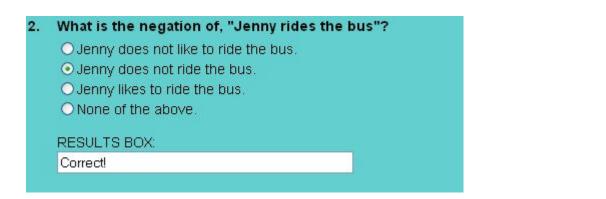
# **Solutions**

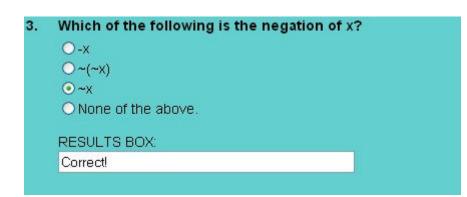
### Lesson on Sentences and Negation

Which of the following is a closed sentence?
 Summer follows spring.
 A quarter is a coin.
 There are 360 days in a year.
 All of the above.
 RESULTS BOX:
 Correct!

Each of these sentences is a closed sentence (an objective statement which is either true or false).



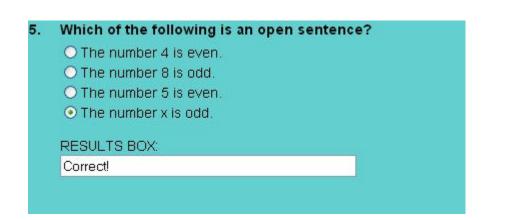
"Jenny does not ride the bus" is the negation of "Jenny rides the bus." The negation of p is "not p."



The statement  $\sim x$  represents the negation of x.

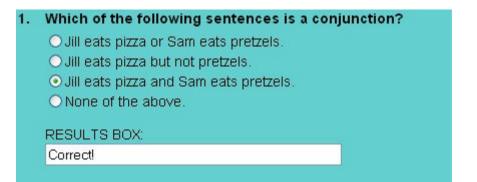
| Given:    | a: A triangle is not a polygon.<br>b: A square is a rectangle.           |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------|--|--|--|--|--|
|           |                                                                          |  |  |  |  |  |
| Problem:  | Which of the following is the negation of "A triangle is not a polygon"? |  |  |  |  |  |
| ⊙~(~b)    |                                                                          |  |  |  |  |  |
| ⊙~a       |                                                                          |  |  |  |  |  |
| ⊙a        | Oa                                                                       |  |  |  |  |  |
| O None of | f the above.                                                             |  |  |  |  |  |
| RESULTS   | BOX:                                                                     |  |  |  |  |  |
| Correct   |                                                                          |  |  |  |  |  |

The statement ~a represents the negation of a.



Choice 4 has a variable in it. An open sentence is a statement which contains a variable and becomes either true or false depending on the value that replaces the variable.

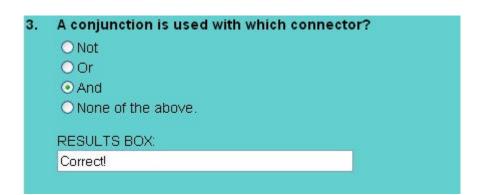
### **Lesson on Conjunction**



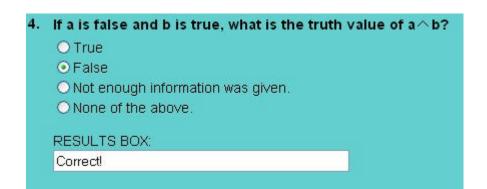
"Jill eats pizza and Sam eats pretzels" is a conjunction. A conjunction is a compound statement formed by joining two statements with the connector AND.



The conjunction "p and q" is symbolized by  $p \land q$ .



A conjunction is a compound statement formed by joining two statements with the connector AND.

