Quantitative Methods

Lecture 7

L'Hospital's rule

BAKVM

- L'Hospital's rule
- Higher-order derivatives

- Limits of the type $\frac{0}{0}$
- Higher-order derivatives
- Limits of the type $\frac{0}{0}$ revisited
- Limits of the type $\frac{?}{\infty}$
- Limits of the type $\infty \infty$

Let f and g be two functions and let $x_0 \in \mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ not be an isolated point of the domains D_f and D_g . Let us discuss the limit

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

The case:

- $\lim_{x\to x_0} f(x)$ is finite & $\lim_{x\to x_0} g(x) \neq 0$ and is finite easy, we already know the limit is the quotient of the limits
- $\lim_{x\to x_0} f(x)$ is finite & $\lim_{x\to x_0} |g(x)| = +\infty$ easy, the limit is zero

Let f and g be two functions and let $x_0 \in \mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ not be an isolated point of the domains D_f and D_g . Let us discuss the limit

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

The cases:

- $\lim_{x\to x_0} |f(x)| = +\infty$ is finite & $g(x) \neq 0$ on a neighbourhood of the point x_0
- $\lim_{x \to x_0} f(x) \neq 0$ & $\lim_{x \to x_0} g(x) = 0$

— both are easy, the limit is either $+\infty$ or $-\infty$ or does not exist

Let f and g be two functions and let $x_0 \in \mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ not be an isolated point of the domains D_f and D_g . Let us discuss the limit

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

The cases:

- $\lim_{x\to x_0} |f(x)| = +\infty$ is finite & $g(x) \neq 0$ on a neighbourhood of the point x_0
- $\lim_{x \to x_0} f(x) \neq 0$ & $\lim_{x \to x_0} g(x) = 0$

— both are easy, the limit is either $+\infty$ or $-\infty$ or does not exist

Let f and g be two functions and let $x_0 \in \mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ not be an isolated point of the domains D_f and D_g .

Consider the limit

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

a / -

in the case when

iii

and

$$\lim_{x \to x_0} f(x) = 0 \quad \text{and} \quad \lim_{x \to x_0} g(x) = 0$$

and
$$\lim_{i \to x_0} g(x) \neq 0 \quad \text{for every} \quad x \in (x_0 - \delta, x_0 + \delta) \quad \text{for some} \quad \delta > 0 \quad \text{III}$$

Then it is the limit of the type $\frac{0}{0}$

Notice

A special case of the limit

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

is for

$$f(x) = F(x) - F(x_0)$$
 and $g(x) = x - x_0$

If the function F is continuous at the point x_0 , then $\lim_{x \to x_0} f(x) = 0$ and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = F'(x_0) = f'(x_0)$$

if the limit exists.

Let $x_0 \in \mathbb{R}$ not be an isolated point of either the domains D_f and D_g of functions f and g, and let

$$\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=0$$

Moreover, let there be some $\delta > 0$ such that

f'(x) and g'(x) exist for every $x \in (x_0 - \delta, x_0 + \delta)$ and $g(x) \neq 0$ and $g'(x) \neq 0$ for every $x \in (x_0 - \delta, x_0 + \delta)$... Then: If the limit

also exists and it holds

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

$$\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

Let I be an open interval and let a function f be defined on the interval I. It may happen that the limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists and is finite for every point x of the interval I.

We have a new function f' defined on the interval I thus.

Choose a point $x_0 \in I$. Then

$$f''(x_0) = \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{h}$$

is the second derivative of the function f at the point x_0 (if the limit exists).

