Quantitative Methods

Lecture 1

Introduction,
sets and mathematical language

SILESIAN UNIVERSITY
SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

INM/BAKVM

Outline of the lecture

Requirements

1) 70% attendance at the seminars (or calculating a mathematical problem or writing a seminar paper)
2) Two tests
a) for 30 points $=$ TEST (on the $6^{\text {th }}$ of November) and
b) for 70 points $=$ FINAL EXAM (on the $11^{\text {th }}$ of December).

Form of the exam: written. You can gain extra point for tasks and homework.
Evaluation: A (100-90 points), B (89-80), C (79-70), D (69-65), E (64-60), F (59-0).

Syllabus (short version)

- 1. Motivational introduction, history of mathematics
- 2. Algebraic Expressions
-3. Equations and Inequalities
- 4. Matrix calculus
-5. Determinants
-6. Systems of linear algebraic equations
-7. Sequences, limits of sequences
- 8. Basic functions of one real variable
- 9. Limits of functions of one real variable
- 10. Differential calculus of functions of one real variable
- 11. Using differential calculus of functions of one real variable
- 12. Integral calculus of functions of one variable and its applications
- 13. Application of differential and integral calculus in economics and management

Outline of the lecture

- Mathematical language ($\neg, \wedge, \mathrm{V}, \Rightarrow, \Leftrightarrow$)
- Sets and set operations ($\epsilon, \mathrm{n}, \mathrm{U}, \backslash$)
- Mathematical language: Quantifiers (\forall, \exists)
- Set inclusion (ㄷ)
- More on sets
- Number domains ($\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) (set of natural numbers, set of integers, set of rational numbers, set of irrational numbers, set of complex numbers)

Mathematical language

- Simple propositions
- Logical conjunctions
- Some useful equivalences
- Sylogism

Mathematical language

A simple proposition is any statement such that it makes sense to say whether it is true or false.

Examples of simple propositions:

- "It is raining."
- "Today is Saturday."
$-2+2=4$
The following are not simple propositions:
- "Are you happy?"
- "Come here!"

Mathematical language

Let A and B be simple propositions.
We can join them into compound propositions, or mathematical sentences, by using logical conjunctions.

There are
-up to 4 distinct unary logical conjunctions (such as \neg) and
-up to 16 distinct binary logical conjunctions (such as $\wedge, v, \Rightarrow, \Leftrightarrow$).
We shall mention some of them.

Mathematical language

Logical negation: read " $\neg A^{\text {" }}$ as "not $A^{\prime \prime}$
Table of truth values:

truth value of given simple proposition	result
A	$\neg A$
false	true
true	false

Mathematical language

Logical conjunction: read " $A \wedge B$ " as " A and B "
Table of truth values:
truth values of given simple propositions
result
A
B
false false
false true false
true false false
true true true

Mathematical language

Logical equivalence: read " $A \Leftrightarrow B^{n}$ as " A if and only if $B^{\prime \prime}$
Table of truth values:
truth values of given simple propositions
result
A
B
$A \Leftrightarrow B$
false false
false true
true false
true true
true
false
false
true

Mathematical language

Logical implication: read " $A \Rightarrow B$ " as "if A, then B "
Table of truth values:
truth values of given simple propositions
result
A
B
$A \Rightarrow B$
false false true
false true true
true false false
true true true

Some equivalences I

Let A and B be simple propositions.
Notice and observe that the following equivalences are easy to see:

Identity:

$$
A \Leftrightarrow A
$$

Idempotency:

$$
\begin{aligned}
& (A \wedge A) \Leftrightarrow A \\
& (A \vee A) \Leftrightarrow A
\end{aligned}
$$

Some equivalences II

Let A and B be simple propositions.
Notice and observe that the following equivalences are easy to see:

Double negation:

$$
A \Leftrightarrow \neg \neg A
$$

Tertium non datur:

$$
A \vee \neg A
$$

Some equivalences III

Let A and B be simple propositions.
Notice and observe that the following equivalences are easy to see:

De Morgan's Laws:

$$
\begin{aligned}
& \neg(A \wedge B) \Leftrightarrow(\neg A \vee \neg B) \\
& \neg(A \vee B) \Leftrightarrow(\neg A \wedge \neg B)
\end{aligned}
$$

Some equivalences IV

Let A and B be simple propositions.
Notice and observe that the following equivalences are easy to see:

Commutativity:

$$
\begin{aligned}
& (A \wedge B) \Leftrightarrow(B \wedge A) \\
& (A \vee B) \Leftrightarrow(B \vee A)
\end{aligned}
$$

Associativity:

$$
\begin{aligned}
& A \wedge(B \wedge C) \Leftrightarrow(A \wedge B) \wedge C \\
& A \vee(B \vee C) \Leftrightarrow(A \vee B) \vee C
\end{aligned}
$$

Sylogism

Let A, B, C be simple propositions.
Notice and observe that the following proposition is easy to see:

Sylogism:

$$
(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))
$$

Example:

- Socrates is a man.
- A man is mortal.

