SILESIAN

 UNIVERSITYSCHOOL OF BUSINESS
administration in karvina

Quantitative methods

Lecture 2

Mgr. Radmila Krkošková, Ph.D.
BAKVM

A real function of one real variable

- A function is a relation f between two sets X and Y such that each x from X is related to exactly one y from Y.
- We write $y=f(x)$.
- Examples: $y_{=}$

$y_{=}$
- The set \mathbf{X} is called a domain, the set \mathbf{Y} is called a range or a co-domain.
- In economics the domain usually consists of non-negative real numbers.

A graph of a function

- A graph of a function is the collection of all ordered pairs (x, y) displayed in a two-dimensial plane.
- In a two dimensional plane it as a curve.

Examples:

- Linear function: a line,
- Quadratic function: a parabola,
- Reciprocal function: a hyperbola.

Other functions are represented by more complex curves.

A graph of a function: examples

Elementary function properties

- Domain and range,
- Monotonicity (increasing, decreasing, non-increasing, nondecreasing, constant)
- Extremes (local or global maximum or minimum),
- Concavity and convexity,
- Inflection points,
- Bounded vs unbounded function,
- Even functions and odd functions,
- Peridiocity.

Elementary functions

- Linear function: $y=a x+b$,
- Quadratic function:

$$
y=++
$$

- Polynomial function: $y_{=}++\quad+$
- Linear reciprocal function:

- Logarithmic function: $y_{=}$

In the logarithmic function, \boldsymbol{a} is the so called a base. The decadic logarithm: $a=10$, the natural logarithm: $a=e=$ 2.718... For a larger than 1, the function is increasing, and for a smaller than 1 it is decreasing.

Graphs of logarithmic functions

Elementary functions - continued

- Exponential function: $y_{=}>$
- Goniometric functions: $y=\sin x, y=\cos x, y=\operatorname{tg} x$, $y=\operatorname{cotg} x$.
- Cyclometric functions: $y=\arcsin x, y=\arccos x$, $y=\operatorname{arctg} x, y=\operatorname{arccotg} x$.

Notes: exponential and logarithmic functions are inverse to each other. The same applies to goniometric and cyclometric functions.

Graphs of exponential functions

For $a>1$, the exponential function is increasing, for $a<1$ is decreasing.

Graphs of goniometric functions

Polynomials

In economics, various functions, such as demand or supply, are expressed by polynomials. Two main tasks when dealing with polynomials are transformation of a polyonomial into a product, and to find roots of a polynomial.

Let $P_{n}(x)$ denote a polynomial of a degree n.
Polynomial roots are such values of x that $P_{n}(x)$
The equation above can be solved via known formulas or identities such as $\left(a_{+}\right.$

Demand and supply function, equilibrium

- The demand function expresses relationship between a price of a good (P) and a demanded quantity (Q) by customers. Usually, the demand function is denoted as $Q=D(P)$ or Q_{D}, and it is assumed this function is decreasing.
- The supply function expresses relationship between a price of a good (P) and a supplied quantity (Q) by sellers. Usually, the supply function is denoted as $Q=S(P)$ or Q_{s}, and it is assumed this function is increasing.
- A point where demand is equal to supply, ant a market is cleared, is called an equilibrium.

Demand and supply function, equilibrium - cont.

Solved problem 1

- Find the domain of the function $\mathrm{f}: y_{=}-\quad$.

Solution: the expression under the square root sign must be non-negative, therefore we obtain:

- Hence, the domain is $\Delta(f)={ }^{-}$.

Solved problem 2

- Find the domain of the function $\mathrm{f}: y_{=}$ Solution: the expression in the logarithm must be positive, therefore we obtain:
$x^{2}->$
We expand the term on the left hand side:

- From the last inequality it follows that -5 and 5 are the roots that divide the x line into three intervals. By checking the sign in each interval we obtain the final solution:

$$
L(f)=-\infty-()^{-}
$$

Solved problem 3

- Find the domain of the function f: $y_{=}$ Solution: the expression in the arcsin is bounded by -1 from below and by 1 from above. Therefore, we obtain:

$$
-<-<
$$

By dividing this inequality into two simple linear inequalities we obtain:

$$
L_{<} \quad \text { and } x_{<}
$$

- Hence, we obtain the solution: $\Delta(f)={ }^{-}$

Solved problem 4

Let us asssume that the demand and the supply functions are given as follows: $Q=-, Q=-+$.
Find the equilibrium.

Solution: in the equilibrium both functions are equal:

Therefore, we obtain: $P_{E}=6$, and $Q_{E}=4$. Draw both function!

How will the situation change if there is a price floor $\mathrm{P}=8$?

Solved problem 5

Let us asssume that the demand and the supply functions are given as follows: $\dot{Q}=-, \dot{Q}=+$
Find the equilibrium.

Solution: in the equilibrium both functions are equal:

Therefore, we obtain: $P_{E}=3$, and $Q_{E}=18$. Draw both function!

Problems to solve

1. Find the domain of the following functions:

$$
\begin{aligned}
& y_{=}{ }_{v} \text { - } \\
& y_{=} \\
& \begin{array}{l}
y=- \\
y=--+
\end{array} \\
& y_{=} \quad+
\end{aligned}
$$

Problems to solve - cont.

2. Draw a graph of the following functions:

$$
\begin{aligned}
& y=+ \\
& y_{==-} \\
& y_{=}=+ \\
& y_{=-+}+ \\
& y_{=-+} \\
& y_{=}- \\
& y_{v}=+
\end{aligned}
$$

Problems to solve - cont.

3. For the given functions of demand and supply find the equilibrium both geometrically and algebraically:

$$
\begin{aligned}
& L H=- \\
& S(H)=+
\end{aligned}
$$

Thank you for your attention!

