specific class, write a period character,

followed by the name of the class. In the example below, all HTML elements with

class="center" will be center-aligned:

EXAMPLE 61

.center {

 text-align: center;

 color: red;

}

You can also specify that only specific HTML elements should be affected by a class. In

the example below, all p elements with class="center" will be center-aligned:

EXAMPLE 62

p.center {

 text-align:center;

 color:red;

}

3.2.4 GROUPING SELECTORS

In style sheets there are often elements with the same style:

EXAMPLE 63

h1 {

 text-align: center;

 color: red;

 }

h2 {

 text-align: center;

 color: red;

}

Petr Suchánek, Jan Górecki; Portal and its Management

- 41 -

p {

 text-align: center;

 color: red;

To minimize the code, you can group selectors. To group selectors, separate each

selector with a comma. In the example below we have grouped the selectors from the code

above:

EXAMPLE 64

h1, h2, p {

 text-align: center;

 color: red;

}

3.3 WAYS TO INSERT CSS

There are three ways of inserting a style sheet:

 External style sheet;

 Internal style sheet;

 Inline style.

3.3.1 EXTERNAL STYLE SHEET

An external style sheet is ideal when the style is applied to many pages. With an

external style sheet, you can change the look of an entire Web site by changing just one file.

Each page must include a link to the style sheet with the <link> tag. The <link> tag goes

inside the head section:

EXAMPLE 65

<head>

 <link rel="stylesheet" type="text/css" href="mystyle.css">

</head>

An external style sheet can be written in any text editor. The file should not contain any

html tags. The style sheet file must be saved with a .css extension. An example of a style sheet

file is shown below:

EXAMPLE 66

"myStyle.css":

hr {color: sienna;}

 p {margin-left: 20px;}

 body {background-image: url("images/background.gif");}

3CSS (Cascading Style Sheets)

- 42 -

3.3.2 INTERNAL STYLE SHEET

An internal style sheet should be used when a single document has a unique style. You

define internal styles in the head section of an HTML page, inside the <style> tag, like

this:

EXAMPLE 67

<head>

 <style>

 hr {color: sienna;}

 p {margin-left: 20px;}

 body {background-image: url("images/background.gif");}

 </style>

 </head>

3.3.3 INLINE STYLES

An inline style loses many of the advantages of a style sheet (by mixing content with

presentation). Use this method sparingly! To use inline styles, add the style attribute to the

relevant tag. The style attribute can contain any CSS property. The example shows how to

change the color and the left margin of a paragraph:

EXAMPLE 68

<p style="color:sienna;margin-left:20px;">This is a

paragraph.</p>

3.3.4 MULTIPLE STYLE SHEETS

If some properties have been set for the same selector in different style sheets, the

values will be inherited from the more specific style sheet. For example, assume that an

external style sheet has the following properties for the h3 selector:

EXAMPLE 69

h3 {

 color: red;

 text-align: left;

 font-size: 8pt;

 }

then, assume that an internal style sheet also has the following properties for the h3

selector:

EXAMPLE 70

h3 {

 text-align: right;

 font-size: 20pt;

 }

Petr Suchánek, Jan Górecki; Portal and its Management

- 43 -

If the page with the internal style sheet also links to the external style sheet the

properties for the h3 element will be:

EXAMPLE 71

color: red;

 text-align: right;

 font-size: 20pt;

The color is inherited from the external style sheet and the text-alignment and the font-

size is replaced by the internal style sheet.

3.4 CSS BACKGROUND

CSS background properties are used to define the background effects of an element.

CSS properties used for background effects:

 background-color;

 background-image;

 background-repeat;

 background-attachment;

 background-position.

3.4.1 BACKGROUND COLOR

The background-color property specifies the background color of an element. The

background color of a page is defined in the body selector:

EXAMPLE 72

body {

 background-color: #b0c4de;

}

With CSS, a color is most often specified by:

 a HEX value - like "#ff0000";

 an RGB value - like "rgb(255,0,0)";

 a color name - like "red".

In the example below, the h1, p, and div elements have different background colors:

EXAMPLE 73

h1 {

 background-color: #6495ed;

}

 p {

 background-color: #e0ffff;

}

div {

3CSS (Cascading Style Sheets)

- 44 -

 background-color: #b0c4de;

}

3.4.2 BACKGROUND IMAGE

The background-image property specifies an image to use as the background of an

element. By default, the image is repeated so it covers the entire element. The background

image for a page can be set like this:

EXAMPLE 74

body {

 background-image: url("paper.gif");

}

Below is an example of a bad combination of text and background image. The text is

almost not readable:

EXAMPLE 75

body {

 background-image: url("bgdesert.jpg");

}

By default, the background-image property repeats an image both horizontally and

vertically. Some images should be repeated only horizontally or vertically, or they will look

strange. If the image is repeated only horizontally (repeat-x), the background will look better:

EXAMPLE 76

body {

 background-image: url("gradient.png");

 background-repeat: repeat-x;

 }

Showing the image only once is specified by the background-repeat property:

EXAMPLE 77

body {

 background-image: url("img_tree.png");

 background-repeat: no-repeat;

}

In the example above, the background image is shown in the same place as the text. We

want to change the position of the image, so that it does not disturb the text too much. The

position of the image is specified by the background-position property:

EXAMPLE 78

body {

Petr Suchánek, Jan Górecki; Portal and its Management

- 45 -

 background-image: url("img_tree.png");

 background-repeat: no-repeat;

 background-position: right top;

 }

As you can see from the examples above, there are many properties to consider when

dealing with backgrounds. To shorten the code, it is also possible to specify all the properties

in one single property. This is called a shorthand property. The shorthand property for

background is simply "background":

EXAMPLE 79

body {

 background: #ffffff url("img_tree.png") no-repeat right

top;

}

3.5 CSS TEXT

3.5.1 TEXT COLOR

The color property is used to set the color of the text. With CSS, a color is most often

specified by:

 a HEX value - like "#ff0000";

 an RGB value - like "rgb(255,0,0)";

 a color name - like "red".

The default color for a page is defined in the body selector.

EXAMPLE 80

body {

 color: blue;

}

h1 {

 color: #00ff00;

}

h2 {

 color: rgb(255,0,0);

}

3.5.2 TEXT ALIGNMENT

The text-align property is used to set the horizontal alignment of a text. Text can be

centered, or aligned to the left or right, or justified. When text-align is set to "justify", each

3CSS (Cascading Style Sheets)

- 46 -

line is stretched so that every line has equal width, and the left and right margins are straight

(like in magazines and newspapers).

EXAMPLE 81

h1 {

 text-align: center;

}

p.date {

 text-align: right;

}

p.main {

 text-align: justify;

}

3.5.3 TEXT DECORATION

The text-decoration property is used to set or remove decorations from text. The text-

decoration property is mostly used to remove underlines from links for design purposes:

EXAMPLE 82

a {

 text-decoration: none;

}

It can also be used to decorate text:

EXAMPLE 83

h1 {

 text-decoration: overline;

}

h2 {

 text-decoration: line-through;

}

h3 {

 text-decoration: underline;

}

3.5.4 TEXT TRANSFORMATION

The text-transform property is used to specify uppercase and lowercase letters in a text.

It can be used to turn everything into uppercase or lowercase letters, or capitalize the first

letter of each word.

Petr Suchánek, Jan Górecki; Portal and its Management

- 47 -

EXAMPLE 84

p.uppercase {

 text-transform: uppercase;

}

p.lowercase {

 text-transform: lowercase;

}

p.capitalize {

 text-transform: capitalize;

}

3.5.5 TEXT INDENTATION

The text-indent property is used to specify the indentation of the first line of a text.

EXAMPLE 85

p {

 text-indent: 50px;

}

3.6 CSS FONT

3.6.1 FONT FAMILY

The font family of a text is set with the font-family property. The font-family property

should hold several font names as a "fallback" system. If the browser does not support the

first font, it tries the next font. Start with the font you want, and end with a generic family, to

let the browser pick a similar font in the generic family, if no other fonts are available. If the

name of a font family is more than one word, it must be in quotation marks, like: "Times New

Roman". More than one font family is specified in a comma-separated list:

EXAMPLE 86

p {

 font-family: "Times New Roman", Times, serif;

}

3.6.2 FONT STYLE

The font-style property is mostly used to specify italic text. This property has three

values:

 normal - The text is shown normally;

 italic - The text is shown in italics;

 oblique - The text is "leaning" (oblique is very similar to italic, but less supported).

3CSS (Cascading Style Sheets)

- 48 -

EXAMPLE 87

p.normal {

 font-style: normal;

}

p.italic {

 font-style: italic;

}

p.oblique {

 font-style: oblique;

}

3.6.3 FONT SIZE

The font-size property sets the size of the text. Being able to manage the text size is

important in web design. However, you should not use font size adjustments to make

paragraphs look like headings, or headings look like paragraphs. Always use the proper

HTML tags, like <h1> - <h6> for headings and <p> for paragraphs. The font-size value can

be an absolute, or relative size.

Absolute size:

 Sets the text to a specified size;

 Does not allow a user to change the text size in all browsers (bad for accessibility reasons);

 Absolute size is useful when the physical size of the output is known.

Relative size:

 Sets the size relative to surrounding elements;

 Allows a user to change the text size in browsers

If you do not specify a font size, the default size for normal text, like paragraphs, is

16px (16px=1em).

