Lesson 8

Calculate the sketching following functions:
a) $y=x^{3}-6 x^{2}+9 x$
b) $y=\frac{x^{2}}{x-1}$
c) $y=x^{2}-4 x+5$

Extreme of function

The second derivative may be used to determine local extrema of a function under certain conditions. If a function has a critical point for which $f^{\prime}(x)=0$ and
A) the second derivative is positive at this point, then f has a local minimum here.
B) the second derivative is negative at this point, then f has a local maximum here.

$$
f(x)=x^{2}-8 x+4
$$

$$
f(x)=-2 x^{2}+12 x
$$

$$
f(x)=x^{3}+3 x^{2}+1
$$

Find the maximum of total revenue function

$$
T R(Q)=-1400+80 Q-Q^{2}
$$

Find the minimum of total cost function:

$$
T C(Q)=100-60 Q+Q^{2}
$$

Find the maximum of the profit function:

$$
P R(Q)=100+64 Q-4 Q^{2}
$$

Find the maximum of total revenue function:

$$
T R(Q)=-80 Q^{2}+160 Q+200
$$

At what point does the function have a local minimum (the first question) resp. maximum (the second question)?

$g(x)=x^{6}-3 x^{5}$.	$g(x)=x^{4}-x^{5}$.
Ve kterém bodě x má funke g lokánín minimum ?	Ve kterém bodě x má funkce g lokální maximum ?
Yyber 1 odporéal:	Yyber 1 odporěed:
(A) 3	(A) 0
(B) $\frac{5}{2}$	$\text { (B) } \frac{4}{5}$
$\text { (C) }-\frac{2}{5}$	$\text { (C) }-\frac{5}{4}$
(D) 0	(D) 1

At what point does the function have a local minimum?
$f(x)=x^{3}-2 x^{2}-4 x+8$.
Ve kterém bodě x má funkce f lokální minimum ?
Vyber 1 odpově̌d:
(A) $-\frac{2}{3}$$-2$
f je polynomiální funkce, jejíž derivace f^{\prime} je definovaná předpisem $f^{\prime}(x)=-x(x+2)(x-2)$.

V kolika bodech má funkce f lokální maximum?
g je polynomiální funkce, jejíž derivace g^{\prime} je definovaná předpisem $g^{\prime}(x)=x^{5}(x+1)(x-1)$.

V kolika bodech má funkce g lokální minimum?

