## Quantitative Methods

SILESIAN UNIVERSITY
SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

## Lecture 3

## Matrix calculus

## Matrix calculus

Vector space of matrices
(addition and scalar multiplication)
Rank of a matrix
Multiplication of matrices
Square matrices
Singular and non-singular matrices

## Matrix

Let $m, n \in \mathbb{N}$ be natural numbers.
Then a real $m \times n$ matrix (or a matrix of the type $m \times n$ or an $m$-by- $n$ matrix) is a rectangular table of real numbers consisting of $m$ rows and of $n$ columns:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

The elements $a_{i j}$ are the entries of the matrix $A$ for $i=1,2, \ldots, m$ and for $j=1,2, \ldots, n$.

## The vector space of matrices

Let $m, n \in \mathbb{N}$ be natural numbers.
The space of all matrices of the type $m \times n$ is denoted by $\mathbb{R}^{m \times n}$.
On the space $\mathbb{R}^{m \times n}$ of the matrices of the type $m \times n$, the following vector operations are introduced:

- addition
- subtraction
- scalar multiplication


## Addition of matrices

Let $m, n \in \mathbb{N}$ be natural numbers. Let two matrices $A, B \in \mathbb{R}^{m \times n}$ be given.

## Addition:

$$
\begin{aligned}
A+B & =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
\end{aligned}
$$

## Subtraction of matrices

Let $m, n \in \mathbb{N}$ be natural numbers. Let two matrices $A, B \in \mathbb{R}^{m \times n}$ be given.

## Subtraction:

$$
\begin{aligned}
A-B & =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)-\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{11}-b_{11} & a_{12}-b_{12} & \cdots & a_{1 n}-b_{1 n} \\
a_{21}-b_{21} & a_{22}-b_{22} & \cdots & a_{2 n}-b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}-b_{m 1} & a_{m 2}-b_{m 2} & \cdots & a_{m n}-b_{m n}
\end{array}\right)
\end{aligned}
$$

## Multiplication of a matrix by a scalar

Let $m, n \in \mathbb{N}$ be natural numbers.
Let a matrix $A \in \mathbb{R}^{m \times n}$ and a scalar $\lambda \in \mathbb{R}$ be given.
Scalar multiplication:

$$
\lambda A=\lambda\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \cdots & \lambda a_{m n}
\end{array}\right)
$$

## The zero matrix

Let $m, n \in \mathbb{N}$ be natural numbers.
The zero matrix of the type $m \times n$ is

$$
O=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

The zero matrix consists of the zeros (0) only.

## The vector space of matrices

Let $m, n \in \mathbb{N}$ be natural numbers.
For any matrices $A, B, C \in \mathbb{R}^{m \times n}$ and for any scalars $\lambda, \mu \in \mathbb{R}$, it holds:

$$
\begin{array}{rlrl}
A+B & =B+A & (\lambda+\mu) A & =\lambda A+\mu A \\
(A+B)+C & =A+(B+C) & \lambda(A+B) & =\lambda A+\lambda B \\
A+O=A & =0+A & (\lambda \mu) A & =\lambda(\mu A) \\
A-A & =0 & 1 A & =A
\end{array}
$$

We can see now that the space $\mathbb{R}^{m \times n}$ of the matrices of the type $m \times n$ is a real vector space of dimension $m \times n$.

## The rank of a matrix

Let $m, n \in \mathbb{N}$ be natural numbers.
The rank of a real $m \times n$ matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

is
= the number of linearly independent columns
= the number of linearly independent rows
Observation: The $\operatorname{rank}(A) \leq \min (m, n)$

## Multiplication of matrices

Let $m, n, p \in \mathbb{N}$ be natural numbers.
Given a matrix $A \in \mathbb{R}^{m \times n}$ and a matrix $B \in \mathbb{R}^{n \times p}$, we can multiply them:

$$
C=A B
$$

The entries $c_{i k}$ of the product $C \in \mathbb{R}^{m \times p}$ are calculated as follows:

$$
c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\cdots+a_{i n} b_{n k}=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

for $i=1,2, \ldots, m$ and for $k=1,2, \ldots, p$.

## Multiplication of matrices



$$
\begin{gathered}
c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\cdots+a_{i n} b_{n k} \\
\text { for } i=1,2, \ldots, m \text { and } \\
\text { for } k=1,2, \ldots, p
\end{gathered}
$$

## Square matrices

Let $n \in \mathbb{N}$ be a natural number.
A square matrix is any matrix of type $n \times n$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

## The identity matrix

Let $n \in \mathbb{N}$ be a natural number.
The identity matrix of the type $n \times n$ is the matrix

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & 0 & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

The identity matrix has

- ones (1) on its main diagonal and
- zeros (0) everywhere else.


## Non-singular square matrices

Let $n \in \mathbb{N}$ be a natural number.
A square matrix $A \in \mathbb{R}^{n \times n}$ is

- either singular,
- or non-singular.

The matrix $A$ is non-sIngular if and only if there exists a square matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
A B=I=B A
$$

where $I$ is the identity matrix.
Notice that there exists no more than one such a matrix $B$.

## The inverse matrix

Let $n \in \mathbb{N}$ be a natural number and let $A \in \mathbb{R}^{n \times n}$ be a non-singular square matrix.
Then we already know that there exists exactly one square matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
A B=I=B A
$$

where $I$ is the identity matrix.
The matrix $B$ is the matrix inverse to the matrix $A$ and it is denoted by

$$
B=A^{-1}
$$

## Singular and non-singular matrices

Let $n \in \mathbb{N}$ be a natural number and let $A \in \mathbb{R}^{n \times n}$ be a square matrix.
We know that the matrix $A$ is non-singular if and only if there exists exactly one square matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
A B=I=B A
$$

Theorem. The square matrix $A$ is non-singular if and only if $\operatorname{rank}(A)=n$, i.e.

- all $n$ rows of the matrix are linearly independent
- all $n$ columns of the matrix are linearly independent

The matrix is singular if and only if it is not non-singular.

## Summary I

Let $n \in \mathbb{N}$ be a natural number, let $A, B, C \in \mathbb{R}^{n \times n}$ be square matrices, and let $\lambda, \mu \in \mathbb{R}$ be scalars. It holds:

$$
\left.\begin{array}{ccc}
A+B=B+A & & (\lambda+\mu) A=\lambda A+\mu A \\
(A+B)+C=A+(B+C) & \lambda(A+B)=\lambda A+\lambda B \\
A+O=A=O+A & & (\lambda \mu) A=\lambda(\mu A) \\
A-A=0 & (A B) C=A(B C) & 1 A
\end{array}\right)=A
$$

## Summary II

Let $n \in \mathbb{N}$ be a natural number and let $A \in \mathbb{R}^{n \times n}$ be a square matrix.
If, moreover, the matrix $A$ is non-singular, then it also holds

$$
A A^{-1}=I=A^{-1} A
$$