Notation:

ļ

- f' ... the (first) derivative
- f'' ... the second derivative
- f''' ... the third derivative
- $f^{(4)}$... the fourth derivative

 $f^{(n)}$... the *n*-th derivative

 $f^{(0)} = f$... the zeroth derivative of the function f, i.e. the original function f

It also holds — Theorem

Let

and

and

Then

$\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=0$

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
$$g'(x_0) = g''(x_0) = \dots = g^{(n-1)}(x_0) = 0$$

the derivatives exist and are zero

$$f^{(n)}$$
exists and is finite $g^{(n)}$ exists and is finite

and $\exists \delta > 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta):$ $g(x) \neq 0$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f^{(n)}(x_0)}{g^{(n)}(x_0)}$$

Let $x_0 \in \mathbb{R}$ not be an isolated point of either the domains D_f and D_g of functions f and g, and let

$$\lim_{x\to x_0}|g(x)|=+\infty$$

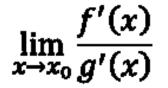
Moreover, let there be some $\delta > 0$ such that

f'(x) and g'(x) exist for every $x \in (x_0 - \delta, x_0 + \delta)$ and

$$g'(x) \neq 0$$
 for every $x \in (x_0 - \delta, x_0 + \delta)$

...

... Then: If the limit



exists (finite or infinite), then the limit

 $\lim_{x\to x_0}\frac{f(x)}{g(x)}$

also exists and it holds

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

Limit of the type $\infty - \infty$

Let

$$\lim f(x) = \lim g(x) = \pm \infty$$

Then

$$\lim f(x) - g(x) = \lim \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}}$$

i.e. the limit of the type $\infty - \infty$ is transformed into the type $\frac{0}{0}$

Example

Find the limit

$$\lim_{x\to 0}\frac{\sin x}{x}$$

Recall that $(\sin x)' = \cos x$ and that $(x)' = (x^1)' = 1x^0 = 1$. Hence:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \frac{1}{1} = 1$$

Find the limit

$$\lim_{x\to 0}\frac{\arctan x}{x}$$

Recall that (x)' = 1, but we have to find $(\arctan x)'$ first.

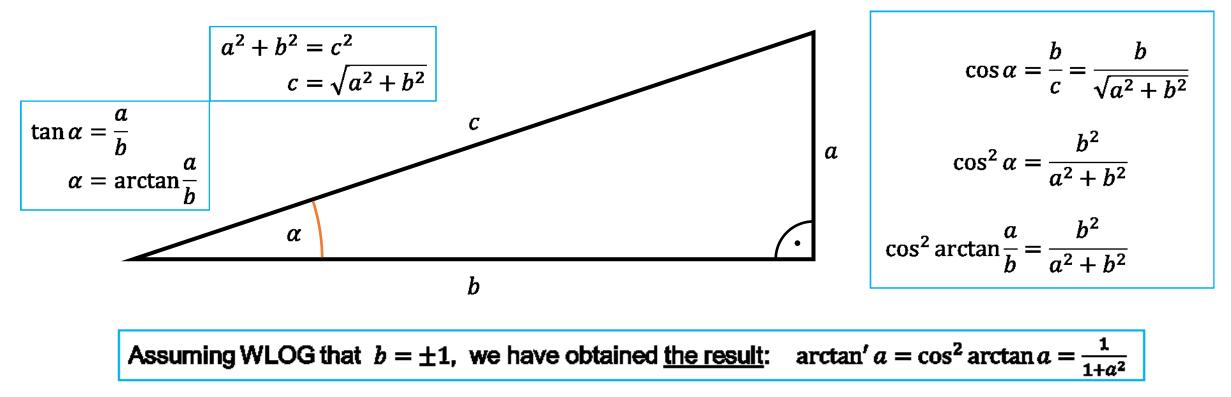
Recall that
$$\tan x = \frac{\sin x}{\cos x}$$
 for $x \neq k\frac{\pi}{2}$ for $k \in \mathbb{Z}$, therefore
 $(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\sin' x \cos x - \sin x \cos' x}{\cos^2 x} = \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$

Next, it holds for every $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that

 $\arctan \tan x = x \qquad |()'$ $(\arctan \tan x)' = 1$ $\arctan' \tan x \times \frac{1}{\cos^2 x} = 1$ $\arctan' \tan x = \cos^2 x \qquad |x = \arctan y$

 $\arctan' y = \cos^2 \arctan y$

Now, we know that $\arctan' y = \cos^2 \arctan y$ for all $y \in (-\infty, +\infty)$, but what is $\cos^2 \arctan y$?



