# **Quantitative Methods**

# Lecture 6

#### Differential calculus



BAKVM

# **Outline of the lecture**

- The derivative of a function
- Derivatives of elementary functions





Motivation: instantaneous velocity and the line tangent to the graph of a function

Rules to calculate the derivative

Chain rule



#### Example – instantaneous velocity of a mass point:

Let a mass point move along a line (horizontally, say).

Let f(t) denote the distance of the point from the origin at time t.

Let  $t_1$  and  $t_2$ , such that  $t_1 < t_2$ , be two times.

Then the average velocity of the point between the times  $t_1$  and  $t_2$  is

$$\frac{f(t_2) - f(t_1)}{t_2 - t_1}$$

Now, what happens if  $t_1$  is fixed and  $t_2$  tends to  $t_1$ ?

The average velocity of the point between the times  $t_1$  and  $t_2$  is

$$\frac{f(t_2) - f(t_1)}{t_2 - t_1}$$

What happens if  $t_1$  is fixed and  $t_2$  tends to  $t_1$ ?

Considering the shorter and shorter time intervals, we get

$$\lim_{t_2 \to t_1} \frac{f(t_2) - f(t_1)}{t_2 - t_1}$$

which is the instantaneous velocity of the mass point at the time  $t_1$ 

(if the limit exists)





Example – the line tangent to the graph of a function:

Let f be a "smooth" function.

Choose a point  $x_0$ . Our purpose is to

find the line tangent to the graph of the function f at the point  $[x_0, f(x_0)]$ .

That is, we are seeking for a line

y = ax + b

that is tangent to the graph of the function f at the point  $[x_0, f(x_0)]$ .

First, our task is to find the slope a of the tangent line.

Let  $h \neq 0$  be a small non-zero real number.

Then the ratio

$$\frac{f(x_0+h)-f(x_0)}{h}$$

#### is the slope of the secant line

passing through the points  $[x_0, f(x_0)]$  and  $[x_0 + h, f(x_0 + h)]$ .

Now, let  $h \rightarrow 0$ .





#### Then

$$a = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

is the slope of the tangent line at the point  $[x_0, f(x_0)]$  (if the limit exists).

It then also holds:

$$a = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$



To find the constant b in the equation

$$y = ax + b$$

of the line tangent to the graph of the function f at the point  $[x_0, f(x_0)]$ , once the coefficient a is known, it suffices to put

$$f(x_0) = ax_0 + b$$
$$b = f(x_0) - ax_0$$



Let a function f and a point  $x_0 \in \mathbb{R}$  be given.

Assume that the function f is defined on the whole interval  $(x_0 - \delta, x_0 + \delta)$  for some  $\delta > 0$ .

Then

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

is **the first derivative** of the function f at the point  $x_0$  (if the limit exists). If the limit does not exist — the function is not differentiable at  $x_0$ , i.e. the function has no derivative at  $x_0$ .

If the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

is finite — the derivative is finite.

If the limit is infinite — then the derivative is infinite.

**Theorem.** If the derivative  $f'(x_0)$  exists and is finite, then the function f is continuous at the point  $x_0$ .



### Rules to calculate the derivative I



Let *f* be a function such that its derivatives at a point  $x \in \mathbb{R}$  exists and is finite. That is, f'(x) exists and is finite. Moreover, let  $c \in \mathbb{R}$  be any constant.

It then holds:

 $(c \times f)'(x) = c \times f'(x)$ 

### Rules to calculate the derivative II

Let f and g be two functions such that their derivatives at a point  $x \in \mathbb{R}$  exist and are finite. That is, f'(x) and g'(x) exist and are finite.

It then holds:

(f+g)'(x) = f'(x) + g'(x)(f-g)'(x) = f'(x) - g'(x)



### Rules to calculate the derivative III

Let f and g be two functions such that their derivatives at a point  $x \in \mathbb{R}$  exist and are finite. That is, f'(x) and g'(x) exist and are finite.

It then holds:

$$(f \times g)'(x) = (f'(x) \times g(x)) + (f(x) \times g'(x))$$

If  $g(x) \neq 0$ , then  $\left(\frac{f}{g}\right)'(x) = \frac{\left(f'(x) \times g(x)\right) - \left(f(x) \times g'(x)\right)}{g^2(x)}$ 



### **Chain rule**



Let *g* be a function such that its derivatives at a point  $x \in \mathbb{R}$  exists and is finite. Let *f* be a function such that its derivatives at the point g(x) exists and is finite. Then:

 $(f \circ g)'(x) = f'(g(x)) \times g'(x)$ 

#### **Examples: Derivatives of elementary functions I**



Let f(x) = const.

