Quantitative Methods

SILESIAN UNIVERSITY
SCHOOL OF BUSINESS
ADMINISTRATION IN KARVINA

Lecture 8

Sketching the graph of a function

BAKVM

Outline of the lecture

- Sketching the graph of a function
(functions increasing and decreasing, convex and concave, local minima and maxima, inflection points)

To sketch the graph, determine:

- the domain D_{f} and the range R_{f} of the function
- the intersections with the coordinate axes x and y
- intervals of monotonicity
([non-]increasing/[non-]decreasing)
- intervals of convexity and concavity ([strictly] convex/[strictly] concave)
- local extrema and inflection points

Intervals of monotonicity and of convexity and concavity

- Function increasing, non-decreasing, non-increasing, and decreasing
- Convex combination of points
- Function strictly convex, convex, concave, and strictly concave
- Characterization by the derivatives of the first, second and higher order

Sketching the graph of a function

We already know: Let I be an interval and let f be a function defined on the I.

on the interval I, the function f is	...if and only if...	for every $x_{1}, x_{2} \in I$ such that $x_{1}<x_{2}$
increasing	$\ldots \ldots$.	$f\left(x_{1}\right)<f\left(x_{2}\right)$
non-decreasing	$\ldots \ldots$.	$f\left(x_{1}\right) \leq f\left(x_{2}\right)$
non-Increasing	$\ldots \ldots$.	$f\left(x_{1}\right) \geq f\left(x_{2}\right)$
decreasing	$\ldots \ldots$.	$f\left(x_{1}\right)>f\left(x_{2}\right)$

Sketching the graph of a function

We already know: $f^{\prime}(x)$ is the slope of the line tangent to the graph of the function f at the point x.

Given the line

$$
y=a x+b
$$

where a is its slope, we know:

- if $a>0$, then the line goes up (increases)
- if $a=0$, then the line is horizontal (constant)
- if $a<0$, then the line goes down (decreases)

Sketching the graph of a function

Hence:
If $f^{\prime}(x)>0$ at every point x of an interval I, then the function $f(x)$ is increasing on I.

Example (however): The function

$$
y=x^{3}
$$

is increasing, but

$$
y^{\prime}=3 x^{2}
$$

is zero at $x=0$.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume that the first derivative $f^{\prime}(x)$ (finite or infinite) exists at each point $x \in I$.
Then:
I. on the interval I, ...if and only if... for every $x \in I$ the function f is non-decreasing

$$
\begin{aligned}
& f^{\prime}(x) \geq 0 \\
& f^{\prime}(x) \leq 0
\end{aligned}
$$

hence

$$
f^{\prime}(x)=0
$$

Theorem

Let I be an open interval and let f be a function defined on I.
Assume that the first derivative $f^{\prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
II.

If $f^{\prime}(x)>0$ for every $x \in I$, then the function f is Increasing on the interval I.
If $f^{\prime}(x)<0$ for every $x \in I$, then the function f is decreasing on the interval I.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume that the first derivative $f^{\prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
III. The function f is increasing on the interval I if and only if it is non-decreasing on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that $f^{\prime}(x)>0$.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume that the first derivative $f^{\prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
III. The function f is decreasing on the interval I if and only if it is non-increasing on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that $f^{\prime}(x)<0$.

Sketching the graph of a function

Analogously:
If $f^{\prime \prime}(x)>0$ at every point x of an interval I, then the first derivative $f^{\prime}(x)$ is increasing on I.

What does that mean?
\rightarrow The function $f(x)$ is strictly convex on I.

Sketching the graph of a function

Analogously:
If $f^{\prime \prime}(x)>0$ at every point x of an interval I, then the function $f(x)$ is strictly convex on I.

Example (however): The function

$$
y=x^{4}
$$

is strictly convex, but

$$
y^{\prime \prime}=4 \times 3 x^{2}
$$

is zero at $x=0$.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume the second derivative $f^{\prime \prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
I.
on the interval I, the function f is
convex
concave
...if and only if...
for every $x \in I$
hence
Ilnear (stralght)

$$
f^{\prime \prime}(x) \geq 0
$$

$$
f^{\prime \prime}(x) \leq 0
$$

$$
f^{\prime \prime}(x)=0
$$

Theorem

Let I be an open interval and let f be a function defined on I. Assume the second derivative $f^{\prime \prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
II.

If $f^{\prime \prime}(x)>0$ for every $x \in I$, then the function f is convex on the interval I.
If $f^{\prime \prime}(x)<0$ for every $x \in I$, then the function f is concave on the interval I.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume the second derivative $f^{\prime \prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
III. The function f is strictly convex on the interval I if and only if it is convex on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that $f^{\prime \prime}(x)>0$.

Theorem

Let I be an open interval and let f be a function defined on I.
Assume the second derivative $f^{\prime \prime}(x)$ (finite or infinite) exists at each point $x \in I$. Then:
III. The function f is strictly concave on the interval I if and only if it is concave on it and each open interval $J \subseteq I$ contains at least one $x \in J$ such that $f^{\prime \prime}(x)<0$.