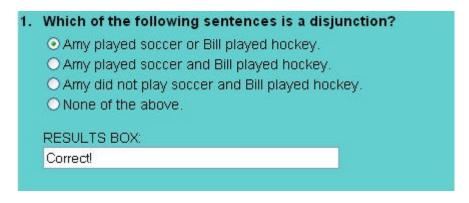


The truth value of  $a \land b$  is false. A conjunction is true when both of its combined parts are true, otherwise it is false.

| Given:                              | r: y is prime.                                                  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                                     | s: y is even.                                                   |  |  |  |  |
| Problem:                            | What is the truth value of r $\land$ s when y is replaced by 2? |  |  |  |  |
| True                                |                                                                 |  |  |  |  |
| OFalse                              |                                                                 |  |  |  |  |
| ○ Not enough information was given. |                                                                 |  |  |  |  |
| O None of the above.                |                                                                 |  |  |  |  |
|                                     |                                                                 |  |  |  |  |
| PESULTS                             | BEIX:                                                           |  |  |  |  |
| RESULTS<br>Correct!                 | BOX:                                                            |  |  |  |  |

When y = 2, the statement r is true and the statement s is true (i.e., The number 2 is both prime and even). Therefore, the conjunction r $\land$ s is true when y = 2.

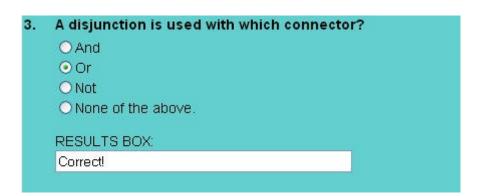
### Lesson on Disjunction



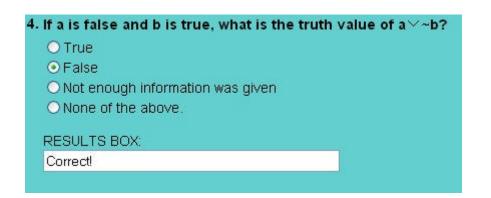
A disjunction is a compound statement formed by joining two statements with the connector OR.



The statement  $x \lor y$  is a disjunction.



A disjunction is a compound statement formed by joining two statements with the connector OR.



If b is true then  $\sim$ b is false. A disjunction is false when both statements are false. Therefore, the disjunction a $\vee \sim$ b is false.

| 5. | Given:              | r: y is prime.<br>s: y is even.                                        |  |  |  |  |  |
|----|---------------------|------------------------------------------------------------------------|--|--|--|--|--|
|    |                     |                                                                        |  |  |  |  |  |
|    | Problem:            | Which of the following is a true statement when<br>y is replaced by 3? |  |  |  |  |  |
|    | Or∨~s               |                                                                        |  |  |  |  |  |
|    | Or^~s               |                                                                        |  |  |  |  |  |
|    | Or∨s                |                                                                        |  |  |  |  |  |
|    | O All of the above. |                                                                        |  |  |  |  |  |
|    | RESULTS             | BOX:                                                                   |  |  |  |  |  |
|    | Correct             |                                                                        |  |  |  |  |  |

When y = 3, the statement r is true and the statement s is false. Therefore, all three choices list true statements.

| 1 | Which of the following is a conditional statement? |
|---|----------------------------------------------------|
|   | • Amy plays soccer or Bill plays hockey.           |
|   | O Bill plays hockey when Amy plays soccer.         |
|   | If Amy plays soccer then Bill plays hockey.        |
|   | ○ None of the above.                               |
|   | RESULTS BOX                                        |
|   | Correct                                            |

A conditional statement is an if-then statement in which p is a hypothesis and q is a conclusion.

| 2. | Given:    | r: You give me twenty dollars.<br>s: I will be your best friend.                                                |  |  |  |  |
|----|-----------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |           |                                                                                                                 |  |  |  |  |
|    | Problem:  | Which of the following statements represents, "If you give me twenty dollars, then I will be your best friend"? |  |  |  |  |
|    | Or∧s      |                                                                                                                 |  |  |  |  |
|    | ⊙r→s      |                                                                                                                 |  |  |  |  |
|    | ⊙s→r      |                                                                                                                 |  |  |  |  |
|    | O None of | the above.                                                                                                      |  |  |  |  |
|    | RESULTS   | BOX:                                                                                                            |  |  |  |  |
|    | Correct!  |                                                                                                                 |  |  |  |  |

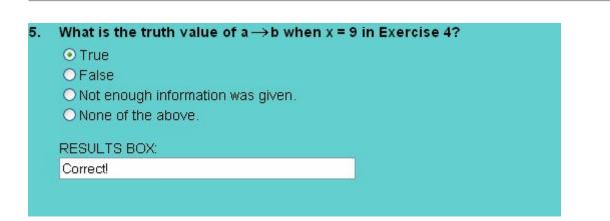
The hypothesis is r and the conclusion is s. The logical connector in a conditional statement is denoted by the symbol  $\rightarrow$ .

