Quantitative Methods

Lecture 5

Sequences, series
and infinite sums

SILESIAN UNIVERSITY
SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA $+$

Outline of the lecture

- Sequence of real numbers
- Arithmetic progression and Geometric progression
- The sum of the first n elements of the arithmetic or geometric progression
- The limit of a sequence and its properties
- Series (infinite sums)
- The sum of a geometric series
- Criteria of convergence, altemating series, Leibniz criterion

A sequence of real numbers

Recall the set of the natural numbers

$$
\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10, \ldots\}
$$

and the set of the real numbers:

We shall now deal with sequences of real numbers:

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, \ldots \in \mathbb{R}
$$

A sequence of real numbers

Recall that $\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10, \ldots\}$.
A sequence of real numbers ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, \ldots \in \mathbb{R}$) is a mapping, or function,

$$
\begin{aligned}
& a: \mathbb{N} \rightarrow \mathbb{R} \\
& a: n \mapsto a_{n} \quad \text { for } \quad n \in \mathbb{N}
\end{aligned}
$$

A sequence of real numbers

The sequence of real numbers ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, \ldots \in \mathbb{R}$), i.e. the mapping $a: \mathbb{N} \rightarrow \mathbb{R}$, is denoted by

$$
\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Arithmetic progression

The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers is an arithmetic progression if and only if the difference

$$
d=a_{n+1}-a_{n}
$$

is constant for all $n=1,2,3, \ldots$

The n-th element of the arithmetic progression is

$$
a_{n}=a_{1}+(n-1) d \quad \text { for } \quad n=1,2,3, \ldots
$$

Arithmetic progression: the sum of the first \boldsymbol{n} elements

Let the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers be an arithmetic progression.
The sum of the first n elements is

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

and it holds

$$
\sum_{k=1}^{n} a_{k}=\frac{a_{1}+a_{n}}{2}
$$

Geometric progression

The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers is a geometric progression if and only if the ratio

$$
q=\frac{a_{n+1}}{a_{n}}
$$

is constant for all $n=1,2,3, \ldots$

The n-th element of the geometric progression is

$$
a_{n}=a_{1} \times q^{n-1} \quad \text { for } \quad n=1,2,3, \ldots
$$

Geometric progression: the sum of the first \boldsymbol{n} elements

Let the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers be a geometric progression, i.e. $a_{n}=a_{1} \times q^{n-1}$ for some $q \in \mathbb{R}$.

Notice that:

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots+a_{n}= \\
& =a_{1} \times q^{0}+a_{1} \times q^{1}+a_{1} \times q^{2}+a_{1} \times q^{3}+a_{1} \times q^{4}+\cdots+a_{1} \times q^{n-1}= \\
& =a_{1} \times\left(q^{0}+q^{1}+q^{2}+q^{3}+q^{4}+\cdots+q^{n-1}\right)=S
\end{aligned}
$$

Hence

$$
\begin{aligned}
a_{1} \times\left(q^{0}+q^{1}+q^{2}+q^{3}+q^{4}+\cdots+q^{n-1}\right)(q-1) & =S(q-1) \\
a_{1} \times\left(q^{1}-q^{0}+q^{2}-q^{1}+q^{3}-q^{2}+\cdots+q^{n}-q^{n-1}\right) & =S(q-1) \\
a_{1} \times\left(q^{n}-q^{0}\right) & =S(q-1) \\
S & =a_{1} \times \frac{q^{n}-1}{q-1}
\end{aligned}
$$

Geometric progression: the sum of the first \boldsymbol{n} elements

Let the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers be a geometric progression.
The sum of the first n elements is

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

and it holds

$$
\sum_{k=1}^{n} a_{k}=a_{1} \times \frac{q^{n}-1}{q-1}
$$

The limit of a sequence: the neighbourhood of a point

The neighbourhood of a point is the set of all "nearby" points:

A refined neighbourhood of the point is a smaller set of all "nearby" points:

And we are about to consider smaller and smaller neighbourhoods...