Setting the text size with pixels gives you full control over the text size:

EXAMPLE 88

h1 {

 font-size: 40px;

}

h2 {

 font-size: 30px;

}

p {

 font-size: 14px;

}

The example above allows Internet Explorer 9, Firefox, Chrome, Opera, and Safari to

resize the text. The example above does not work in IE, prior version 9. The text can be

Petr Suchánek, Jan Górecki; Portal and its Management

- 49 -

resized in all browsers using the zoom tool (however, this resizes the entire page, not just the

text).

3.7 CSS LINKS

Links can be styled with any CSS property (e.g. color, font-family, background, etc.). In

addition, links can be styled differently depending on what state they are in. The four links

states are:

 a:link - a normal, unvisited link;

 a:visited - a link the user has visited;

 a:hover - a link when the user mouses over it;

 a:active - a link the moment it is clicked.

EXAMPLE 89

/* unvisited link */

a:link {

color: #FF0000;

}

/* visited link */

a:visited {

color: #00FF00;

}

/* mouse over link */

a:hover {

color: #FF00FF;

}

/* selected link */

a:active {

color: #0000FF;

}

When setting the style for several link states, there are some order rules:

 a:hover MUST come after a:link and a:visited;

 a:active MUST come after a:hover.

3.8 CSS LISTS

In HTML, there are two types of lists:

 unordered lists - the list items are marked with bullets;

 ordered lists - the list items are marked with numbers or letters.

With CSS, lists can be styled further, and images can be used as the list item marker.

3.8.1 DIFFERENT LIST ITEM MARKERS

The type of list item marker is specified with the list-style-type property (some of the

values are for unordered lists, and some for ordered lists):

3CSS (Cascading Style Sheets)

- 50 -

EXAMPLE 90

ul.a {

 list-style-type: circle;

}

ul.b {

 list-style-type: square;

}

ol.c {

 list-style-type: upper-roman;

}

ol.d {

 list-style-type: lower-alpha;

}

3.8.2 AN IMAGE AS THE LIST ITEM MARKER

To specify an image as the list item marker, use the list-style-image property:

EXAMPLE 91

ul {

 list-style-image: url('sqpurple.gif');

}

The example above does not display equally in all browsers. IE and Opera will display

the image-marker a little bit higher than Firefox, Chrome, and Safari.

3.8.3 CROSSBROWSER SOLUTION

The following example displays the image-marker equally in all browsers:

EXAMPLE 92

ul {

 list-style-type: none;

 padding: 0px;

 margin: 0px;

}

ul li {

 background-image: url(sqpurple.gif);

 background-repeat: no-repeat;

 background-position: 0px 5px;

 padding-left: 14px;

}

Example explained:

Petr Suchánek, Jan Górecki; Portal and its Management

- 51 -

 For ul:

o Set the list-style-type to none to remove the list item marker;

o Set both padding and margin to 0px (for cross-browser compatibility).

 For all li in ul:

o Set the URL of the image, and show it only once (no-repeat);

o Position the image where you want it (left 0px and down 5px);

o Position the text in the list with padding-left.

3.8.4 LIST - SHORTHAND PROPERTY

It is also possible to specify all the list properties in one, single property. This is called

a shorthand property. The shorthand property used for lists, is the list-style property:

EXAMPLE 93

ul {

 list-style: square url("sqpurple.gif");

}

When using the shorthand property, the order of the values are:

 list-style-type;

 list-style-position (for a description, see the CSS properties table below);

 list-style-image.

It does not matter if one of the values above are missing, as long as the rest are in the

specified order.

3.9 CSS TABLES

To specify table borders in CSS, use the border property. The example below specifies a black

border for table, th, and td elements:

EXAMPLE 94

table, th, td {

 border: 1px solid black;

}

Notice that the table in the example above has double borders. This is because both the

table and the th/td elements have separate borders. To display a single border for the table,

use the border-collapse property.

3.9.1 COLLAPSE BORDERS

The border-collapse property sets whether the table borders are collapsed into a single

border or separated:

EXAMPLE 95

table {

 border-collapse: collapse;

3CSS (Cascading Style Sheets)

- 52 -

}

table, th, td {

 border: 1px solid black;

}

3.9.2 TABLE WIDTH AND HEIGHT

Width and height of a table is defined by the width and height properties. The example

below sets the width of the table to 100%, and the height of the th elements to 50px:

EXAMPLE 96

table {

 width: 100%;

}

th {

 height: 50px;

}

3.9.3 TABLE TEXT ALIGNMENT

The text in a table is aligned with the text-align and vertical-align properties. The text-

align property sets the horizontal alignment, like left, right, or center:

EXAMPLE 97

td {

 text-align: right;

}

The vertical-align property sets the vertical alignment, like top, bottom, or middle:

EXAMPLE 98

td {

 height: 50px;

 vertical-align: bottom;

}

3.9.4 TABLE PADDING

To control the space between the border and content in a table, use the padding property

on td and th elements:

EXAMPLE 99

td {

Petr Suchánek, Jan Górecki; Portal and its Management

- 53 -

 padding: 15px;

}

3.9.5 TABLE COLOR

The example below specifies the color of the borders, and the text and background color

of th elements:

EXAMPLE 100

table, td, th {

 border: 1px solid green;

}

th {

 background-color: green;

 color: white;

}

4PHP

- 54 -

4 PHP

PHP is a server-side scripting language designed for web development but also used as

a general-purpose programming language. PHP code can be simply mixed with HTML code,

or it can be used in combination with various templating engines and web frameworks. PHP

code is usually processed by a PHP interpreter, which is usually implemented as a web

server's native module or a Common Gateway Interface (CGI) executable. After the PHP code

is interpreted and executed, the web server sends resulting output to its client, usually in form

of a part of the generated web page – for example, PHP code can generate a web page's

HTML code, an image, or some other data. PHP has also evolved to include a command-line

interface (CLI) capability and can be used in standalone graphical applications.

4.1 INSTALLATION OF A LOCAL SERVER

 Download EasyPHP from the website www.easyphp.org;

 double-click on the downloaded executable;

 select an installation directory and follow the instructions.

Before doing anything, verify that easyphp.exe is launched and servers are running. When

EasyPHP is launched, an icon appears in the systray (beside the clock). If this icon looks like

this or like this or like this , that means that servers are not running properly. If this is

the case, double-click the icon to bring up the window below. Start the server(s) that didn't

start (Figure 2) and wait until ...

Figure 2: Start of MySQL.

... the window looks like (Figure 3):

Figure 3: Apache and MySQL is running.

When everything is fine, the systray icon looks like :

Petr Suchánek, Jan Górecki; Portal and its Management

- 55 -

Now you can open the administration page. Right-click on and select "Administration".

The administration page allows you to manage PHP / Apache / MySQL, aliases, modules and

to use the code tester.

Other menu options:

 Help: help on EasyPHP;

 Log Files: record errors generated by Apache, MySQL and EasyPHP;

 Configuration: gives access to various configuration tools;

 Explorer: open the directory "localweb" in Windows Explorer;

 Administration : opens the administration page;

 Web local : opens local web;

 Restart : restarts Apache and MySQL;

 Start/Stop : Starts/Stops Apache and MySQL;

 Quit : closes EasyPHP.

You must place your files either in the "localweb" directory, in an alias folder or

a virtual host folder (module "Virtual Hosts Manager" needed). So that PHP can interpret

your PHP pages.

4.2 YOUR FIRST PHP PAGE

There are many ways to program in PHP and there are many suitable text editors (eg.

specialized for HTML or PHP with syntax highlighting etc). For this example, you can use

a simple text editor.

1) Open a new file;

2) Type the structure (Example 101) of an HTML page

EXAMPLE 101

<html>

<head>

<title>My first page in PHP.</title>

</head>

<body>

</body>

</html>

The Example 102 is designed to display the current date. The PHP Code is integrated

directly into the HTML:

EXAMPLE 102

<html>

<head>

<title>My first page in PHP.</title>

</head>

<body>

Current date : <?php print(date("l F d, Y")); ?>

4PHP

- 56 -

</body>

</html>

3) Create a new directory in the "localweb" directory (or in an alias folder, or in

a virtual host folder). Save your first PHP page there with the following extension:

.php. Name it "date.php".Make sure, in the Windows Folder Options, that the

extensions of the files whose type is known are visible.

4) If you want to see the result you need to use a browser. From the administration page

select your folder (localweb, alias or virtual host) and click on your file "date.php".

Your browser will display a page with the current date; for example: "current Date:

Wednesday March 22, 2013".

4.3 PHP BASICS

PHP is an easy-to-understand language and it is enough to be familiar with the basics of

the language in many situations. With PHP, data can be stored, updated or deleted. Everything

happens on a web server, where all code sources are stored. Firstly, a PHP script is proceeded

on web server and its result is sent to the client browser. It means that, for example, 300/30 is

computed and then only the resulting number 10 is sent to a browser. This is why you find in

the source code of a web page only "10" (this is the difference between PHP and JavaScript,

where code is processed directly in the browser). Thus, a PHP source code cannon be

displayed in the browser.

With PHP, it is possible to create a website discussion forum, a guestbook, a counter,

a poll or a chart. You also have an option to link your site with a database such as MySQL.

There exists at least one PHP function that is common perhaps for each site. Each web

page on the site usually consists from several parts, like the header, links, menu or the footer,

which are the same on most of the pages. In this case, it is better to implement those parts in

separate files, which are later included to the webpages using special PHP statement (see

Section PHP Include Files for details). In this manner, when something changes in, for

example, left menu, only the left menu file is updated, and the change is propagated to all the

webpages that includes the left menu.

Any PHP script must be enclosed in special tags used for this purpose. The first option

is to enclose all the script between <? and ?>. The following script displays the text in

quotation marks.