| 3. | What is the truth value of $r \! \rightarrow \! s$ when the hypothesis is false and the conclusion is true in Example 2? |
|----|--------------------------------------------------------------------------------------------------------------------------|
|    | ⊙ True                                                                                                                   |
|    | O False                                                                                                                  |
|    | ONot enough information was given.                                                                                       |
|    | O None of the above.                                                                                                     |
|    | RESULTS BOX:                                                                                                             |
|    | Correct                                                                                                                  |
|    |                                                                                                                          |

The conditional is defined to be true unless a true hypothesis leads to a false conclusion.

| Given:                              | a: x is prime.<br>b: x is odd.                            |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------|--|--|--|--|
|                                     |                                                           |  |  |  |  |
| Problem:                            | : What is the truth value of a $ ightarrow$ b when x = 2? |  |  |  |  |
| O True                              |                                                           |  |  |  |  |
| • False                             |                                                           |  |  |  |  |
| ○ Not enough information was given. |                                                           |  |  |  |  |
| ONone of the above.                 |                                                           |  |  |  |  |
| RESULTS                             | BOX:                                                      |  |  |  |  |
| Correct!                            |                                                           |  |  |  |  |

When x=2, hypothesis a is true and conclusion b is false. When a true hypothesis leads to a false conclusion, the conditional is false. Thus when x=2, conditional a  $\rightarrow$ b is false.

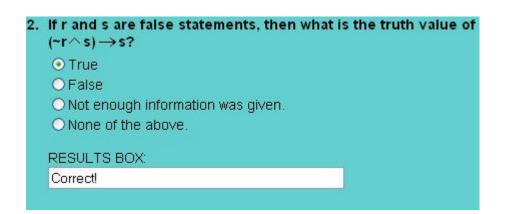


When x=9, hypothesis a is false and conclusion b is true. By definition, conditional  $a \rightarrow b$  is true.

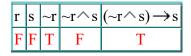
### Lesson on Compound Statements

| Given:               | a: 11 is prime.<br>b: 11 is odd.                                                                                                                          |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                      |                                                                                                                                                           |  |  |
| Probler              | n: Which of the following sentences represents (a $^{>}$ b) $\rightarrow$ ~b?                                                                             |  |  |
| ⊙lf 11 i<br>⊙lf 11 i | s prime and 11 is odd, then 11 is not odd.<br>s prime or 11 is not odd, then 11 is not odd.<br>s prime or 11 is odd, then 11 is not odd.<br>of the above. |  |  |
| None                 |                                                                                                                                                           |  |  |
| RESULT               |                                                                                                                                                           |  |  |

The compound statement  $(a \lor b) \rightarrow \sim b$  is a conditional, where the hypothesis is the disjunction "a or b" and the conclusion is  $\sim b$ .



If r and s are false statements, then  $(\sim r \land s) \rightarrow s$  is true as shown in the truth table below.



| What are the truth values of this statement? $({}^{\sim}x{}^{\checkmark}y){}^{\rightarrow}y$ |
|----------------------------------------------------------------------------------------------|
| ⊙ {T, T, T, F}                                                                               |
| ○ {T, T, T, T}                                                                               |
| ○ {T, F, T, T}                                                                               |
| O None of the above.                                                                         |
| RESULTS BOX:                                                                                 |
| Correct                                                                                      |

The truth values of  $(\neg x \lor y) \rightarrow y$  are shown in the truth table below.

|   |   |   | $\sim x \lor y$ | $(\sim x \lor y) \rightarrow y$ |
|---|---|---|-----------------|---------------------------------|
| Т | Т | F | Т               | Т                               |
|   | F |   | F               | Т                               |
| F | Т | Т | Т               | Т                               |
| F | F | Т | Т               | F                               |

| What are the truth values of this statement? ${\sim}p{\rightarrow}(p{\wedge}{\sim}q$ |
|--------------------------------------------------------------------------------------|
| O {T, F, T, F}                                                                       |
| O {F, T, F, T}                                                                       |
| ⊙ {T, T, F, F}                                                                       |
| O None of the above.                                                                 |
| RESULTS BOX:                                                                         |
| Correct                                                                              |

