Quantitative Methods

SILESIAN UNIVERSITY
SCHOOL OF BUSINESS ADMINISTRATION IN KARVINA

Lecture 6

Differential calculus

Outline of the lecture

SILESIAN UNIVERSITY
School of business administration in karvina

- The derivative of a function
- Derivatives of elementary functions

The derivative of a function

Motivation: instantaneous velocity and the line tangent to the graph of a function

Rules to calculate the derivative

Chain rule

The derivative of a function

Example - instantaneous velocity of a mass point:
Let a mass point move along a line (horizontally, say).
Let $f(t)$ denote the distance of the point from the origin at time t.
Let t_{1} and t_{2}, such that $t_{1}<t_{2}$, be two times.
Then the average velocity of the point between the times t_{1} and t_{2} is

$$
\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Now, what happens if t_{1} is fixed and t_{2} tends to t_{1} ?

The derivative of a function

The average velocity of the point between the times t_{1} and t_{2} is

$$
\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

What happens if t_{1} is fixed and t_{2} tends to t_{1} ?
Considering the shorter and shorter time intervals, we get

$$
\lim _{t_{2} \rightarrow t_{1}} \frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

which is the instantaneous velocity of the mass point at the time t_{1} (if the limit exists)

The derivative of a function

Example - the line tangent to the graph of a function:
Let f be a "smooth" function.
Choose a point x_{0}. Our purpose is to
find the line tangent to the graph of the function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$.

That is, we are seeking for a line

$$
y=a x+b
$$

that is tangent to the graph of the function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$.
First, our task is to find the slope a of the tangent line.

The derivative of a function

Let $h \neq 0$ be a small non-zero real number.
Then the ratio

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

is the slope of the secant line
passing through the points $\left[x_{0}, f\left(x_{0}\right)\right]$ and $\left[x_{0}+h, f\left(x_{0}+h\right)\right]$.

Now, let $h \rightarrow 0$.

The derivative of a function

Then

$$
a=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

is the slope of the tangent line at the point $\left[x_{0}, f\left(x_{0}\right)\right]$ (if the limit exists).

It then also holds:

$$
a=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

The derivative of a function

To find the constant b in the equation

$$
y=a x+b
$$

of the line tangent to the graph of the function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$, once the coefficient a is known, it suffices to put

$$
\begin{aligned}
f\left(x_{0}\right) & =a x_{0}+b \\
b & =f\left(x_{0}\right)-a x_{0}
\end{aligned}
$$

The derivative of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ for some $\delta>0$.

Then

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

is the first derivative of the function f at the point x_{0} (if the limit exists).
If the limit does not exist - the function is not differentiable at x_{0},
i.e. the function has no derivative at x_{0}.

The derivative of a function

If the limit

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

is finite - the derivative is finite.
If the limit is infinite - then the derivative is infinite.

Theorem. If the derivative $f^{\prime}\left(x_{0}\right)$ exists and is finite,
then the function f is continuous at the point x_{0}.

Rules to calculate the derivative I

SILESIAN UNIVERSITY SChool of business administration in karvina

Let f be a function such that its derivatives at a point $x \in \mathbb{R}$ exists and is finite.
That is, $f^{\prime}(x)$ exists and is finite.
Moreover, let $c \in \mathbb{R}$ be any constant.
It then holds:

$$
(c \times f)^{\prime}(x)=c \times f^{\prime}(x)
$$

Rules to calculate the derivative II

Let f and g be two functions such that their derivatives at a point $x \in \mathbb{R}$ exist and are finite.

That is, $f^{\prime}(x)$ and $g^{\prime}(x)$ exist and are finite.
It then holds:

$$
\begin{aligned}
& (f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) \\
& (f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Rules to calculate the derivative III

Let f and g be two functions such that
their derivatives at a point $x \in \mathbb{R}$ exist and are finite.
That is, $f^{\prime}(x)$ and $g^{\prime}(x)$ exist and are finite.
It then holds:

$$
(f \times g)^{\prime}(x)=\left(f^{\prime}(x) \times g(x)\right)+\left(f(x) \times g^{\prime}(x)\right)
$$

If $g(x) \neq 0$, then

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{\left(f^{\prime}(x) \times g(x)\right)-\left(f(x) \times g^{\prime}(x)\right)}{g^{2}(x)}
$$

Chain rule

SILESIAN

Let g be a function such that its derivatives at a point $x \in \mathbb{R}$ exists and is finite.
Let f be a function such that its derivatives at the point $g(x)$ exists and is finite.
Then:

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Examples: Derivatives of elementary functions I

SILESIAN UNIVERSITY
School of business administration in karvina

Then $\quad f^{\prime}(x)=0$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\text { const. - const. }}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0
$$

Examples: Derivatives of elementary functions II

SILESIAN UNIVERSITY

Let

$$
f(x)=x^{n} \quad \text { for } \quad n=1,2,3,4,5, \ldots
$$

Then

$$
f^{\prime}(x)=n \times x^{n-1}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}= \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+\binom{n}{1} x^{n-1} h+\binom{n}{k} x^{n-2} h^{2}+\cdots+h^{n}-x^{n}}{h}=n x^{n-1}
\end{aligned}
$$