EXAMPLE 103

<? echo "My first PHP script."; ?>

The second option little bit longer. If one wants to use PHP to generate XML-

documents, use the opening tag <?php. An example of the second possibility:

EXAMPLE 104

<?php echo "My second PHP script."; ?>

The most important expression in PHP is semicolon (;). Each function, line, declaration

must be separated by the semicolon. It can be compared to the CSS (when properties omit the

semicolon, the browser does not understand them). Whenever a script is not working, try to

check, where semicolon has been forgotten.

Petr Suchánek, Jan Górecki; Portal and its Management

- 57 -

It is useful to write comments in source code. Comments are the text that is omitted by a

browser. Example:

EXAMPLE 105

<?php

/*

multi-line

comment

*/

// one line comment

?>

The most common command used for output is echo(), or, its less common

alternative print():

EXAMPLE 106

<?php

echo ("this is text" .

 "on two lines
");

echo ("display text
");

echo "without the brackets
";

print ("the same</br>");

echo ("you can also use HTML tags</br>");

echo 'you can use single quotation marks';

?>

Multiline text should be split and merged by the dot character. The previous script in the

browser outputs:

this is text on two lines

display text

without the brackets

the same

you can also use HTML tags

you can use single quotation marks

Whenever we output HTML tags with special characters like, e.g., <, >, etc., we must

substitute them by their convenient alternatives. For example, when we output <body

bgcolor="red">, we must put in PHP echo:

EXAMPLE 107

echo ("<bodybgcolor=\"red\">");

Other example:

EXAMPLE 108

echo "This \" is quotation mark";

4PHP

- 58 -

4.4 VARIABLES

It is hard to imagine a sophisticated PHP script without variables. In PHP, we declare

the variables starting with the dollar sign $. Example:

EXAMPLE 109

$dollar = "1$";

$day="wednesday";

The name of a variable is given right after the $ (without any spaces). We have

introduced two variables: the dollar and the day. Their values are written after the equal sign.

The name of a variable in PHP is case sensitive. Thus, this does not work:

$vari = "abc";

echo $Vari;

Variables are displayed using echo():

EXAMPLE 110

$dollar="1$";

echo($dollar);

echo("$dollar");

echo("I have just " . $dolar . "
");

Variables can be changed using PHP operators.

Table 1: The operators in PHP

Arithmetic operators

$a+$b adds $a to $b

$a-$b subtracts $b from $a

$a/$b divide $a by $b

$a*$b multiplies $a by $b

Assignment operators

$a++ $a = $a + 1

$a-- $a = $a - 1

$a += $b $a = $a + $b

$a -= $b $a = $a - $b

$a *= $b $a = $a * $b

$a /= $b $a = $a / $b

Comparison operators

$a == $b $a is equal to $b

$a != $b $a is not equal to $b

$a > $b $a is higher than $b

$a < $b $a is lower than $b

Logical operators

$a || $b logical, or; returns 1 if at least one of the variables is true

$a && $b logical and; returns 1 if both of the variables are true

Petr Suchánek, Jan Górecki; Portal and its Management

- 59 -

!$a negation of $a

In logical comparison, true has the value 1 and false has the value 0.

Variables in PHP are of different types:

Table 2: Variables types

Type Meaning

String E.g. $mystring= "plain text";

Integer Integer, e.g.,$myint = 2;

Float, real or

double
Float number, e.g, 3.14, 0.9, 2.78

Boolean Logical variable, values TRUE, FALSE (1, 0), written as TRUE or

FALSE

Different types of variables are differently introduced:

EXAMPLE 111

$mystring = "plain text";

$myint = 2;

$myfloat = 0.2;

$mylogical = TRUE;

4.5 CONDITIONAL STATEMENTS

Conditional statements manage the flow of the script. Those statements are if,

elseif and switch.

4.5.1 IF

Statement if checks if the given condition is true.

EXAMPLE 112

$a=1;

$b=2;

if($a == $b){

echo ("Variables a and b are equal.");

}

If the variables $a and $b were be equal, the script would display: Variables a

and b are equal. However, it would not happen as the given condition ($a==$b) is

not valid (true).

4.5.2 IF… ELSE

Use the if....else statement to execute some code if a condition is true and

another code if the condition is false. Syntax:

4PHP

- 60 -

EXAMPLE 113

if (condition)

 {

code to be executed if condition is true;

 }

else

 {

code to be executed if condition is false;

 }

The example below will output "Have a good day!" if the current time is less than 20,

and "Have a good night!" otherwise:

EXAMPLE 114

<?php

$t=date("H");

if ($t<"20")

 {

echo "Have a good day!";

 }

else

 {

echo "Have a good night!";

 }

?>

4.5.3 IF...ELSEIF....ELSE

Use the if....else if...else statement to select one of several blocks of code

to be executed. Syntax:

EXAMPLE 115

if (condition1)

 {

code to be executed if condition1 is true;

 }

else if (condition2)

 {

code to be executed if condition1 is false and condition2

is true;

 }

else

 {

code to be executed if the both conditions are false;

 }

The example below will output "Have a good morning!" if the current time is less than

10, and "Have a good day!" if the current time is less than 20. Otherwise it will output "Have

a good night!":

Petr Suchánek, Jan Górecki; Portal and its Management

- 61 -

EXAMPLE 116

<?php

$t=date("H");

if ($t<"10")

 {

echo "Have a good morning!";

 }

else if ($t<"20")

 {

echo "Have a good day!";

 }

else

 {

echo "Have a good night!";

 }

?>

4.5.4 SWITCH STATEMENT

Use the switch statement to select one of many blocks of code to be executed. Syntax:

EXAMPLE 117

switch (n)

{

case label1:

code to be executed if n=label1;

break;

case label2:

code to be executed if n=label2;

break;

default:

code to be executed if n is different from both label1 and

label2;

}

This is how it works: First we have a single expression n (most often a variable), that is

evaluated once. The value of the expression is then compared with the values for each case in

the structure. If there is a match, the block of code associated with that case is executed. Use

break to prevent the code from running into the next case automatically. The default

statement is used if no match is found.

EXAMPLE 118

<?php

$favcolor="red";

switch ($favcolor)

{

case "red":

echo "Your favorite color is red!";

4PHP

- 62 -

break;

case "blue":

echo "Your favorite color is blue!";

break;

case "green":

echo "Your favorite color is green!";

break;

default:

echo "Your favorite color is neither red, blue, or green!";

}

?>

4.6 LOOPS

Often when you write code, you want the same block of code to run over and over again

in a row. Instead of adding several almost equal lines in a script we can use loops to perform a

task like this.

In PHP, we have the following looping statements:

 while - loops through a block of code while a specified condition is true

 do...while - loops through a block of code once, and then repeats the loop

as long as a specified condition is true

 for - loops through a block of code a specified number of times

 foreach - loops through a block of code for each element in an array

4.6.1 THE WHILE LOOP

The while loop executes a block of code while a condition is true. Syntax:

EXAMPLE 119

while (condition)

 {

code to be executed;

 }

The example below first sets a variable i to 1 ($i=1;).Then, the while loop will

continue to run as long as i is less than, or equal to 5. i will increase by 1 each time the loop

runs:

EXAMPLE 120

<html>

<body>

<?php

$i=1;

while($i<=5)

Petr Suchánek, Jan Górecki; Portal and its Management

- 63 -

 {

echo "The number is " . $i . "
";

 $i++;

 }

?>

</body>

</html>

Output is:
The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

4.6.2 THE DO...WHILE STATEMENT

The do...while statement will always execute the block of code once, it will then check

the condition, and repeat the loop while the condition is true. Syntax:

EXAMPLE 121

do

 {

code to be executed;

 }

while (condition);

The example below first sets a variable i to 1 ($i=1;).

Then, it starts the do...while loop. The loop will increment the variable i with 1, and

then write some output. Then the condition is checked (is i less than, or equal to 5), and the

loop will continue to run as long as i is less than, or equal to 5:

EXAMPLE 122

<html>

<body>

<?php

$i=1;

do

 {

 $i++;

echo "The number is " . $i . "
";

 }

while ($i<=5);

?>

4PHP

- 64 -

</body>

</html>

Output is:
The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

4.6.3 THE FOR LOOP

The for loop is used when you know in advance how many times the script should run.

Syntax:

EXAMPLE 123

for (init; condition; increment)

 {

code to be executed;

 }

Parameters:

init: Mostly used to set a counter (but can be any code to be executed once at the

beginning of the loop)

condition: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues.

If it evaluates to FALSE, the loop ends.

increment: Mostly used to increment a counter (but can be any code to be executed at

the end of the iteration)

Note: The init and increment parameters above can be empty or have multiple

expressions (separated by commas).

The example below defines a loop that starts with i=1. The loop will continue to run as

long as the variable i is less than, or equal to 5. The variable i will increase by 1 each time

the loop runs:

EXAMPLE 124

<html>

<body>

<?php

for ($i=1; $i<=5; $i++)

 {

echo "The number is " . $i . "
";

 }

?>

Petr Suchánek, Jan Górecki; Portal and its Management

- 65 -

</body>

</html>

Output:
The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

4.6.4 THE FOREACH LOOP

The foreach loop is used to loop through arrays. Syntax:

EXAMPLE 125

foreach ($array as $value)

 {

code to be executed;

 }

For every loop iteration, the value of the current array element is assigned to $value

(and the array pointer is moved by one) - so on the next loop iteration, you'll be looking at the

next array value.