The truth values of  $\sim p \rightarrow (p \wedge \sim q)$  are {T, T, F, F},

as shown in the truth table below.

| p | q | ~p | ~q | p^~q | $\sim p \rightarrow (p \land \sim q)$ |
|---|---|----|----|------|---------------------------------------|
| Т | Т | F  | F  | F    | Т                                     |
| Т | F | F  | Т  | Т    | Т                                     |
| F | Т | Т  | F  | F    | F                                     |
| F | F | Т  | Т  | F    | F                                     |

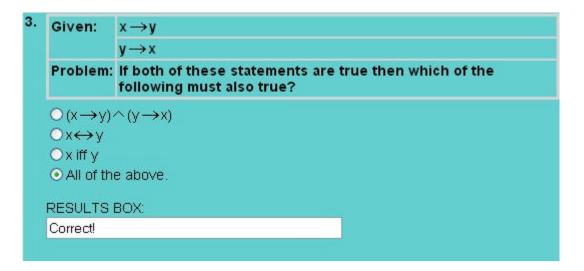
Lesson on Biconditional Statements

| Given:                                                                                                           | a: y - 6 = 9         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
|                                                                                                                  | b: y = 15            |  |  |  |  |  |  |
| Problem: The biconditional a↔b represents which of the follow sentences?                                         |                      |  |  |  |  |  |  |
| O If y - 6 = 9, then y = 15.                                                                                     |                      |  |  |  |  |  |  |
| • y - 6 = 9 if and only if y = 15.                                                                               |                      |  |  |  |  |  |  |
| O If y = 15, then y - 6 = 9.                                                                                     |                      |  |  |  |  |  |  |
|                                                                                                                  | O None of the above. |  |  |  |  |  |  |
| and the second | the above.           |  |  |  |  |  |  |
| and the second |                      |  |  |  |  |  |  |

Biconditional  $p \leftrightarrow q$  represents "p if and only if q," where p is a hypothesis and q is a conclusion.

|   | Given:                           | r: 11 is prime.                                                                             |  |  |  |  |
|---|----------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
|   |                                  | s: 11 is odd.                                                                               |  |  |  |  |
|   | Problem:                         | The biconditional $r  \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |  |  |  |  |
|   | Olf 11 is p                      | prime, then 11 is odd.                                                                      |  |  |  |  |
|   | Olf 11 is odd, then 11 is prime. |                                                                                             |  |  |  |  |
|   | ● 11 is prime iff 11 is odd.     |                                                                                             |  |  |  |  |
|   | O None of the above.             |                                                                                             |  |  |  |  |
| F | RESULTS                          | BOX:                                                                                        |  |  |  |  |
|   |                                  |                                                                                             |  |  |  |  |

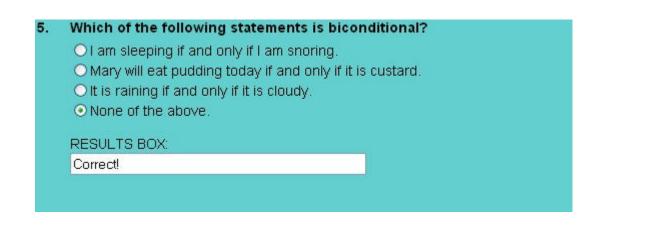
The hypothesis is "11 is prime" and the conclusion is "11 is odd". So  $r \leftrightarrow s$  represents, "11 is prime if and only 11 is odd." The "if and only if" is abbreviated with "iff" in choice 3.



When proving the statement p iff q, it is equivalent to proving both of the statements "if p, then q" and "if q, then p". Since these conditionals were given in the problem,  $x \leftrightarrow y$  is biconditional. Therefore, each statement listed in choice 1, 2 and 3 is true.

| Given:   | m⇔n is biconditional                           |
|----------|------------------------------------------------|
| Proble   | n: Which of the following is a true statement? |
| ⊙ m is t | he hypothesis                                  |
| ⊖ m is t | he conclusion                                  |
| On is a  | conditional statement                          |
| ⊖n is a  | biconditional statement                        |
| RESULT   | S BOX:                                         |
| Correct! |                                                |

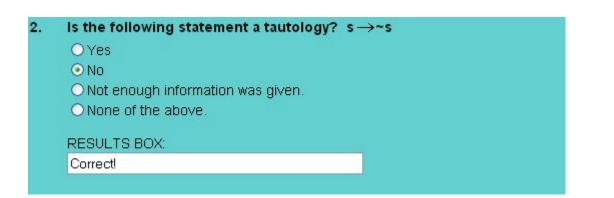
The biconditional  $p \leftrightarrow q$  represents "p if and only if q", where p is a hypothesis and q is a conclusion. So m is the hypothesis of  $m \leftrightarrow n$ .



