Quantitative methods - lecture 2

1) Domain of a function of the form: (function with linear expression)
a) $f(x)=\frac{1}{2 x-8}$
b) $f(x)=\log (4 x-8)$
c) $f(x)=\sqrt{-3 x+4}$
2) Domain of a function of the form: (function with quadratic expression)

Firstly, we must decompose this expression into a product.
We can use the formula $a^{2}-b^{2}=(a-b)(a+b)$.
$9-x^{2}=$
$x^{2}-16=$
We can factor out: $x^{2}-5 x=$
$4 x-x^{2}=$
Solving the quadratic equation: $x^{2}-7 x+10=$
$x^{2}+10 x+21=$
Than we are going to solve quadratic inequation:

1) decomposition of expression into product
2) find zero points
3) find out what sign it takes in given interval (We choose number from interval and substitute it into the expression)
$x^{2}-36 \geq 0$
$7 x-x^{2}<0$
$x^{2}+8 x+15 \leq 0$

Solve the domain of functions:
d) $f(x)=\frac{1}{x^{2}-25}$
e) $f(x)=\log \left(6 x-x^{2}\right)$
f) $f(x)=\sqrt{x^{2}-5 x+4}$