The limit of a sequence

Consider a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers.
It may happen that:
as n tends to infinity ($n \rightarrow+\infty$), then the numbers a_{n} tend to some number A, i.e. $a_{n} \rightarrow A$.

In other words: as n gets close to infinity (the point $+\infty$), then the numbers a_{n} are close to the number A.

Equivalently:
if \boldsymbol{n} is in a small neighbourhood of infinity (the point $+\infty$), then the numbers a_{n} are in a small neighbourhood of the number A.

The limit of a sequence

To denote the fact that the number A is the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers, we write

$$
\lim _{n \rightarrow \infty} a_{n}=A
$$

Notice that the number A can be

- either finite $(A \in \mathbb{R})$
- or infinite ($A=-\infty$ or $A=+\infty$)

Hence, we need up to three definitions of the notation ${ }^{\lim } n_{n \rightarrow \infty} a_{n}=A^{n}$ (for three types of neighbourhood of the point A; notice that $n \rightarrow \infty$, so the neighbourhood of $+\infty$ is the same in all of the three cases).

The limit of a sequence

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers and let $A \in \mathbb{R}$ be a (finite) real number.

We say that the number A is the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and we write

$$
\lim _{n \rightarrow \infty} a_{n}=A
$$

if and only if

$$
\forall \varepsilon>0 \quad \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \in\left(n_{0},+\infty\right) \Rightarrow a_{n} \in(A-\varepsilon, A+\varepsilon)
$$

or

$$
\forall \varepsilon>0 \quad \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n>n_{0} \Rightarrow\left|\alpha_{n}-A\right|<\varepsilon
$$

The limit of a sequence

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers.
We say that the (infinite) number $+\infty$ is the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and we wite

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

if and only if
$\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \in\left(n_{0},+\infty\right) \Rightarrow a_{n} \in(K,+\infty)$

Or

$$
\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n>n_{0} \Rightarrow a_{n}>K
$$

The limit of a sequence

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers.
We say that the (infinite) number $-\infty$ is the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and we wite

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

if and only if
$\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \in\left(n_{0},+\infty\right) \Rightarrow a_{n} \in(-\infty, K)$

Or

$$
\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n>n_{0} \Rightarrow a_{n}<K
$$

The limit of a sequence

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers.
We say that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent if and only if $\lim _{n \rightarrow \infty} a_{n}=A$ for some finite number $A \in \mathbb{R}$.

The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges to $+\infty$ if and only if $\lim _{n \rightarrow \infty} a_{n}=+\infty$.
The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges to $-\infty$ if and only if $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

We say that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is divergent if and only if $\lim _{n \rightarrow \infty} a_{n}=A$ for no number $A \in \mathbb{R} \cup\{-\infty,+\infty\}$.

Properties of the limit

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers such that

$$
\lim _{n \rightarrow \infty} a_{n}=A \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=B .
$$

It then holds for any $\boldsymbol{c} \in \mathbb{R}$ that:
$-\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c A$
$-\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B$
The expressions

$$
\begin{aligned}
& (+\infty)+(-\infty) \\
& (+\infty)-(+\infty) \\
& (-\infty)-(-\infty)
\end{aligned}
$$

are not defined.

$$
\begin{aligned}
& \text { We define for any } a \in \mathbb{R} \text { : } \\
& \qquad \begin{array}{c}
a+(+\infty)=+\infty+a=+\infty \\
a+(-\infty)=-\infty+a=-\infty \\
(+\infty)+(+\infty)=+\infty \\
(-\infty)+(-\infty)=-\infty
\end{array}
\end{aligned}
$$

$-\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B$
whenever the expression on the right-hand side is defined.