Finally:

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x^2}}{1} = \frac{\frac{1}{1+0}}{1} = \frac{1}{1} = 1$$

Example

Find the limit

$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{\arcsin x} \right)$$

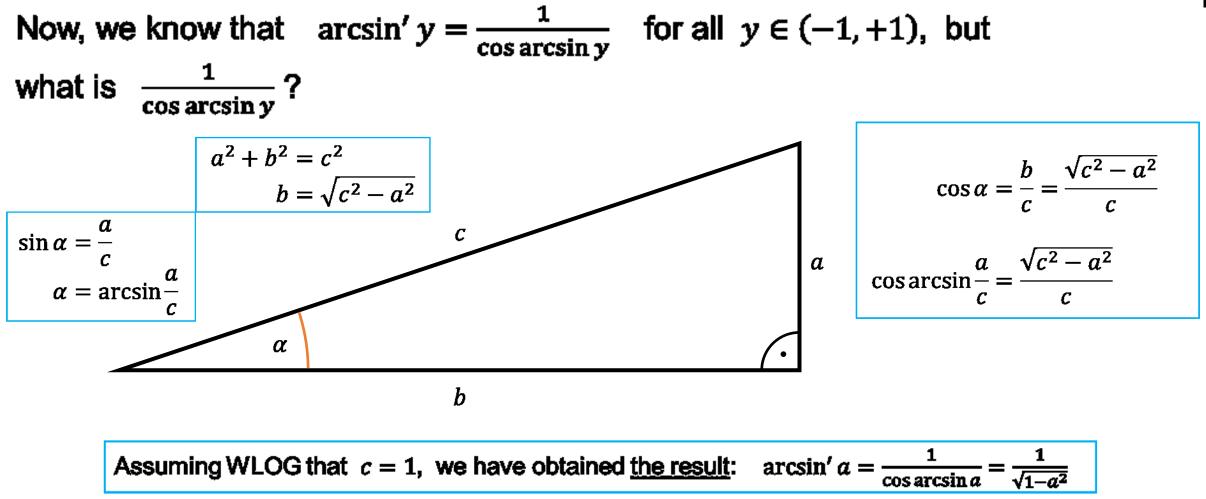
We calculate:

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\arcsin x} \right) = \lim_{x \to 0} \frac{\arcsin x - \sin x}{\sin x \times \arcsin x}$$

Recall that $(\sin x)' = \cos x$, but we have to find $(\arcsin x)'$ first.

Next, it holds for every $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that

10' $\arcsin x = x$ $(\arcsin x)' = 1$ $\arcsin' \sin x \times \cos x = 1$ $\arcsin' \sin x = \frac{1}{----}$ $|x = \arcsin y|$ $\cos x$ $\arcsin' y = \frac{1}{2}$ $\cos \arcsin \nu$



Finally:

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\arcsin x} \right) = \lim_{x \to 0} \frac{\arcsin x - \sin x}{\sin x \times \arcsin x} = \tag{(fg)' = f'g + fg'}$$

$$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \cos x}{\cos x \times \arcsin x + \sin x \times \frac{1}{\sqrt{1 - x^2}}} = \cdots$$

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\arcsin x} \right) = \dots = \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \cos x}{\cos x \times \arcsin x + \sin x \times \frac{1}{\sqrt{1 - x^2}}} = \frac{(fg)' = f'g + fg'}{(fg)' = f'g + fg'}$$
$$= \lim_{x \to 0} \frac{\frac{x}{\sqrt{1 - x^2}} + \sin x}{-\sin x \times \arcsin x + \cos x \times \frac{1}{\sqrt{1 - x^2}} + \cos x \times \frac{1}{\sqrt{1 - x^2}} + \sin x \times \frac{x}{\sqrt{1 - x^2}}} = \frac{0 + 0}{0 + 1 + 1 + 0} = 0$$
$$\frac{(f(g(x)))' = f'(g(x)) \times g'(x)}{\left(\frac{1}{\sqrt{1 - x^2}}\right)' = \left((1 - x^2)^{-\frac{1}{2}}\right)' = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \times (-2x) = \frac{x}{\sqrt{1 - x^2}}}$$