The following example demonstrates a loop that will print the values of the given array:

EXAMPLE 126

<html>

<body>

<?php

$x=array("one","two","three");

foreach ($x as $value)

 {

echo $value . "
";

 }

?>

</body>

</html>

Output is:
one

two

three

4PHP

- 66 -

4.7 PHP FUNCTIONS

The real power of PHP comes from its functions. In PHP, there are more than 700

built-in functions.

4.7.1 PHP FUNCTIONS

In this chapter we will show you how to create your own functions. To keep the script

from being executed when the page loads, you can put it into a function. A function will be

executed by a call to the function. You may call a function from anywhere within a page.

4.7.2 CREATE A PHP FUNCTION

A function will be executed by a call to the function. Syntax:

EXAMPLE 127

function functionName()

{

code to be executed;

}

PHP function guidelines:

 Give the function a name that reflects what the function does

 The function name can start with a letter or underscore (not a number)

A simple function that writes my name when it is called:

EXAMPLE 128

<html>

<body>

<?php

function writeName()

{

echo "Kai Jim Refsnes";

}

echo "My name is ";

writeName();

?>

</body>

</html>

Output:

Petr Suchánek, Jan Górecki; Portal and its Management

- 67 -

My name is Kai Jim Refsnes

4.7.3 PHP FU NCTIONS – ADDING PARAMETERS

To add more functionality to a function, we can add parameters. A parameter is just like

a variable. Parameters are specified after the function name, inside the parentheses.

The following example will write different first names, but equal last name:

EXAMPLE 129

<html>

<body>

<?php

Function writeName($fname)

{

echo $fname . " Refsnes.
";

}

echo "My name is ";

writeName("Kai Jim");

echo "My sister's name is ";

writeName("Hege");

echo "My brother's name is ";

writeName("Stale");

?>

</body>

</html>

Output:
My name is Kai Jim Refsnes.

My sister's name is HegeRefsnes.

My brother's name is Stale Refsnes.

The following function has two parameters:

EXAMPLE 130

<html>

<body>

<?php

Function writeName($fname,$punctuation)

{

echo $fname . " Refsnes" . $punctuation . "
";

}

echo "My name is ";

writeName("Kai Jim",".");

echo "My sister's name is ";

4PHP

- 68 -

writeName("Hege","!");

echo "My brother's name is ";

writeName("Ståle","?");

?>

</body>

</html>

Output:
My name is Kai Jim Refsnes.

My sister's name is HegeRefsnes!

My brother's name is StåleRefsnes?

4.7.4 PHP FUNCTIONS - RETURN VALUES

To let a function return a value, use the return statement.

EXAMPLE 131

<html>

<body>

<?php

function add($x,$y)

{

$total=$x+$y;

return $total;

}

echo "1 + 16 = " . add(1,16);

?>

</body>

</html>

Output:
1 + 16 = 17

4.8 ARRAYS

An array stores multiple values in one single variable. Example:

EXAMPLE 132

<?php

 $cars=array("Volvo","BMW","Toyota");

 echo "I like " . $cars[0] . ", " . $cars[1] . " and " .

Petr Suchánek, Jan Górecki; Portal and its Management

- 69 -

$cars[2] . ".";

 ?>

What is an Array? An array is a special variable, which can hold more than one value at

a time. If you have a list of items (a list of car names, for example), storing the cars in single

variables could look like this:

$cars1="Volvo";

$cars2="BMW";

$cars3="Toyota";

However, what if you want to loop through the cars and find a specific one? And what if

you had not 3 cars, but 300? The solution is to create an array! An array can hold many values

under a single name, and you can access the values by referring to an index number.

In PHP, the array() function is used to create an array:

EXAMPLE 133

$myarray = array();

In PHP, there are three types of arrays:

 Indexed arrays - Arrays with numeric index

 Associative arrays - Arrays with named keys

 Multidimensional arrays - Arrays containing one or more arrays

4.8.1 INDEXED ARRAYS

There are two ways to create indexed arrays:

The index can be assigned automatically (index always starts at 0):

EXAMPLE 134

$cars=array("Volvo","BMW","Toyota");

or the index can be assigned manually:

EXAMPLE 135

$cars[0]="Volvo";

$cars[1]="BMW";

$cars[2]="Toyota";

The following example creates an indexed array named $cars, assigns three elements

to it, and then prints a text containing the array values:

4PHP

- 70 -

EXAMPLE 136

<?php

$cars=array("Volvo","BMW","Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " .

$cars[2] . ".";

?>

4.8.2 GET THE LENGTH OF AN ARRAY - THE COUNT() FUNCTION

The count() function is used to return the length (the number of elements) of an

array:

EXAMPLE 137

<?php

$cars=array("Volvo","BMW","Toyota");

echo count($cars);

?>

4.8.3 LOOP THROUGH AN INDEXED ARRAY

To loop through and print all the values of an indexed array, you could use a for loop,

like this:

EXAMPLE 138

<?php

$cars=array("Volvo","BMW","Toyota");

$arrlength=count($cars);

for($x=0;$x<$arrlength;$x++)

 {

 echo $cars[$x];

 echo "
";

 }

?>

4.8.4 ASSOCIATIVE ARRAYS

Associative arrays are arrays that use named keys that you assign to them. There are two

ways to create an associative array:

EXAMPLE 139

$age=array("Peter"=>"35","Ben"=>"37","Joe"=>"43");

or:

Petr Suchánek, Jan Górecki; Portal and its Management

- 71 -

EXAMPLE 140

$age['Peter']="35";

$age['Ben']="37";

$age['Joe']="43";

The named keys can then be used in a script:

EXAMPLE 141

<?php

$age=array("Peter"=>"35","Ben"=>"37","Joe"=>"43");

echo "Peter is " . $age['Peter'] . " years old.";

?>

4.8.5 LOOP THROUGH AN ASSOCIATIVE ARRAY

To loop through and print all the values of an associative array, you could use a foreach

loop, like this:

EXAMPLE 142

<?php

$age=array("Peter"=>"35","Ben"=>"37","Joe"=>"43");

foreach($age as $x=>$x_value)

 {

 echo "Key=" . $x . ", Value=" . $x_value;

 echo "
";

 }

?>

4.9 PHP INCLUDE FILES

In PHP, you can insert the content of one PHP file into another PHP file before the

server executes it. Include and require statements are used to insert useful codes written in

other files, in the flow of execution.

Include and require are identical, except upon failure:

 require will produce a fatal error (E_COMPILE_ERROR) and stop the script

 include will only produce a warning (E_WARNING) and the script will

continue

So, if you want the execution to go on and show users the output, even if the include file

is missing, use include. Otherwise, in case of FrameWork, CMS or a complex PHP

application coding, always use require to include a key file to the flow of execution. This will

help avoid compromising your application's security and integrity, just in-case one key file is

accidentally missing.

4PHP

- 72 -

Including files saves a lot of work. This means that you can create a standard header,

footer, or menu file for all your web pages. Then, when the header needs to be updated, you

can only update the header include file. Syntax:

EXAMPLE 143

include 'filename';

or

require 'filename';

4.9.1 PHP INCLUDE AND REQUIRE STATEMENT

Let see a basic example. Assume that you have a standard header file, called

"header.php". To include the header file in a page, use include/require:

EXAMPLE 144

<html>

<body>

<?php include 'header.php'; ?>

<h1>Welcome to my home page!</h1>

<p>Some text.</p>

</body>

</html>

In another example, assume we have a standard menu file that should be used on all

pages, e.g., "menu.php".

EXAMPLE 145

echo 'Home

Tutorials

References

Examples

About Us

Contact Us';

All pages in the Web site should include this menu file. Here is how it can be done:

EXAMPLE 146

<html>

<body>

<div class="leftmenu">

<?php include 'menu.php'; ?>

</div>

Petr Suchánek, Jan Górecki; Portal and its Management

- 73 -

<h1>Welcome to my home page.</h1>

<p>Some text.</p>

</body>

</html>

In the third example, assume we have an include file with some variables defined

("vars.php"):

EXAMPLE 147

<?php

$color='red';

$car='BMW';

?>

Then the variables can be used in the calling file:

EXAMPLE 148

<html>

<body>

<h1>Welcome to my home page.</h1>

<?php include 'vars.php';

echo "I have a $color $car"; // I have a red BMW

?>

</body>

</html>

5Form handling using php

- 74 -

5 FORM HANDLING USING PHP

The most important thing to notice when dealing with HTML forms and PHP is that any

form element in an HTML page will automatically be available to your PHP scripts.The

example below contains an HTML form with two input fields and a submit button:

EXAMPLE 149

<html>

<body>

<form action="welcome.php" method="post">

Name: <input type="text" name="fname">

Age: <input type="text" name="age">

<input type="submit">

</form>

</body>

</html>

When a user fills out the form above and clicks on the submit button, the form data is

sent to a PHP file, called "welcome.php":

"welcome.php" looks like this:

EXAMPLE 150

<html>

<body>

Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.

</body>

</html>

Output could be something like this:

Welcome John!

You are 28 years old.

5.1 PHP $_GET VARIABLE

The predefined $_GET variable is used to collect values in a form with

method="get".Information sent from a form with the GET method is visible to everyone

(it will be displayed in the browser's address bar) and has limits on the amount of information

to send.

EXAMPLE 151

<form action="welcome.php" method="get">

Petr Suchánek, Jan Górecki; Portal and its Management

- 75 -

Name: <input type="text" name="fname">

Age: <input type="text" name="age">

<input type="submit">

</form>

When the user clicks the "Submit" button, the URL sent to the server could look

something like this:

EXAMPLE 152

http://www.domain.com/welcome.php?fname=Peter&age=37

The "welcome.php" file can now use the $_GET variable to collect form data (the

names of the form fields will automatically be the keys in the $_GET array):

EXAMPLE 153

Welcome <?php echo $_GET["fname"]; ?>.