None of these statements is biconditional: one can sleep without snoring; Mary can eat pudding today that is not custard; it can be cloudy without any rain.

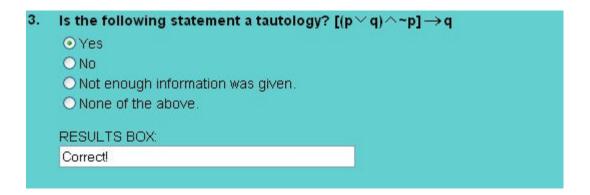
| What is the truth value of r $arsigma$ ~r? |  |
|--------------------------------------------|--|
| ⊙ True                                     |  |
| ○ False                                    |  |
| O Not enough information was given.        |  |
| ○None of the above.                        |  |
| RESULTS BOX:                               |  |
| Correct                                    |  |

A compound statement, that is always true regardless of the truth value of the individual statements, is defined to be a tautology. The disjunction of a statement and its negation is a tautology.



No, the conditional statement  $s \rightarrow \sim s$  is not a tautology. See the truth table below.

| s | ~s | $s \rightarrow \sim s$ |
|---|----|------------------------|
| Т | F  | F                      |
| F | Т  | Т                      |



Yes, the statement  $[(p \lor q) \land \neg p] \rightarrow q$ 

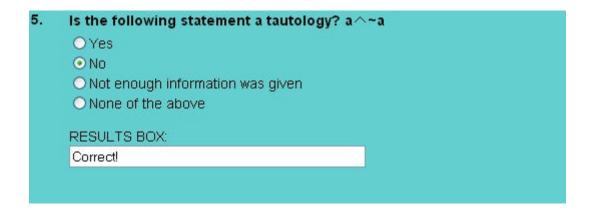
is a tautology since its truth values are  $\{T, T, T, T\}$  as shown in the truth table below.

|   |   |   | p∨q | (p∨q)^~p | $[(p \lor q) \land \neg p] \rightarrow q$ |
|---|---|---|-----|----------|-------------------------------------------|
| Т | Т | F | Т   | F        | Т                                         |
|   |   | F | Т   | F        | Т                                         |
| F | Т | Т | Т   | Т        | Т                                         |
| F | F | Т | F   | F        | Т                                         |

| • Yes        |                           |
|--------------|---------------------------|
| ○ No         |                           |
| O Not enoug  | gh information was given. |
| O None of th | ne above.                 |
| RESULTS B    | x:                        |
| Correct!     |                           |

Yes, the statement  $\sim(x \lor y) \leftrightarrow (\sim x \land \sim y)$  is a tautology since its truth values are {T, T, T, T} as shown in the truth table below.

| x | у | ~x | ~y | x∨y | $\sim (x \lor y)$ | ~x^~y | $\sim (x \lor y) \leftrightarrow (\sim x \land \sim y)$ |
|---|---|----|----|-----|-------------------|-------|---------------------------------------------------------|
| Т | Т | F  | F  | Т   | F                 | F     | Т                                                       |
| Т | F | F  | Т  | Т   | F                 | F     | Т                                                       |
| F | Т | Т  | F  | Т   | F                 | F     | Т                                                       |
| F | F | Т  | Т  | F   | Т                 | Т     | Т                                                       |

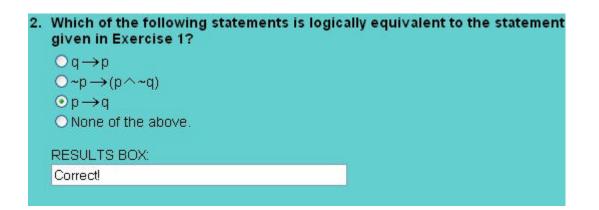


A conjunction is true when both parts are true. Since a statement and its negation have opposite truth values, the conjunction of a statement and its negation could never be true.