Local extrema and inflection points

Function increasing / decreasing at a point
The point of a
(strict) local maximum / minimum
The line tangent to the graph of a function at a point
Function strictly convex / concave
at a point
The point of inflection

Function increasing and decreasing at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

The function f is increasing at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)<f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right)
$$

and

$$
f\left(x_{0}\right)<f(x) \quad \text { for all } \quad x \in\left(x_{0}, x_{0}+\delta\right)
$$

Function increasing and decreasing at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

The function f is decreasing at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)>f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right)
$$

and

$$
f\left(x_{0}\right)>f(x) \quad \text { for all } \quad x \in\left(x_{0}, x_{0}+\delta\right)
$$

Function increasing and decreasing at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and assume that $f^{\prime}\left(x_{0}\right)$ exists.

Theorem:
If $f^{\prime}\left(x_{0}\right)>0$, then f is increasing at the point x_{0}.
If $f^{\prime}\left(x_{0}\right)<0$, then f is decreasing at the point x_{0}.

Local extrema of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

There is a local maximum of the function f at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x) \leq f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

Local extrema of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

There is a strict local maximum of the function f at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)<f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
$$

Local extrema of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

There is a strict local minimum of the function f at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)>f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
$$

Local extrema of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>\mathbf{0}$.

There is a local minimum of the function f at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x) \geq f\left(x_{0}\right) \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

Local extrema of a function

The

- local maxima
- strict local maxima
- strict local minima
- local minima
are together called local extrema of the function.

Theorem: Let $f^{\prime}\left(x_{0}\right)$ exist.
If there is a local extremum of the function f at the point x_{0}, then $f^{\prime}\left(x_{0}\right)=0$.

The line tangent to the graph of a function

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

Recall that the equation of the line tangent to the graph of the function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$ is

$$
y=f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0}
$$

Function strictly convex / concave at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

The function f is strictly convex at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)>f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
$$

Function strictly convex / concave at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

The function f is strictly concave at the point x_{0} if and only if there exists a $\delta>0$ such that

$$
f(x)<f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
$$

Function strictly convex / concave at a point

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

Theorem:

If $f^{\prime \prime}\left(x_{0}\right)>0$, then f is strictly convex at the point x_{0}.
If $f^{\prime \prime}\left(x_{0}\right)<0$, then f is strictly concave at the point x_{0}.

Points of inflexion

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

The point x_{0} is a rising point of inflexion of the function f if and only if there exists a $\delta>0$ such that

$$
f(x)>f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right)
$$

and

$$
f(x)<f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}, x_{0}+\delta\right)
$$

Points of inflexion

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

The point x_{0} is a falling point of inflexion of the function f if and only if there exists a $\delta>0$ such that

$$
f(x)<f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}-\delta, x_{0}\right)
$$

and

$$
f(x)>f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0} \quad \text { for all } \quad x \in\left(x_{0}, x_{0}+\delta\right)
$$

Points of inflexion

Let a function f and a point $x_{0} \in \mathbb{R}$ be given.
Assume that the function f is defined on the whole interval ($x_{0}-\delta_{0}, x_{0}+\delta_{0}$) for some $\delta_{0}>0$, and let $f^{\prime}\left(x_{0}\right)$ exist.

Theorem: Let $f^{\prime \prime}\left(x_{0}\right)$ exist.
If there is an inflection at the point x_{0}, then $f^{\prime \prime}\left(x_{0}\right)=0$.

Examples

Example 1:

$$
y=x^{3}
$$

and consider the point

$$
x_{0}=0
$$

We have

$$
\begin{gathered}
y^{\prime}=3 x^{2} \\
y^{\prime}\left(x_{0}\right)=0
\end{gathered}
$$

hence
but there is no local extremum at x_{0}-the function is strictly increasing there!

Examples

Example 2:

$$
y=x^{4}
$$

and consider the point

$$
x_{0}=0
$$

We have

$$
\begin{gathered}
y^{\prime}=4 x^{3} \\
y^{\prime}\left(x_{0}\right)=0
\end{gathered}
$$

hence
and yes, there is a strict local minimum at x_{0}.

Theorem

Let

$$
f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0
$$

and let

$$
f^{(n)}\left(x_{0}\right) \neq 0
$$

Then:

If n is odd and $f^{(n)}\left(x_{0}\right)>0$, then f is increasing at the point x_{0}. If n is odd and $f^{(n)}\left(x_{0}\right)<0$, then f is decreasing at the point x_{0}.

If n is even and $f^{(n)}\left(x_{0}\right)>0$, then there is a strict local minimum of f at x_{0}. If n is even and $f^{(n)}\left(x_{0}\right)<0$, then there is a strict local maximum of f at x_{0}. e.g. $n=2$

Examples

Example 1:

$$
y=x^{3}
$$

and consider the point

$$
x_{0}=0
$$

We have

$$
\begin{gathered}
y^{\prime}=3 x^{2} \\
y^{\prime}\left(x_{0}\right)=0
\end{gathered}
$$

hence
but there is no local extremum at x_{0}-the function is strictly increasing there!

Examples

Example 2:

$$
y=x^{4}
$$

and consider the point

$$
x_{0}=0
$$

We have

$$
\begin{gathered}
y^{\prime}=4 x^{3} \\
y^{\prime}\left(x_{0}\right)=0
\end{gathered}
$$

hence
and yes, there is a strict local minimum at x_{0}.