You are <?php echo $_GET["age"]; ?> years old!

When using method="get" in HTML forms, all variable names and values are displayed

in the URL. Thus, this method should not be used when sending passwords or other sensitive

information! However, because the variables are displayed in the URL, it is possible to

bookmark the page. This can be useful in some cases.

Note: The get method is not suitable for very large variable values. It should not be used

with values exceeding 2000 characters.

5.2 PHP $_POST FUNCTION

The predefined $_POST variable is used to collect values from a form sent with

method="post". Information sent from a form with the POST method is invisible to others

and has no limits on the amount of information to send.However, there is an 8 MB max size

for the POST method, by default (can be changed by setting the post_max_size in the

php.ini file).

EXAMPLE 154

<form action="welcome.php" method="post">

Name: <input type="text" name="fname">

Age: <input type="text" name="age">

<input type="submit">

</form>

When the user clicks the "Submit" button, the URL will look like this:

EXAMPLE 155

http://www.domain.com/welcome.php

5Form handling using php

- 76 -

The "welcome.php" file can now use the $_POST variable to collect form data (the

names of the form fields will automatically be the keys in the $_POST array):

EXAMPLE 156

Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.

Information sent from a form with the POST method is invisible to others and has no

limits on the amount of information to send. However, because the variables are not displayed

in the URL, it is not possible to bookmark the page.

5.3 PHP $_REQUEST FUNCTION

The predefined $_REQUEST variable contains the contents of both $_GET, $_POST,

and $_COOKIE. The $_REQUEST variable can be used to collect form data sent with both

the GET and POST methods.

EXAMPLE 157

Welcome <?php echo $_REQUEST["fname"]; ?>!

You are <?php echo $_REQUEST["age"]; ?> years old.

Petr Suchánek, Jan Górecki; Portal and its Management

- 77 -

6 MYSQL

6.1 CREATE DATABASE

A database is a way to store lots of information. You might want to store the names and

addresses of all your contacts, or save usernames and passwords for your online forum or

maybe customer information.

In a database, you save the information in a Table. A single database can contain many

tables, and they can be linked together. When the tables are linked together, it's said to be

a relational database. If you just have a single table in your database, then it's called a flat-file

database. Flat-file database are easier to create and understand, so we'll start by creating one

of these using phpMyAdmin.

So bring up phpMyAdmin, if you haven't already done so.

Although it looks a bit muddled, the part to concentrate on is the textbox under the

words create new database, as in the next image (Figure 4):

Figure 4: Editing a name of the new database.

After you have typed a name for your new database, click the "Create" button. You will

be taken to a new area (Figure 5):

Figure 5: Editing name and fields of a table.

In this new area, you can create a Table to go in your database. At the moment, as it

says, there are No tables found in the database. But the database itself has been created.

To create a new table, type a name for it in the box at the bottom. You can also type

a number for the Fields textbox. You can insert for example (Figure 6):

6Mysql

- 78 -

Figure 6: Example of filling the name and number of fields.

When you've finished, click the Go button. Another, more complex, area will appear

(Figure 7):

Figure 7: Editing the fields in database.

In this new area, you set up the fields in your database. You can specify whether a field

is for text, for numbers, for yes/no values, etc.

Although they are set out in rows in the images, the rows are actually the Columns you

saw earlier – the Fields. Each Field needs a name. So go ahead and type the following for

your Field names:

Figure 8: Editing of the Fields names and Types.

So we have given each column in our table a name: ID, First_Name, Surname, and

Address. The next thing to set is what type of data will be going in to each field - do you

want to store text in this field, numbers, Yes/No value, etc?

To set the type of data going into a field, you select an item from the Type drop down

list. Click the down arrow to see the following list you can choose from (Figure 9):

Petr Suchánek, Jan Górecki; Portal and its Management

- 79 -

Figure 9: A List of the Field Types.

As you can see from the image above, there's quite a lot! But you won't use most them.

For the values we have in our four fields, we want to hold these Types:

 ID – A number, used just to identify each record. This needs to be unique for each record;

First_Name – Text;

 Surname – Text;

 Address – Text.

If you look at the list, there is an INT but no Number; and there are four different Text

Types to choose from. We can use INT (meaning integer) for the numbers, but again, there

are a few Integer Types to choose from. And that's leaving out things like float and double.

Here's the difference between them, though.

6.1.1 INTEGER VALUES

 TINYINT Signed: -128 to 127. Unsigned: 0 to 255;

 SMALLINT Signed: -32768 to 32767. Unsigned: 0 to 65535;

 MEDIUMINT Signed: -8388608 to 8388607. Unsigned: 0 to 16777215;

 INT Signed: -2147483648 to 2147483647. Unsigned: 0 to 4294967295;

 BIGINT Signed: -9223372036854775808. Unsigned: 0 to 18446744073709551615.

The signed and unsigned are for minus and non minus values. So if you need to store

negative values, you need to be aware of the signed ranges. If you were using a TINYINT

value, for example, you can go from minus 128 to positive 127. If you didn't need the minus

value, you can go from 0 to positive 255.

For our address book, we have an ID field. We're using this just to identify a record

(row). Each record will be unique, so it will need a different number for each. We can set it to

one of the INT values. But which one?

If we set ID to TINYINT, then you'd run in to problem if you tried to store more than

255 records. If you used SMALLINT, you'd have problems if you tried to stored the details of

6Mysql

- 80 -

friend number 65536. IF you have more than 65 and half thousand friends, then you need

a different INT type. We'll assume that you don't, so we'll use SMALLINT.

We've only set Lengths for the VARCHAR TYPES. If you leave it blank for

VARCHAR, you'll get a default value of 1 character.

6.1.2 TEXT TYPES

The length for the text types can be quite confusing. The MySQL manual says this

about the various lengths that each text type can hold:

 TINYTEXT L+1 byte, where L < 2^8;

 TEXT L+2 bytes, where L < 2^16;

 MEDIUMTEXT L+3 bytes, where L < 2^24;

 LONGTEXT L+4 bytes, where L < 2^32.

This in not terribly helpful for beginners! So what does it mean. Well, the L + 1 part

means, "The length of the string, plus 1 byte to store the value." The translated values for each

are approximately:

 TINYTEXT 256 bytes;

 TEXT 64 KiloBytes;

 MEDIUMTEXT 16 MegaBytes;

 LONGTEXT 4 GigaBytes.

To confuse the issue even more, you can also use CHAR and VARCHAR to store your

text. These are quite useful, if you know how many characters you want to store. For

example, for a UK postcode you don't need more than 9 characters, and one of those will be a

blank space. So there's no sense in setting a postcode field to hold 4 gigabytes! Instead, use

CHAR or VARCHAR.

6.1.3 CHAR

You specify how many characters you want the field to hold. The maximum value is

255. For example:

CHAR(10)

This field can then hold a maximum of ten characters. But if you only use 4 of them, the

rest of the 10 characters will be blank spaces. The blank spaces get added to the right of your

text:

"TEXT "

"TENLETTERS"

 VARCHAR

Like CHAR, but the rest of the characters are not padded with blank spaces. The

maximum value before MySQL 5.0.3 was 255. After this it's jumped to 65, 535. With

VARCHAR, there is also an extra byte that records how long your text is.

Petr Suchánek, Jan Górecki; Portal and its Management

- 81 -

For our fields, then, we'll use the following Types:

 ID SMALLINT;

 First_Name VARCHAR;

 Surname VARCHAR;

 Address TINYTEXT.

So select these from your Types drop down list:

Figure 10: Editing of the Tapes and Lenght / Values.

We've only set Lengths for the VARCHAR TYPES. If you leave it blank for

VARCHAR, you'll get a default value of 1 character.

The other Fields are Null, Default and Extra.

 Null - This is an important field in database terminology. It essentially means, "Should the

field contain anything?" If you set a field to NOT NULL, then you can't leave it blank

when you come to adding records to your database. Otherwise you'll get errors.

 Default - Do you want to add anything to the field, just in case it's left blank when adding

a record? If so, type it in here.

 Extra - This is where you can set an auto increment value. This means adding one to the

previous record number. This is ideal for us, as we have an ID field. Then we don't have to

worry about this field. MySQL will take care of updating it for us.

Figure 11: Icons Primary Key, Index, and Unique.

The three icons are Primary Key, Index, and Unique (Figure 11). Primary keys are not

terribly important for flat-file databases like ours. But they are important when you have more

than one table, and want to link information. They are set to unique values, like our ID field.

An index is useful for sorting information in your tables, as they speed things up. Unique is

useful for those fields when there can't be any duplicate values.

So, set a primary key for the ID field by selecting the radio button, and choose Auto

Increment. Your field screen then, minus the parts we've ignored, should look like this:

6Mysql

- 82 -

Figure 12: Editing of the Fields, Types and Extra.

Bear in mind what we've done here: we've just set up the fields for our table, and

specified the kind of information that will be going into each field (the columns). We haven't

yet added any information to the table.

Click the Save button on the fields screen. You'll be taken back to the Structure screen.

There should be a lot more information there now. Don't worry if it looks a bit confusing. All

we want to do is to add one record to the table. We'll then use PHP code to add some more.

