Quantitative Methods

Lecture 8

Sketching the graph of a function

BAKVM

No.

• Sketching the graph of a function

(functions increasing and decreasing, convex and concave,

local minima and maxima, inflection points)

To sketch the graph, determine:

- the domain D_f and the range R_f of the function
- the intersections with the coordinate axes x and y
- intervals of monotonicity ([non-]increasing/[non-]decreasing)
- intervals of convexity and concavity ([strictly] convex/[strictly] concave)
- local extrema and inflection points

Intervals of monotonicity and of convexity and concavity

- Function increasing, non-decreasing, non-increasing, and decreasing
- Convex combination of points
- Function strictly convex, convex, concave, and strictly concave
- Characterization by the derivatives of the first, second and higher order

We already know: Let I be an interval and let f be a function defined on the I.

on the interval I , the function f is	if and only if	for every $x_1, x_2 \in I$ such that $x_1 < x_2$
increasing	•••••	$f(x_1) < f(x_2)$
non-decreasing	•••••	$f(x_1) \leq f(x_2)$
non-Increasing		$f(x_1) \ge f(x_2)$
decreasing		$f(x_1) > f(x_2)$

We already know: f'(x) is the slope of the line tangent to the graph of the function f at the point x.

Given the line

$$y = ax + b$$

where a is its slope, we know:

- if a > 0, then the line goes up (increases)
- if a = 0, then the line is horizontal (constant)
- if a < 0, then the line goes down (decreases)

Hence:

If f'(x) > 0 at every point x of an interval I, then the function f(x) is increasing on I.

Example (however): The function

$$y = x^3$$

is increasing, but

$$y' = 3x^2$$

is zero at x = 0.

Let *I* be an open interval and let *f* be a function defined on *I*. Assume that the first derivative f'(x) (finite or infinite) exists at each point $x \in I$. Then:

I.	on the interval I , the function f is	if and only if	for every $x \in I$
	non-decreasing		$f'(x) \geq 0$
hence	non-increasing		$f'(x) \leq 0$
	constant		f'(x)=0

Assume that the first derivative f'(x) (finite or infinite) exists at each point $x \in I$. Then:

II.

If f'(x) > 0 for every $x \in I$, then the function f is **Increasing** on the interval I. If f'(x) < 0 for every $x \in I$, then the function f is **decreasing** on the interval I.

Assume that the first derivative f'(x) (finite or infinite) exists at each point $x \in I$. Then:

III. The function f is increasing on the interval I if and only if it is non-decreasing on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that f'(x) > 0.

Assume that the first derivative f'(x) (finite or infinite) exists at each point $x \in I$. Then:

III. The function f is **decreasing** on the interval I if and only if it is non-increasing on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that f'(x) < 0. Analogously:

```
If f''(x) > 0 at every point x of an interval I,
```

then the first derivative f'(x) is increasing on I.

What does that mean?

 \rightarrow The function f(x) is strictly convex on I.

Analogously:

If f''(x) > 0 at every point x of an interval I,

then the function f(x) is strictly convex on I.

Example (however): The function

$$y = x^4$$

is strictly convex, but

$$y'' = 4 \times 3x^2$$

is zero at x = 0.

Let *I* be an open interval and let *f* be a function defined on *I*. Assume the second derivative f''(x) (finite or infinite) exists at each point $x \in I$.

Then:

I.	on the interval <i>I</i> , the function <i>f</i> is	if and only if	for every $x \in I$
	convex		$f''(x)\geq 0$
concave hence linear (straight)		$f''(x) \leq 0$	
	linear (straight)		$f^{\prime\prime}(x)=0$

Assume the second derivative f''(x) (finite or infinite) exists at each point $x \in I$. Then:

II.

If f''(x) > 0 for every $x \in I$, then the function f is **convex** on the interval I.

If f''(x) < 0 for every $x \in I$, then the function f is concave on the interval I.

Assume the second derivative f''(x) (finite or infinite) exists at each point $x \in I$.

Then:

III. The function f is strictly convex on the interval I if and only if it is convex on it and

each open interval $J \subseteq I$ contains at least one $x \in J$ such that f''(x) > 0.

Assume the second derivative f''(x) (finite or infinite) exists at each point $x \in I$.

Then:

III. The function f is strictly concave on the interval I if and only if it is concave on it and

each open interval $J \subseteq I$ contains at least one $x \in J$ such that f''(x) < 0.

- Function increasing / decreasing at a point
- The point of a (strict) local maximum / minimum
- The line tangent to the graph of a function at a point
- Function strictly convex / concave at a point
- The point of inflection

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

The function f is increasing at the point x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) < f(x_0) \qquad \text{for all} \quad x \in (x_0 - \delta, x_0)$ $f(x_0) < f(x) \qquad \text{for all} \quad x \in (x_0, x_0 + \delta)$

and

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

The function f is **decreasing at the point** x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) > f(x_0) \qquad \text{for all} \quad x \in (x_0 - \delta, x_0)$ $f(x_0) > f(x) \qquad \text{for all} \quad x \in (x_0, x_0 + \delta)$

and

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and assume that $f'(x_0)$ exists.