# Lesson on Equivalence 1. What are the truth values of the following statement? $(p \land \neg q) \rightarrow \neg p$ $\bigcirc \{T, T, T, F\}$ $\bigcirc \{T, F, T, T\}$ $\bigcirc \{F, T, T, T\}$ $\bigcirc None of the above.$ RESULTS BOX: Correct!

The truth values of  $(p \land \neg q) \rightarrow \neg p$  are  $\{T, F, T, T\}$  as shown in the truth table below.

|   |   |   |   | p^~q | $(p^{a} \rightarrow q) \rightarrow \sim p$ |
|---|---|---|---|------|--------------------------------------------|
| Т | Т | F | F | F    | Т                                          |
| Т | F | F | Т | Т    | F                                          |
| F | Т | Т | F | F    | Т                                          |
| F | F | Т | Т | F    | Т                                          |



The statement  $p \rightarrow q$  is logically equivalent to the statement  $(p \land \neg q) \rightarrow \neg p$ , since they both have the same truth values, as shown in the truth table below.

|   | q | p→q | $(p^{a} \rightarrow q) \rightarrow p$ |
|---|---|-----|---------------------------------------|
| Т | Т | Т   | Т                                     |
| Τ | F | F   | F                                     |
| F | Т | Т   | Т                                     |
| F | F | Т   | Т                                     |

| Which of the following statements is logically equivalent to q $ ightarrow$ (p $ ightarrow$ q)? |
|-------------------------------------------------------------------------------------------------|
| ⊙q→p                                                                                            |
| $\bigcirc \sim p \rightarrow (p \land \sim q)$                                                  |
| $\bigcirc p \rightarrow q$                                                                      |
| O None of the above.                                                                            |
| RESULTS BOX:                                                                                    |
| Correct                                                                                         |

The statement  $q \rightarrow p$  is logically equivalent to the statement  $q \rightarrow (p \land q)$  since they both have the same truth values, as shown in the truth table below.

| p | q | p^q | $q \rightarrow (p \land q)$ | q→p |
|---|---|-----|-----------------------------|-----|
| Т | Т | Т   | Т                           | Т   |
| Τ | F | F   | Т                           | Т   |
| F | Т | F   | F                           | F   |
| F | F | F   | Т                           | Т   |

| 4. | Which of the following statements is logically equivalent to a $ ightarrow$ (a $^{ ightarrow}$ b)? |
|----|----------------------------------------------------------------------------------------------------|
|    | ⊙a→b                                                                                               |
|    | O(a∨b)→b                                                                                           |
|    | ⊙ (a^b) →b                                                                                         |
|    | O None of the above.                                                                               |
|    | RESULTS BOX:                                                                                       |
|    | Correct                                                                                            |
|    |                                                                                                    |

The statement  $(a \land b) \rightarrow b$  is logically equivalent to the statement  $a \rightarrow (a \lor b)$  since they both have the same truth values, as shown in the truth table below.

| a | b | a∨b | a^b | (a∧b)→b | a→(a∨b) |
|---|---|-----|-----|---------|---------|
| Т | Т | Т   | Т   | Т       | Т       |
| Т | F | Т   | F   | Т       | Т       |
| F | Т | Т   | F   | Т       | Т       |
| F | F | F   | F   | Т       | Т       |

| Given:                        | Statement x is logically equivalent to statement y. |
|-------------------------------|-----------------------------------------------------|
| Problem:                      | Which of the following is true?                     |
| Ox if and                     | only if y                                           |
|                               | s a tautology                                       |
| Ox iff y                      |                                                     |
| <ul> <li>All of th</li> </ul> | e above.                                            |
| RESULTS                       | BOX:                                                |
| Correct!                      |                                                     |

Equivalent statements have the same truth values. Therefore, x and y satisfy the definition of a biconditional.. Thus, the statements listed in choice 1 and choice 3 are true. The biconditional of two equivalent statements is a tautology. Therefore, the statement listed in choice 2 is true.