6.2 CONNECT TO THEMYSQL SERVER

6.2.1 OPEN A CONNECTION TO THE MYSQL SERVER

Before we can access data in a database, we must open a connection to the MySQL

server. In PHP, this is done with the mysqli_connect() function. Syntax:

EXAMPLE 158

mysqli_connect(host,username,password,dbname);

Table 2: The connection parameters

Parameter
Description

host Optional. Either a host name or an IP address

username Optional. The MySQL user name

password Optional. The password to log in with

dbname Optional. The default database to be used

when performing queries

Note: There are more available parameters, but the ones listed above are the most

important.

In the following example we store the connection in a variable ($con) for later use in the

script:

EXAMPLE 159

<?php

// Create connection

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

Petr Suchánek, Jan Górecki; Portal and its Management

- 83 -

// Check connection

if (mysqli_connect_errno($con))

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

?>

6.2.2 CLOSE A CONNECTION

The connection will be closed automatically when the script ends. To close the

connection before, use the mysqli_close() function:

EXAMPLE 160

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno($con))

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

mysqli_close($con);

?>

6.3 CREATE DATABASE AND TABLES

6.3.1 CREATE A DATABASE

The CREATE DATABASE statement is used to create a database table in MySQL. We

must add the CREATE DATABASE statement to the mysqli_query() function to execute

the command. The following example creates a database named "my_db":

EXAMPLE 161

<?php

$con=mysqli_connect("example.com","peter","abc123");

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

6Mysql

- 84 -

// Create database

$sql="CREATE DATABASE my_db";

if (mysqli_query($con,$sql))

 {

echo "Database my_db created successfully";

 }

else

 {

echo "Error creating database: " . mysqli_error($con);

 }

?>

6.3.2 CREATE A TABLE

The CREATE TABLE statement is used to create a table in MySQL. We must add the

CREATE TABLE statement to the mysqli_query() function to execute the command.

The following example creates a table named "Persons", with three columns. The column

names will be "FirstName", "LastName" and "Age":

EXAMPLE 162

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

// Create table

$sql="CREATE TABLE Persons(FirstName CHAR(30),LastName

CHAR(30),Age INT)";

// Execute query

if (mysqli_query($con,$sql))

 {

echo "Table persons created successfully";

 }

else

 {

echo "Error creating table: " . mysqli_error($con);

 }

?>

Note: When you create a database field of type CHAR, you must specify the maximum length

of the field, e.g. CHAR(50).

Petr Suchánek, Jan Górecki; Portal and its Management

- 85 -

The data type specifies what type of data the field can hold. We describe only 2 data types,

which are needed for our purposes in this text.

Table 3: Data types

Data type
Description

INT(size) -2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED

(The integer types have an extra option called UNSIGNED. Normally,

the integer goes from an negative to positive value. Adding the

UNSIGNED attribute will move that range up so it starts at zero

instead of a negative number). The maximum number of digits may be

specified in parenthesis

VARCHAR(size) Holds a variable length string (can contain letters, numbers, and special

characters). The maximum size is specified in parenthesis. Can store up

to 255 characters. Note: If you put a greater value than 255 it will be

converted to a TEXT type

6.3.3 PRIMARY KEYS AND AUTO INCREMENT FIELDS

Each table in a database should have a primary key field. A primary key is used to

uniquely identify the rows in a table. Each primary key value must be unique within the table.

Furthermore, the primary key field cannot be null because the database engine requires a

value to locate the record.

The following example sets the PID field as the primary key field. The primary key

field is often an ID number, and is often used with the AUTO_INCREMENT setting.

AUTO_INCREMENT automatically increases the value of the field by 1 each time a new

record is added. To ensure that the primary key field cannot be null, we must add the NOT

NULL setting to the field:

EXAMPLE 163

$sql = "CREATE TABLE Persons

(

PID INT NOT NULL AUTO_INCREMENT,

PRIMARY KEY(PID),

FirstNameCHAR(15),

LastNameCHAR(15),

Age INT

)";

6.4 INSERT INTO

The SQL statement INSERT INTO is used to insert new records in a table.

6.4.1 INSERT DATA INTO A DATABASE TABLE

The INSERT INTO statement is used to add new records to a database table. It is

possible to write the INSERT INTO statement in two forms. The first form doesn't specify

the column names where the data will be inserted, only their values:

6Mysql

- 86 -

EXAMPLE 164

INSERT INTO table_name

VALUES (value1, value2, value3,...)

The second form specifies both the column names and the values to be inserted:

EXAMPLE 165

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

To get PHP to execute the statements above we must use the mysqli_query()

function. This function is used to send a query or command to a MySQL connection.

In the previous chapter we created a table named "Persons", with three columns;

"FirstName", "LastName" and "Age". We will use the same table in this example. The

following example adds two new records to the "Persons" table:

EXAMPLE 166

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

mysqli_query($con,"INSERT INTO Persons (FirstName,

LastName, Age)

VALUES ('Peter', 'Griffin',35)");

mysqli_query($con,"INSERT INTO Persons (FirstName,

LastName, Age)

VALUES ('Glenn', 'Quagmire',33)");

mysqli_close($con);

?>

6.4.2 INSERT DATA FROM A FORMINTO A DATABASE

Now we will create an HTML form that can be used to add new records to the

"Persons" table. Here is the HTML form:

EXAMPLE 167

<html>

<body>

Petr Suchánek, Jan Górecki; Portal and its Management

- 87 -

<form action="insert.php" method="post">

Firstname: <input type="text" name="firstname">

Lastname: <input type="text" name="lastname">

Age: <input type="text" name="age">

<input type="submit">

</form>

</body>

</html>

When a user clicks the submit button in the HTML form in the example above, the form

data is sent to "insert.php".The "insert.php" file connects to a database, and retrieves the

values from the form with the PHP $_POST variables.Then, the mysqli_query()

function executes the INSERT INTO statement, and a new record will be added to the

"Persons" table.

Here is the "insert.php" page:

EXAMPLE 168

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

$sql="INSERT INTO Persons (FirstName, LastName, Age)

VALUES

('$_POST[firstname]','$_POST[lastname]','$_POST[age]')";

if (!mysqli_query($con,$sql))

 {

die('Error: ' . mysqli_error($con));

 }

echo "1 record added";

mysqli_close($con);

?>

6.5 SELECT

6.5.1 SELECT DATA FROM A DATABASE TABLE

The SELECT statement is used to select data from a database. Syntax:

6Mysql

- 88 -

EXAMPLE 169

SELECT column_name(s)

FROM table_name

To get PHP to execute the statement above we must use the mysqli_query()

function. This function is used to send a query or command to a MySQL connection.

The following example selects all the data stored in the "Persons" table (The * character

selects all the data in the table):

EXAMPLE 170

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

$result = mysqli_query($con,"SELECT * FROM Persons");

while($row = mysqli_fetch_array($result))

 {

echo $row['FirstName'] . " " . $row['LastName'];

echo "
";

 }

mysqli_close($con);

?>

The example above stores the data returned by the mysqli_query() function in the

$result variable.Next, we use the mysqli_fetch_array() function to return the first

row from the recordset as an array. Each call to mysqli_fetch_array() returns the next

row in the recordset. The while loop loops through all the records in the recordset. To print

the value of each row, we use the PHP $row variable ($row['FirstName'] and

$row['LastName']).The output of the code above will be:

Peter Griffin

Glenn Quagmire

6.5.2 DISPLAY THE RESULT IN AN HTML TABLE

The following example selects the same data as the example above, but will display the

data in an HTML table:

Petr Suchánek, Jan Górecki; Portal and its Management

- 89 -

EXAMPLE 171

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

$result = mysqli_query($con,"SELECT * FROM Persons");

echo "<table border='1'>

<tr>

<th>Firstname</th>

<th>Lastname</th>

</tr>";

while($row = mysqli_fetch_array($result))

 {

echo "<tr>";

echo "<td>" . $row['FirstName'] . "</td>";

echo "<td>" . $row['LastName'] . "</td>";

echo "</tr>";

 }

echo "</table>";

mysqli_close($con);

?>

The output of the code above will be:

Table 4: The output table

Firstname
Lastname

Glenn Quagmire

Peter Griffin

6.6 THE WHERE CLAUSE

The WHERE clause is used to filter records. Syntax:

EXAMPLE 172

SELECT column_name(s)

FROM table_name

WHERE column_name operator value

6Mysql

- 90 -

The following example selects all rows from the "Persons" table where

"FirstName='Peter'":

EXAMPLE 173

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

$result = mysqli_query($con,"SELECT * FROM Persons

WHERE FirstName='Peter'");

while($row = mysqli_fetch_array($result))

 {

echo $row['FirstName'] . " " . $row['LastName'];

echo "
";

 }

?>

The output of the code above will be:

Peter Griffin

6.7 ORDER BY KEYWORD

The ORDER BY keyword is used to sort the data in a recordset.The ORDER BY

keyword sort the records in ascending order by default.If you want to sort the records in a

descending order, you can use the DESC keyword.Syntax:

EXAMPLE 174

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s) ASC|DESC

The following example selects all the data stored in the "Persons" table, and sorts the

result by the "Age" column:

EXAMPLE 175

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

Petr Suchánek, Jan Górecki; Portal and its Management

- 91 -

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

$result = mysqli_query($con,"SELECT * FROM Persons ORDER BY

age");

while($row = mysqli_fetch_array($result))

 {

echo $row['FirstName'];

echo " " . $row['LastName'];

echo " " . $row['Age'];

echo "
";

 }

mysqli_close($con);

?>

The output of the code above will be:

Glenn Quagmire 33

Peter Griffin 35

It is also possible to order by more than one column. When ordering by more than one

column, the second column is only used if the values in the first column are equal:

EXAMPLE 176

SELECT column_name(s)

FROM table_name

ORDER BY column1, column2

6.8 THE UPDATE STATEMENT

The UPDATE statement is used to update existing records in a table.Syntax:

EXAMPLE 177

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies

which record or records that should be updated. If you omit the WHERE clause, all records will

be updated!

