Lesson 8

Calculate the sketching following functions:

a)
$$y = x^3 - 6x^2 + 9x$$

b)
$$y = \frac{x^2}{x-1}$$

c)
$$y = x^2 - 4x + 5$$

Extreme of function

The second derivative may be used to determine local extrema of a function under certain conditions. If a function has a critical point for which f'(x) = 0 and

- A) the second derivative is positive at this point, then f has a local minimum here.
- B) the second derivative is negative at this point, then f has a local maximum here.

.

•

$$f(x) = x^2 - 8x + 4$$

$$f(x) = -2x^2 + 12x$$

$$f(x) = x^3 + 3x^2 + 1$$

Find the maximum of total revenue function

$$TR(Q) = -1400 + 80Q - Q^2$$

Find the minimum of total cost function:

$$TC(Q) = 100 - 60Q + Q^2$$

Find the maximum of the profit function:

$$PR(Q) = 100 + 64Q - 4Q^2$$

Find the maximum of total revenue function:

$$TR(Q) = -80Q^2 + 160Q + 200$$

At what point does the function have a local minimum (the first question) resp. maximum (the second question)?

•

$g(x) = x^6 - 3x^5.$	$g(x) = x^4 - x^5.$
Ve kterém bodě \boldsymbol{x} má funkce \boldsymbol{g} lokální minimum ?	Ve kterém bodě \boldsymbol{x} má funkce \boldsymbol{g} lokální $\textit{maximum}$?
Vyber 1 odpověď:	Výber 1 odpověď:
(A) 3	(A) 0
B 5/2	(B) 4/5
© $-\frac{2}{5}$	$\bigcirc -\frac{5}{4}$
0	0 1

At what point does the function have a local minimum?

 $f(x) = x^3 - 2x^2 - 4x + 8.$

Ve kterém bodě \boldsymbol{x} má funkce f lokální minimum ?

Vyber 1 odpověď:

\bigcirc $-\frac{2}{3}$	
B 0	
© 2	
© −2	

f je polynomiální funkce, jejíž **derivace** f' je definovaná předpisem f'(x) = -x(x+2)(x-2).

V kolika bodech má funkce f lokální maximum?

g je polynomiální funkce, jejíž **derivace** g' je definovaná předpisem $g'(x) = x^5(x+1)(x-1).$

V kolika bodech má funkce g lokální minimum?