Examples: Derivatives of elementary functions III

SILESIAN UNIVERSITY School of business administration in karvina

Let $\quad f(x)=\sqrt[n]{x}=x^{\frac{1}{n}} \quad$ for $\quad n=1,2,3,4,5, \ldots$

Then

$$
f^{\prime}(x)=\frac{1}{n \times \sqrt[n]{x^{n-1}}}=\frac{1}{n} \times x^{\frac{1}{n}-1}
$$

- calculate the derivative of the function inverse $(\sqrt[n]{x})$ to the function $f(x)=x^{n}$

Examples: Derivatives of elementary functions IV

Then

$$
f^{\prime}(x)=\frac{p}{q} \times \sqrt[q]{x^{p-q}}=\frac{p}{q} \times x^{\frac{p-q}{q}}
$$

- calculate the derivative of the composite function $\left(\sqrt[q]{x^{p}}\right)$ - chain rule

Examples: Derivatives of elementary functions IV

SILESIAN UNIVERSITY School of business administration in karvina
Let $\quad f(x)=x^{\lambda} \quad$ for $\lambda \in \mathbb{R}$

Then $\quad f^{\prime}(x)=\lambda \times x^{\lambda-1}$
— consider the limit of $x^{\lambda_{n}}$ for $\lambda_{n}=\frac{p_{n}}{q_{n}} \rightarrow \lambda$

Examples: Derivatives of elementary functions V

SILESIAN UNIVERSITY
SChool of business administration in karvina

Let

$$
f(x)=\mathrm{e}^{x}
$$

Then
$f^{\prime}(x)=\mathrm{e}^{x}$

Examples: Derivatives of elementary functions VI

SILESIAN UNIVERSITY
School of business administration in karvina

Let	$f(x)=\sin x$
Then	$f^{\prime}(x)=\cos x$

Let $\quad f(x)=\cos x$
Then $\quad f^{\prime}(x)=-\sin x$

Examples: Derivatives of elementary functions VII

SILESIAN UNIVERSITY

Let $\quad f(x)=\tan x$
Then $\quad f^{\prime}(x)=\frac{1}{\cos ^{2} x}=\frac{1}{(\cos x)^{2}}$

$$
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{\cos x \times \cos x-\sin x \times(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

Examples: Derivatives of elementary functions VIII

SILESIAN UNIVERSITY

$$
f(x)=a^{x} \quad \text { for } \quad a>0
$$

Then $\quad f^{\prime}(x)=a^{x} \times \ln a$

$$
\begin{aligned}
& f(x)=a^{x}=\mathrm{e}^{\ln \left(a^{x}\right)}=\mathrm{e}^{x \ln a} \\
& f^{\prime}(x)=\mathrm{e}^{x \ln a} \times(1 \times \ln a)=a^{x} \times \ln a
\end{aligned}
$$

The rules of differentiation

Let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be functions with the derivative in the interval

$$
J \subseteq R^{\text {hen: }}
$$

i) $[c \cdot f(x)]^{\prime}=c \cdot f^{\prime}(x)$
ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
iv) $\left[\frac{f(x)}{g(x)}\right],=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}, g(x) \neq 0$
v) $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Derivatives of elementary functions

		$\sin x$	$\cos x$
$f(x)$	$f^{\prime}(x)$	$\cos x$	$-\sin x$
		$\operatorname{tg} x$	1
konstanta	0		$\overline{\cos ^{2} x}$
x	1	$\operatorname{cotg} x$	1
x^{n}	$n x^{n-1}$		$\frac{1}{\sin ^{2} x}$
e^{x}	e^{x}	$\arcsin x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\ln x$	1		$\sqrt{1-x^{2}}$
	$\frac{1}{x}$	$\arccos x$	$\frac{1}{\sqrt{1-x^{2}}}$
a^{x}	$a^{x} \cdot \ln a$		
$\log _{a} x$	$\frac{1}{x \ln a}$	$\operatorname{arctg} x$	$\frac{1}{1+x^{2}}$
	$x \ln a$	$\operatorname{arccotg} x$	$-\frac{1}{1+x^{2}}$

Examples

$$
\begin{aligned}
& y=x^{2} \Rightarrow y^{\prime}=2 \cdot 1=2 \\
& y=6 x^{3}-5 x+4 \Rightarrow y^{\prime}=18 x^{2}-5 \\
& y=\frac{1}{x^{2}} \Rightarrow y^{\prime}=-\frac{2}{x^{3}} \\
& y=5^{x} \Rightarrow y^{\prime}=5^{x} \cdot \ln 5 \\
& y=\ln \left(x^{2}-4\right) \Rightarrow y^{\prime}=\frac{1}{x^{2}-4} \cdot(2 x) \\
& y=x \cdot e^{x} \Rightarrow y^{\prime}=1 \cdot e^{x}+x \cdot e^{x}
\end{aligned}
$$