<u>Theorem:</u>

```
If f'(x_0) > 0, then f is increasing at the point x_0.
```

```
If f'(x_0) < 0, then f is decreasing at the point x_0.
```


Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

There is a local maximum of the function f at the point x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) \le f(x_0)$ for all $x \in (x_0 - \delta, x_0 + \delta)$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

There is a strict local maximum of the function f at the point x_0 if and only if there exists a $\delta > 0$ such that

$$f(x) < f(x_0)$$
 for all $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$

increasing \downarrow decreasing

decreasing

increasing

Let a function f and a point $x_0 \in \mathbb{R}$ be given.

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

There is a strict local minimum of the function f at the point x_0 if and only if there exists a $\delta > 0$ such that

$$f(x) > f(x_0)$$
 for all $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$.

There is a local minimum of the function f at the point x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) \ge f(x_0)$ for all $x \in (x_0 - \delta, x_0 + \delta)$

The

- local maxima
- strict local maxima
- strict local minima
- local minima

are together called local extrema of the function.

<u>Theorem</u>: Let $f'(x_0)$ exist.

If there is a local extremum of the function f at the point x_0 , then $f'(x_0) = 0$.

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

Recall that the equation of the line tangent to the graph of the function fat the point $[x_0, f(x_0)]$ is

$$y = f'(x_0)x + f(x_0) - f'(x_0)x_0$$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

The function f is strictly convex at the point x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) > f'(x_0)x + f(x_0) - f'(x_0)x_0$ for all $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

The function f is strictly concave at the point x_0 if and only if there exists a $\delta > 0$ such that

 $f(x) < f'(x_0)x + f(x_0) - f'(x_0)x_0$ for all $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

<u>Theorem:</u>

If $f''(x_0) > 0$, then f is strictly convex at the point x_0 .

If $f''(x_0) < 0$, then f is strictly concave at the point x_0 .

 $f(x) < f'(x_0)x + f(x_0) - f'(x_0)x_0$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

The point x_0 is a <u>rising</u> **point of inflexion** of the function f if and only if there exists a $\delta > 0$ such that

$$f(x) > f'(x_0)x + f(x_0) - f'(x_0)x_0$$
 for all $x \in (x_0 - \delta, x_0)$

for all $x \in (x_0, x_0 + \delta)$

and

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

The point x_0 is a <u>falling</u> point of inflexion of the function f if and only if there exists a $\delta > 0$ such that

$$f(x) < f'(x_0)x + f(x_0) - f'(x_0)x_0$$
 for all $x \in (x_0 - \delta, x_0)$

and

$$f(x) > f'(x_0)x + f(x_0) - f'(x_0)x_0$$
 for all $x \in (x_0, x_0 + \delta)$

Assume that the function f is defined on the whole interval $(x_0 - \delta_0, x_0 + \delta_0)$ for some $\delta_0 > 0$, and let $f'(x_0)$ exist.

<u>Theorem:</u> Let $f''(x_0)$ exist.

If there is an inflection at the point x_0 , then $f''(x_0) = 0$.

Examples

Example 1:

and consider the point

 $y = x^3$ $x_0 = 0$

We have

hence

$$y' = 3x^2$$

$$y'(x_0)=0$$

but there is <u>no local extremum</u> at x_0 – the function is strictly increasing there!

Example 2:

and consider the point

$$y = x^4$$
$$x_0 = 0$$

We have

hence

$$y' = 4x^3$$
$$y'(x_0) = 0$$

and yes, there is a strict local minimum at x_0 .

Let

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

and let

 $f^{(n)}(x_0) \neq 0$

Then:

If *n* is odd and $f^{(n)}(x_0) > 0$, then *f* is <u>increasing</u> at the point x_0 . If *n* is odd and $f^{(n)}(x_0) < 0$, then *f* is <u>decreasing</u> at the point x_0 .

If *n* is even and $f^{(n)}(x_0) > 0$, then there is a <u>strict local minimum</u> of *f* at x_0 . If *n* is even and $f^{(n)}(x_0) < 0$, then there is a <u>strict local maximum</u> of *f* at x_0 .

Examples

Example 1:

and consider the point

 $y = x^3$ $x_0 = 0$

We have

hence

$$y' = 3x^2$$

$$y'(x_0)=0$$

but there is <u>no local extremum</u> at x_0 – the function is strictly increasing there!

Example 2:

and consider the point

$$y = x^4$$
$$x_0 = 0$$

We have

hence

$$y' = 4x^3$$
$$y'(x_0) = 0$$

and yes, there is a strict local minimum at x_0 .