Then f'(x) = 0

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\text{const.} - \text{const.}}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0$$

### **Examples: Derivatives of elementary functions II**



Let 
$$f(x) = x^n$$
 for  $n = 1, 2, 3, 4, 5, ...$ 

Then f'(x) =

$$(x) = n \times x^{n-1}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} =$$
$$= \lim_{h \to 0} \frac{x^n + \binom{n}{1} x^{n-1} h + \binom{n}{k} x^{n-2} h^2 + \dots + h^n - x^n}{h} = nx^{n-1}$$

#### **Examples: Derivatives of elementary functions III**



Then 
$$f'(x) = \frac{1}{n \times \sqrt[n]{x^{n-1}}} = \frac{1}{n} \times x^{\frac{1}{n}-1}$$

— calculate the derivative of the function inverse  $(\sqrt[n]{x})$  to the function  $f(x) = x^n$ 



### **Examples: Derivatives of elementary functions IV**



Let 
$$f(x) = x^{\frac{p}{q}} = \sqrt[q]{x^p}$$
 for  $p, q = 1, 2, 3, 4, 5, ...$ 

Then 
$$f'(x) = \frac{p}{q} \times \sqrt[q]{x^{p-q}} = \frac{p}{q} \times x^{\frac{p-q}{q}}$$

-

— calculate the derivative of the composite function  $(\sqrt[q]{x^p})$  – chain rule

### **Examples: Derivatives of elementary functions IV**



Let  $f(x) = x^{\lambda}$  for  $\lambda \in \mathbb{R}$ 

Then  $f'(x) = \lambda \times x^{\lambda-1}$ 

— consider the limit of 
$$x^{\lambda_n}$$
 for  $\lambda_n = \frac{p_n}{q_n} \rightarrow \lambda$ 

### **Examples: Derivatives of elementary functions V**



- $f(x) = e^x$  $f'(x) = e^x$ Let
- Then

# **Examples: Derivatives of elementary functions VI**



- Let  $f(x) = \sin x$
- Then  $f'(x) = \cos x$

Let  $f(x) = \cos x$ 

Then  $f'(x) = -\sin x$ 

### **Examples: Derivatives of elementary functions VII**



Let 
$$f(x) = \tan x$$

Then 
$$f'(x) = \frac{1}{\cos^2 x} = \frac{1}{(\cos x)^2}$$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \times \cos x - \sin x \times (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

#### **Examples: Derivatives of elementary functions VIII**



Then  $f'(x) = a^x \times \ln a$ 

$$f(x) = a^{x} = e^{\ln(a^{x})} = e^{x \ln a}$$
$$f'(x) = e^{x \ln a} \times (1 \times \ln a) = a^{x} \times \ln a$$



#### The rules of differentiation



Let f(x) and g(x) be functions with the derivative in the interval  $J \subseteq R$  hen:

i) 
$$[c \cdot f(x)]' = c \cdot f'(x)$$
  
ii)  $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$   
iii)  $[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$   
iv)  $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}, g(x) \neq 0$   
v)  $[f(g(x))]' = f'(g(x)) \cdot g'(x)$ 

#### **Derivatives of elementary functions**



|                |                   | sinx     | cosx                      |
|----------------|-------------------|----------|---------------------------|
| f(x)           | f(x)              | cosx     | $-\sin x$                 |
|                |                   | 4-       | 1                         |
| konstanta      | 0                 | tgx      | $\overline{\cos^2 x}$     |
| <i>x</i>       | 1                 | cotgx    | $-\frac{1}{\sin^2 x}$     |
| $x^n$          | $nx^{n-1}$        |          |                           |
| e <sup>x</sup> | $e^{x}$           | arcsinx  | $\frac{1}{\sqrt{1-x^2}}$  |
| $\ln x$        | 1                 |          | $\frac{\sqrt{1-x}}{1}$    |
|                | x                 | arccosx  | $-\frac{1}{\sqrt{1-x^2}}$ |
| $a^x$          | $a^x \cdot \ln a$ |          | 1                         |
| $\log_a x$     | 1                 | arctgx   | $\frac{1}{1+x^2}$         |
|                | $x \ln a$         | arccotgx | 1                         |
|                |                   | arceotgi | $1 + x^2$                 |

#### Examples



 $y = x^{2} \Rightarrow y' = 2 \cdot 1 = 2$   $y = 6x^{3} - 5x + 4 \Rightarrow y' = 18x^{2} - 5$   $y = \frac{1}{x^{2}} \Rightarrow y' = -\frac{2}{x^{3}}$   $y = 5^{x} \Rightarrow y' = 5^{x} \cdot \ln 5$   $y = \ln(x^{2} - 4) \Rightarrow y' = \frac{1}{x^{2} - 4} \cdot (2x)$   $y = x \cdot e^{x} \Rightarrow y' = 1 \cdot e^{x} + x \cdot e^{x}$