Earlier in the text we created a table named "Persons". Here is how it looks:

6Mysql

- 92 -

Table 5: The table Persons

FirstName
LastName Age

Peter Griffin 35

Glenn Quagmire 33

The following example updates some data in the "Persons" table:

EXAMPLE 178

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

mysqli_query($con,"UPDATE Persons SET Age=36

WHERE FirstName='Peter' AND LastName='Griffin'");

mysqli_close($con);

?>

After the update, the "Persons" table will look like this:

Table 6: The table Persons after UPDATE

FirstName
LastName Age

Peter Griffin 36

Glenn Quagmire 33

6.9 THE DELETE STATEMENT

The DELETE FROM statement is used to delete records from a database table.Syntax:

EXAMPLE 179

DELETE FROM table_name

WHERE some_column = some_value

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies

which record or records that should be deleted. If you omit the WHERE clause, all records

will be deleted!

Look at the following "Persons" table:

Table 7: The table Persons

FirstName
LastName Age

Petr Suchánek, Jan Górecki; Portal and its Management

- 93 -

Peter Griffin 35

Glenn Quagmire 33

The following example deletes all the records in the "Persons" table where

LastName='Griffin':

EXAMPLE 180

<?php

$con=mysqli_connect("example.com","peter","abc123","my_db")

;

// Check connection

if (mysqli_connect_errno())

 {

echo "Failed to connect to MySQL: " .

mysqli_connect_error();

 }

mysqli_query($con,"DELETE FROM Persons WHERE

LastName='Griffin'");

mysqli_close($con);

?>

After the deletion, the table will look like this:

Table 8: The table Persons after one record is deleted

FirstName
LastName Age

Glenn Quagmire 33

7User registration and authentication

- 94 -

7 USER REGISTRATION AND AUTHENTICATION

Almost each web portal contains a login form. After entering user’s login name and

password and user’s authentication, a web portal offers personalized services, like e-mail, data

storage, communication tools, etc., to registered users. User’s registration and authentication

often consist from three parts:

1) Acquiring information about an user through some convenient web form, mainly

login information – user’s name and password. This part can be implemented using

just HTML/CSS.

2) Processing of the acquired information, e.g., sending and storing it to the database,

or username/password validation. This part can be implemented using PHP.

3) Storing the information in the database or retrieve some information from the

database, like the password corresponding to the given user’s name. This part can be

implemented using SQL.

As can be seen, the process of user registration and authentication involves all the

knowledge we mentioned in the sections before. An implementation of the process will be the

most important goal of our effort. The next text shows an example, how the process can be

implemented with the knowledge acquired from all the previous text.

7.1 USER REGISTRATION

Technically speaking, the user registration aims to acquire specific information from an

user and consequently to store the information in a database. Firstly, it is important to

consider, which information we want to acquire from the user. In the example, which serves

for an illustration of the whole process, we acquire this information: user’s first name,

surname, the city, where he/she lives, username and password. Assume that there is already

created a database called registration on the localhost server. Now, we create the table

users, which will serve as storage for the information acquired from the user. The table

contains 6 fields called: id, first_name, surname, city, username,

password. The table is created using the following SQL query:

EXAMPLE 181

CREATE TABLE users(

id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,

first_name VARCHAR(20),

surname VARCHAR(30),

city VARCHAR(20),

username VARCHAR(20),

password VARCHAR(200)

)

The maximal length of the field password is set to 200 to allow for storing an encrypted

password into.

7.1.1 HTML – REGISTRATION FORM

Now, we prepare a form we use for acquiring information from the user. It can be

created like this:

Petr Suchánek, Jan Górecki; Portal and its Management

- 95 -

EXAMPLE 182

<form name="registration_form" action="register.php"

method="post">

<h2>User registration</h2>

<table>

<tr>

<td>First name:</td>

<td><input type="text" name="first_name" value="" ></td>

</tr>

<tr>

<td>Surname:</td>

<td><input type="text" name="surname" value="" ></td>

</tr>

<tr>

<td>City:</td>

<td><input type="text" name="city" value="" ></td>

</tr>

<tr>

<td>Username:</td>

<td><input type="text" name="username" value="" ></td>

</tr>

<tr>

<td>Password:</td>

<td><input type="password" name="password" value="" ></td>

</tr>

<tr>

<td></td>

<td align=right><input type="submit" value="Register"></td>

</tr>

</table>

</form>

The form (saved as registration_form.html) looks like:

7User registration and authentication

- 96 -

Figure 13: Registration form

The parameter action is set to the value “register.php”. After the button Register is

pushed, the information from the form is sent to the server and the script is executed. The

script process the information. The next section shows, how to create this script.

7.1.2 PHP SCRIPT FOR THE USER’S INFORMATION PROCESSING

The second part of the registration process deals with a processing of data from the

previously described form, particularly sending the data to the database. This can be

implemented in PHP. Firstly, we store the data from the form to some variables. This can be

implemented as follows:

EXAMPLE 183

$a=$_POST["first_name"];

$b=$_POST["surname"];

$c=$_POST["city"];

$d=$_POST["username"];

$e=$_POST["password"]);

Now, we connect to a database. Firstly, we connect to the server with the database. This

is made by:

mysql_connect("server name", "server user name", "server password");

Those parameters are often provided by the webhosting provider. Then we connect to

the database:

mysql_select_db("database name");

The parameter "database name" is also provided by the webhosting provider. In our

example, we connect to the localhost server through:

EXAMPLE 184

$link = mysql_connect("localhost", "root")

 or die("Unable to connect: " . mysql_error());

print "Connected successfully";

Petr Suchánek, Jan Górecki; Portal and its Management

- 97 -

mysql_select_db("registration") or die("Unable to select

the database");

Now, the data stored in the variables can be passed to the database through a SQL

query. Syntax:

mysql_query("SQL query");

The parameter should contain a SQL query that store the information from the form to

an appropriate table.

7.1.3 STORING THE INFORMATION INTO DATABASE

A new record can be inserted into database using the INSERT INTO statement. Thus,

the information acquired from the user can be inserted into the database using the following

query:

EXAMPLE 185

INSERT INTO users (first_name, surname, city, username,

password) VALUES ('$a','$b','$c','$d', '$e')

The whole PHP script that processes the information from the form would look like

this:

EXAMPLE 186

<?php

$a=$_POST["first_name"];

$b=$_POST["surname"];

$c=$_POST["city"];

$d=$_POST["username"];

$e = hash("sha512", $_POST["password"]);

$link = mysql_connect("localhost", "root")

 or die("Unable to connect: " . mysql_error());

print "Connected successfully";

mysql_select_db("registration") or die("Unable to select

the database");

$query = "INSERT INTO users (first_name, surname, city,

username, password) VALUES ('$a','$b','$c','$d', '$e')";

mysql_query($query);

 header("Location: login_form.html");

 exit();

?>

After the new record is inserted, the user is redirected to “login_form.html”.

7User registration and authentication

- 98 -

7.1.4 PASSWORD ENCRYPTION

To increase the security of our private web pages, it is convenient to encrypt the

password before we store it in the database. In this case, we avoid to an unauthorized person,

e.g., a database administrator, to find out the passwords in the original form.

So called one-way encryption can be used for the purpose. The encryption transforms a

password to a cluster of characters, but without knowing the key for its decryption. Thus, it's

impossible to decrypt the encrypted password - this is the main difference between the one-

way and a two-way encryption, where there always exist the key corresponding to the cipher

and it is possible to get the original information stored in the cipher.

There exist several functions in PHP for these purposes, e.g., md5() or sha1(),

however those algorithm are nowadays considered as obsolete, and its security has been

questioned. We describe a more convenient function called hash(), which allows to choose

some modern encrypting algorithm, e.g., "whirpool" nebo "sha512".

To implement the encryption in our example, we change the line

$e=$_POST["password"];

in the way that the password acquired from the user is passed to the variable $e in an

encrypted form. This can be made, using, e.g., "sha512" with:

$e=hash("sha512", $_POST["password"]);

Then the password is stored in the encrypted form, for example, when the user fill the

password field with 123456, the password is transformed to, for example,

ba3253876aed6bc2c6a956df346eab413, using the function hash("sha512",

"123456"). As the encrypted password is significantly longer than the original password, it

is necessary to set up convenient (long enough) length of the corresponding field in the table -

in our case we set the length of the password to 200 (see the definition of the table users).

Later in authentication process, we must compare the password also in the encrypted form

(see below in the text).

7.2 USER AUTHENTICATION

Technically speaking, an authentication of the user is based on a comparison between

the password acquired from the user in the registration process and the password acquired

from the user when the user is logging in. When those two passwords are equal, we allow the

user to access to the personalized (private) parts of our web. In other case, the authenticity of

the user is not verified and the access to the personalized parts of our web is denied.

7.2.1 LOGIN FORM

A common login form contain two input fields - username and password. In our

example, we would implement it using HTML in this way:

EXAMPLE 187

<!DOCTYPE HTML>

<html>

 <head>

 <title></title>

Petr Suchánek, Jan Górecki; Portal and its Management

- 99 -

 </head>

 <body>

 <form action="login.php" method="post">

 <table>

 <tr><td>Username </td><td><input type="text"

name="username" /></td></tr>

 <tr><td>Password </td><td><input type="password"

name="password" /></td></tr>

 <tr><td colspan="2"><input type="submit" value="..::

Login ::.." />

 <input type="reset" value="..:: Reset ::.."