Properties of the limit

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers such that

$$
\lim _{n \rightarrow \infty} a_{n}=A \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=B
$$

It then holds:
$-\lim _{n \rightarrow \infty}\left(a_{n} \times b_{n}\right)=A \times B$

- $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{A}{B} \quad$ if $\quad B \neq 0$
whenever the expression on the right-hand side is defined.

$$
\begin{aligned}
& \text { We define for any } a \in \mathbb{R}^{+} \text {: } \\
& a \times(+\infty)=+\infty \times a=+\infty \\
& a \times(-\infty)=-\infty \times a=-\infty \\
& \text { We define for any } a \in \mathbb{R}^{-} \text {: } \\
& a \times(+\infty)=+\infty \times a=-\infty \\
& a \times(-\infty)=-\infty \times a=+\infty \\
& \text { Moreover: } \\
& (+\infty) \times(+\infty)=(-\infty) \times(-\infty)=+\infty \\
& (+\infty) \times(-\infty)=(-\infty) \times(+\infty)=-\infty
\end{aligned}
$$

The expressions

$$
0 \times(\pm \infty)
$$

$$
(\pm \infty) \div(\pm \infty)
$$

are not defined.

The limit as a linear mapping

Let V and W be vector spaces $f: V \rightarrow W$ be a mapping. Recall that the mapping f is IInear if and only if it holds

$$
\begin{aligned}
f(u+v) & =f(u)+f(v) & & \text { for every }
\end{aligned} \quad u, v \in V \quad \text { (} r \text { for every } \quad u \in V \quad \text { and for every } \quad \lambda \in \mathbb{R}
$$

It holds

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} \lambda a_{n} & =\lambda \lim _{n \rightarrow \infty} a_{n}
\end{aligned}
$$

$$
\text { for every }\left\{a_{n}\right\}_{n=1}^{\infty} \text { and }\left\{b_{n}\right\}_{n=1}^{\infty}
$$

$$
\text { for every }\left\{a_{n}\right\}_{n=1}^{\infty} \text { and for every } \lambda \in \mathbb{R}
$$

Theorem

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty},\left\{c_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers such that

$$
a_{n} \leq b_{n} \leq c_{n} \quad \text { for all } \quad n \in \mathbb{N}
$$

If

$$
\lim _{n \rightarrow \infty} a_{n}=B=\lim _{n \rightarrow \infty} c_{n} \quad \text { for some } \quad B \in \mathbb{R} \cup\{+\infty,-\infty\}
$$

then

$$
\lim _{n \rightarrow \infty} b_{n}=B
$$

Infinite series

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers.
The infinite series or the infinite sum is

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+\cdots
$$

Sequence of partial sums

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers.
The sequence of the partial sums of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& s_{4}=a_{1}+a_{2}+a_{3}+a_{4} \\
& s_{5}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \\
& s_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& s_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
& \quad:
\end{aligned}
$$

The sum of a series

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers and let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be the sequence of the partial sums ($s_{n}=a_{1}+\cdots+a_{n}$).

We say that the series $\sum_{n=1}^{\infty} a_{n}$ converges to a (finite) number $S \in \mathbb{R}$, or diverges to $+\infty$ or diverges to $-\infty$ and we write

$$
\sum_{n=1}^{\infty} a_{n}=S \quad \sum_{n=1}^{\infty} a_{n}=+\infty \quad \sum_{n=1}^{\infty} a_{n}=-\infty
$$

if and only if

$$
\lim _{n \rightarrow \infty} s_{n}=S \quad \lim _{n \rightarrow \infty} s_{n}=+\infty \quad \lim _{n \rightarrow \infty} s_{n}=-\infty
$$

respectively.

Divergent series

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers and let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be the sequence of the partial sums $\left(s_{n}=a_{1}+\cdots+a_{n}\right)$.

We say that the series $\sum_{n=1}^{\infty} a_{n}$ is divergent if and only if the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is divergent.

The sum of a geometric series

Let the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers be a geometric progression and let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be the sequence of the partial sums ($s_{n}=a_{1}+\cdots+a_{n}$).

Assume that $|q|<1$.
Then

$$
s_{n}=a_{1} \times \frac{q^{n}-1}{q-1}=\frac{a_{1}}{q-1}(\underbrace{q^{n}}_{\rightarrow 0}-1)=a_{1}+a_{2}+\cdots+a_{n}
$$

Hence the sum of the geometric series is

$$
\sum_{k=1}^{\infty} a_{k}=a_{1} \times \frac{1}{1-q}
$$