## **Practice Exercises**

| p | q | ~p | p ∩ q | p∨q | $p \rightarrow q$ |
|---|---|----|-------|-----|-------------------|
| Ţ | Т | F  | ] т   | Т   | Т                 |
| Т | F | F  | F     | Т   | F                 |
| F | Т | Т  | F     | Т   | Т                 |
| F | F | Т  | E     | F   | Т                 |

This truth table shows the truth values for the negation of p, and for the conjunction, disjunction and conditional of statements p and q.

|   | р  | q   | ~q | <b>p</b> ∧q | (p∧q)→~q |
|---|----|-----|----|-------------|----------|
|   | Т  | ] т | F  | Т           | F        |
|   | °T | F   | Т  | F           | T        |
|   | F  | т   | F  | F           | Т        |
| Î | F  | F   | T  | F           | T        |

This truth table shows the truth values for the compound statement  $(p \land q) \rightarrow \sim q$ .

| x | у | x→y | $y \rightarrow x$ | $(x \rightarrow y) \land (y \rightarrow x)$ | x↔y |
|---|---|-----|-------------------|---------------------------------------------|-----|
| Т | Т | T   | Т                 | Т                                           | Т   |
| Т | F | F   | Т                 | F                                           | F   |
| F | T | Т   | F                 | F                                           | F   |
| F | F | T   | т                 | Т                                           | Т   |

This truth table shows the truth values of various compound statements involving x and y.

| Ox          |          |  |
|-------------|----------|--|
| Oy          |          |  |
| ⊙x↔y        |          |  |
| None of the | e above. |  |
| RESULTS BO  | X:       |  |
| Correct     |          |  |

The conditional statements in problem 3 are  $x \rightarrow y$  and  $y \rightarrow x$ .

| $\bigcirc x \rightarrow y$ |              |  |  |
|----------------------------|--------------|--|--|
| $\bigcirc y \rightarrow x$ |              |  |  |
| ⊙x↔y                       |              |  |  |
| ○ None c                   | f the above. |  |  |
| RESULTS                    | BOX:         |  |  |
| Correct!                   |              |  |  |

The biconditional statement from problem 3 is  $x \leftrightarrow y$ .

6.

| a | b | a→b | (a→b)∧a | $[(a \rightarrow b) \land a] \rightarrow b$ |
|---|---|-----|---------|---------------------------------------------|
| Т | Т | ] т | Т       | Т                                           |
| Т | F | F   | F       | Т                                           |
| F | T | Т   | F       | т                                           |
| F | F | т   | F       | Т                                           |

This truth table shows the truth values of various compound statements involving a and b.

| OBiconditional                |  |
|-------------------------------|--|
| <ul> <li>Tautology</li> </ul> |  |
| O Disjunction                 |  |
| ○None of the above.           |  |
| RESULTS BOX:                  |  |
| Correctl                      |  |

The statement in the last column of the truth table in problem 6 is a tautology since all of its truth values are true.

| р | q | ~q | p→~d | p∧q | ~(p ^ q) | $(p \rightarrow \neg q) \leftrightarrow [\neg (p \land q)]$ |
|---|---|----|------|-----|----------|-------------------------------------------------------------|
| Т | Т | F  | F    | Т   | F        | Т                                                           |
| Т | F | T  | Т    | F   | T        | Т                                                           |
| F | Т | Т  | Т    | F   | Т        | Т                                                           |
| F | F | T  | Т    | F   | т        | Т                                                           |

The truth values for the last column are all true. Thus the statement  $(p \rightarrow \sim q) \leftrightarrow [\sim (p \land q)]$  is a tautology.

| $\bigcirc p \rightarrow \sim q$ and      | p^q      |
|------------------------------------------|----------|
| $\bigcirc$ p $\land$ q and $\sim$ ()     |          |
| $\odot p \rightarrow \sim q$ and $\cdot$ | ~(p ^ q) |
| ○ None of the a                          | bove.    |
| RESULTS BOX:                             |          |
| Correct                                  |          |

The statements  $p \rightarrow \sim q$  and  $\sim (p \land q)$  have the same truth value. These statements are, therefore, logically equivalent.

| The                    | that best completes this sentence:<br>of two equivalent statements always yields a tautology |
|------------------------|----------------------------------------------------------------------------------------------|
| <li>Biconditional</li> |                                                                                              |
| O Conjunction          |                                                                                              |
| O Negation             |                                                                                              |
| ○ All of the abov      | /e.                                                                                          |
| RESULTS BOX:           |                                                                                              |
| Correct!               |                                                                                              |

The biconditional of two equivalent statements is a tautology.