Conclude that:

- Socrates is mortal.
By using the "import" rule:
$((A \Rightarrow B) \wedge(B \Rightarrow C)) \Rightarrow(A \Rightarrow C)$

Sets and set operations

- Sets
- The empty set
- Set operations
- Some useful equalities

Sets

A set is a collection of elements.
Sets are denoted by upper-case letters: A, B, C, \ldots
Elements are denoted by lower-case letters: $a, b, c, \ldots, x, y, z, \ldots$
Let a set A be given. Then, for any element x, we must be able to say whether

- either the element x is in the set A, or
- or the element x is not in the set A.

Notice that we do not allow any third possibility.

Sets

Let a set A and an element x be given.
We write the fact that the element x is in the set A as

$$
x \in A
$$

We write the fact that the element x Is not \ln the set A as

$$
x \notin A
$$

Sets

A set is often given by the list of its elements. For example:

$$
\begin{aligned}
& A=\{1,3,5,7,9\} \\
& B=\{2,4,6,8\}
\end{aligned}
$$

Then, for example, it holds

$$
1 \in A, \quad 2 \in B, \quad 1 \notin B, \quad 2 \notin A
$$

The empty set

The empty set is a set that contains no elements:

$$
\emptyset=\{ \}
$$

Notice that the set $\{\varnothing\}$ is not empty, we have

$$
\emptyset \in\{\varnothing\}
$$

and

$$
\{\emptyset\} \neq \varnothing
$$

Set operations

Let A and B be sets.
The union of the sets is:
$A \cup B=\{x: x \in A \vee x \in B\}$

Set operations

Let A and B be sets.
The intersection of the sets is:
$A \cap B=\{x: x \in A \wedge x \in B\}$

Set operations

Let A and B be sets.
The difference of the sets is:

$$
A \backslash B=\{x: x \in A \wedge x \notin B\}
$$

Set inclusion

Let A and B be sets.

We say that A Is a subset of B (or A is included In B) and write $A \subseteq B$
if and only if
$\forall x: x \in A \Rightarrow x \in B$

Set operations

Let A and B be sets.
Union:

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

Intersection:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

Difference:

$$
A \backslash B=\{x: x \in A \wedge x \notin B\}
$$

Mathematical language: Quantifiers

Let x be a variable and let $\varphi(x)$ be a (compound) proposition or mathematical sentence (containing x). Then

$$
\forall x: \varphi(x)
$$

reads
"for all x, it holds $\varphi(x)^{n}$

Let A be a set, let x be a variable, and let $\varphi(x)$ be a proposition. Then

$$
\forall x \in A: \varphi(x)
$$

reads
"for each element x of the set A, it holds $\varphi(x)$ "

Mathematical language: Quantifiers

Let x be a variable and let $\varphi(x)$ be a (compound) proposition or mathematical sentence (containing x). Then

$$
\exists x: \varphi(x)
$$

reads
"there exists an x such that it holds $\varphi(x)$ "
("there exists at least one x such that it holds $\varphi(x)$ ")
Let A be a set, let x be a variable, and let $\varphi(x)$ be a proposition. Then

$$
\exists x \in A: \varphi(x)
$$

reads
"there exists at least one element x of the set A such that it holds $\varphi(x)$ "

De Morgan's Laws I

Let x be a variable and let $\varphi(x)$ be a proposition or mathematical sentence. Notice and observe that the following equivalences are easy to see:

De Morgan's Laws:

$$
\begin{aligned}
& \neg \forall x: \varphi(x) \Leftrightarrow \exists x: \neg \varphi(x) \\
& \neg \exists x: \varphi(x) \Leftrightarrow \forall x: \neg \varphi(x)
\end{aligned}
$$

Number domains

In mathematics, we use the following number sets:
Natural numbers:

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3,4,5,6,7,8,9,10, \ldots\} \\
\mathbb{N}_{0} & =\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}
\end{aligned}
$$

Integer numbers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-2,-1,0,1,2,3, \ldots\}
$$

Ratlonal numbers:

$$
\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z} \wedge q \neq 0\right\}
$$

Number domains

Real numbers:

$$
\mathbb{R}=\cdots
$$

the definition is rather difficult, but the real numbers can be depicted as the points of a line:

Number domains

Complex numbers:

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}
$$

where " i " is the imaginary unit ($\mathrm{i}^{2}=-1$).