/></td></tr>

 </table>

</form>

 </body>

</html>

Saving it as "login_form.html", it looks in the browser as:

Figure 14: Login form

The parameter action is set to the value login.php. When the user push the

"Login" button, the information given by the user is sent to the server and the script

login.php is executed.

7.2.2 AUTHENTICATION SCRIPT IN PHP

The authentication script that we use for our example retrieve the information from the

form and store it in the variables $form_username and $form_password. When we

use the encrypted form of the password, it is necessary to transform the acquired password to

the encrypted form, see the line $form_password = hash("sha512",

$_POST["password"]); below. An implementation of the authentication can look like

this:

EXAMPLE 188

<?php

 // set up all settings

 // database settings

 $server = "localhost";

 $user = "root";

 $password = "";

7User registration and authentication

- 100 -

 $database = "registration";

 // registration table setttings

 $db_table_name = "users";

 $db_username_column = "username";

 $db_password_column = "password";

 // form elements

 $form_username = $_POST['username'];

 $form_password = hash("sha512", $_POST["password"]); //

password is encrypted

 // private section - only for authentized users

 $private_url = "private.php";

 //---

 // do not make any changes below

 // SQL query that returns password

 $sql =

 "SELECT $db_password_column FROM $db_table_name WHERE

$db_username_column ='{$form_username}'";

 echo "Sending this query to DB:
".$sql;

 $conn = mysql_connect($server, $user, $password)

 or die("Unable to connect: " . mysql_error());; //

server connection

 mysql_select_db($database);

// db connection

 print "
Connected successfully";

 $result = mysql_query($sql); //

dotaz na heslo pro uzivatele

 // authentication process

 if (!$result):

 echo "

 Unable to authentize the user. Possibly wrong db

setting. The server haven't returned a response to the

query.".$sql;

 exit;

 endif;

 if(!mysql_num_rows($result)):

 echo "
User not found.";

 exit;

 else:

 $i=0;

Petr Suchánek, Jan Górecki; Portal and its Management

- 101 -

 if (mysql_result($result, $i, $db_password_column) !=

$form_password):

 echo "
Wrong password.";

 exit;

 else:

 endif;

 endif;

 //pokud odpovídají přihlašovací údaje

 session_start();

 header("Cache-control: private");

 //zaregistruje proměnou user_is_logged a nastaví ji na

1

 $_SESSION["user_is_logged"] = 1;

 //a pošle na úvodní soubor chráněné sekce

 header("Location: ".$private_url);

 exit;

?>

The first part of the script must be set according to our environment (obtained from the

webhosting provider). The first four lines

$server = "localhost";

$user = "root";

$password = "";

$database = "registration";

must contain the ip address of the server, username/password for the server, and the name of

the database that we use. For our example, everything is already set correctly.

The next three lines contain the information about the registration table, i.e., the name of

the table, the name of the field, where the usernames are stored and the name of the field,

where the passwords are store. For our example, it is:

$db_table_name = "users";

$db_username_column = "username";

$db_password_column = "password";

The next two lines contain the field names of the login form. For our example, it is:

$form_username = $_POST['username'];

$form_password = hash("sha512", $_POST["password"]);

Note that the password stored in the variable $form_password is in an encrypted

form, hence this script would work only with the "encrypted" version of the registration.

The last setting is the name of the page that is displayed after the user is authenticated

successfully. In our example, it is:

$private_url = "private.php";

7User registration and authentication

- 102 -

When the authentication fails, the script shows the message Wrong password. or

User not found.

The rest of the script can be left without any changes. We do not devote to explanation

of it, because it is out of the scope of this text. We only note that the script compare the

password acquired from the user through the login form with the password stored in the

database corresponding to the username given by the user also in the login form.

Now we assure that all the private web pages are accessible only for the authenticated

users. For this purpose, we use an additional script saved as "protection.php", which looks

like:

EXAMPLE 189

<?php

 session_start();

 header("Cache-control: private");

 //if the user is not logged in, refer to login form

 if ($_SESSION["user_is_logged"] != 1){

 header("Location: login_form.html");

 exit();

 }

?>

Then, this script is added at the beginning of each private web page using one line in

PHP, which has the following form:

EXAMPLE 190

 require('protection.php');

The private web page, e.g., private.php, then can be implemented as:

EXAMPLE 191

<!DOCTYPE HTML>

<html>

 <head>

 <meta http-equiv="content-type" content="text/html;

charset=windows-1250">

 <meta name="generator" content="PSPad editor,

www.pspad.com">

 <title></title>

 </head>

 <body>

 <?php

 require('protection.php');

 ?>

 Welcome in private section!

 </body>

</html>

Petr Suchánek, Jan Górecki; Portal and its Management

- 103 -

In the case when an unauthenticated user tries to open the “private.php”, the script

“protection.php” redirects the user to “login_form.html”, what protects the private pages to be

displayed to this kind of users.

For logging out, we can use:

EXAMPLE 192

<?php

 session_start();

 $_SESSION = array();

 session_destroy();

 //Check for if the session is termiated correctly

 if ($_SESSION["user_is_logged"]){

 echo "FATAL ERROR: Cannot terminate session!";

 } else {

 //if everything is ok, refer the user to login form

 //(or somewhere else)

 header("Location: login_form.html");

 }

?>

This script log out the logged in user and redirect to login_form.html.

The whole registration and authentication procedure is using so called sessions. When

using the sessions, some data can be stored to a file on the server and are accessible through

the array called $_SESSION. It is necessary to call the function session_start() on

each page before accessing to this array. Due to the weird behavior of a disk cache in MS

Internet Expoler, it is recommended to set up own cache administration, what can be done

using the statement

header("Cache-control: private");

Thus, this is also necessary to put this line before any output to HTML.

As soon as the session is started, it is possible to store data into it. It can be done using:

$_SESSION['my_variable']= $value;

This statement register (or overwrite) the session variable $my_variable and assign it the

value value, which can be of a different data type. It is of course possible to register more

variables. To access to the value, we can use:

$value =$_SESSION['my_variable'];

It is necessary that there is a variable on the left side. To destroy a variable, we assign it

the empty value ("") or false. To destroy the whole session, it is necessary to put at the

beginning of a page (but below the function session_start()) those two statements:

$_SESSION = array(); //clean up all the registered variable

 session_destroy(); //close the session

7User registration and authentication

- 104 -

Those two lines can be seen in the previously described script “logout.php”. A session is

also closed after the browser is closed or after some time period of inactivity.

The whole process of user authentication is proceeds in the following way. Firstly, we

redirect a user to “login_form.html”. After the user inputs the correct pair username/

password, what is verified through “login.php”, the variable user_is_logged in sessions

on the server is set to 1. Then, we just verify on all private pages, if the variable

user_is_logged is set to 1. If so, the user is permitted to display the content of the

private pages. In not, when $_SESSION["user_is_logged"] != 1, we redirect the

user to “login_form.html”.

As can be seen from the previous text, the process of user registration and

authentication is not a trivial task, and it uses the knowledge about all the mentioned

languages – HTML (CSS), PHP and SQL. On the other side, since almost every web portal

implements (offers) the process, we put the main focus on an implementation of the

mentioned process, as it will be needed for successful defence of semestral work.

Petr Suchánek, Jan Górecki; Portal and its Management

- 105 -

SUMMARY

The topic of web portals is and probably will remain one of the key in computer

science. If the reader reads these lines, we can assume that already has a study of all the

chapters of this book and is able to create a simple web portal and ensure his administration,

which was the main aim of the authors of this book. The prerequisite here is that readers and

especially students of the course Portal and its management become familiar with the basic

methods of making the structure of web pages using HTML or. XHTML and CSS, basic PHP

scripting language, creating and managing MySQL databases and bring all these components

into a functional unit - web portal - enabling the presentation of information and

communication with the user via web form.

Petr Suchánek, Jan Górecki; Portal and its Management

- 106 -

THE LIST OF LITERATURE

[1] Develop & Host. Php - Apache - Mysql – Windows. Introduction. [Online] Available

from http://www.easyphp.org/introduction.php

[2] GILMORE, W. J. Beginning PHP 5 and MySQL: From Novice to Professional. CA

United States: Apress, 2005. ISBN 1893115518.

[3] Home& Learn. Free PHP Tutorial. Create a database with phpMyAdmin. [Online]

Available from http://www.homeandlearn.co.uk/php/php12p2.html

[4] HTML Dog. CSS Beginner Tutorial. [Online] Available from

http://www.htmldog.com/guides/css/beginner/

[5] VANDERWEEËN, B. Coding a layout in HTML5 and CSS3. [online]. 2012, 2012-02-

12 [cit. 2013-02-08]. Available from

http://www.bene.be/blog/comments/coding_a_layout_in_html5_and_css3/

[6] W3Schools.com. CSS Tutorial. [Online] Available from http://www.w3schools.com/css/

[7] W3Schools.com. HTML4 and HTML5 Tutorial. [Online] Available from

http://www.w3schools.com/html/default.asp

http://www.easyphp.org/introduction.php
http://www.homeandlearn.co.uk/php/php12p2.html
http://www.htmldog.com/guides/css/beginner/
http://www.bene.be/blog/comments/coding_a_layout_in_html5_and_css3/
http://www.w3schools.com/css/
http://www.w3schools.com/html/default.asp

