Tautologies

Example 1: What do you notice about each sentence below?

1.	A number is even or a number is not even.
2.	Cheryl passes math or Cheryl does not pass math.
3.	It is raining or it is not raining.
4.	A triangle is isosceles or a triangle is not isosceles.

Each sentence in Example 1 is the disjunction of a statement and its negation. Each of these sentences can be written in symbolic form as $p \checkmark \sim p$. Recall that a disjunction is false if and only if both statements are false; otherwise it is true. By this definition, $p \checkmark \sim p$ is always true, even when statement p is false or statement $\sim p$ is false! This is illustrated in the truth table below:

р	~р	р∨∼р
Т	F	Т
F	Т	Т

The <u>compound statement</u> $p^{\checkmark} \sim p$ consists of the individual statements p and $\sim p$. In the truth table above, $p^{\checkmark} \sim p$ is always true, regardless of the truth value of the individual statements. Therefore, we conclude that $p^{\checkmark} \sim p$ is a tautology.

Definition: A compound statement, that is always true regardless of the truth value of the individual statements, is defined to be a **tautology**.

Let's look at another example of a tautology.

Example 2: Is $(p \land q) \rightarrow p$ a tautology?

р	q	p^q	(p∧q)→p
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

Solution: The compound statement $(p \land q) \rightarrow p$ consists of the individual statements p, q, and p \land q. The truth table above shows that $(p \land q) \rightarrow p$ is true regardless of the truth value of the individual statements. Therefore, $(p \land q) \rightarrow p$ is a tautology.

In the examples below, we will determine whether the given statement is a tautology by creating a truth table.

Example 3: Is $x \rightarrow (x \lor y)$ a tautology?

x y
$$x y$$
 $x y$ $x \rightarrow (x y)$

Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

Solution: Yes; the truth values of $x \mathop{\longrightarrow}(x \mathop{\searrow} y)$ are {T, T, T, T}.

Example 4: Is $\sim b \rightarrow b$ a tautology?

b	~b	∼b→b
Т	F	Т
F	Т	F

Solution: No; the truth values of $\sim b \rightarrow b$ are {T, F}.

Example 5: Is $(p \lor q) \rightarrow (p \land q)$ a tautology?

р	q	(p∨q)	(p^q)	(p∨q)→(p^q)
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т

Solution: No; the truth values of $(p \lor q) \rightarrow (p \land q)$ are {T, F, F, T}.

Example 6: Is $[(p \rightarrow q) \land p] \rightarrow p$ a tautology?

р	q	$p \rightarrow q$	(p→q)^p	$[(p \rightarrow q) \land p] \rightarrow p$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Solution: Yes; the truth values of $[(p \rightarrow q) \land p] \rightarrow p$ are {T, T, T, T}.

Example 7: Is $(r \rightarrow s) \leftrightarrow (s \rightarrow r)$ a tautology?

 $r s r \rightarrow s s \rightarrow r (r \rightarrow s) \leftrightarrow (s \rightarrow r)$

Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

Solution: No; the truth values of $(r \rightarrow s) \leftrightarrow (s \rightarrow r)$ are {T, F, F, T}.

Summary: A compound statement that is always true, regardless of the truth value of the individual statements, is defined to be a tautology. We can construct a truth table to determine if a compound statement is a tautology.

Exercises

1.	What is the truth value of r [∨] ~r?
	Not enough information was given.
	None of the above
	RESULTS BOX:
2.	Is the following statement a tautology? $s \rightarrow \sim s$
	Not enough information was given.
	None of the above.
	RESULTS BOX:
3.	Is the following statement a tautology? $I(p^{\vee})$
	q)^~p]→q
	C _{Yes}
	C _{No}

	Not enough information was given.
	None of the above.
	RESULTS BOX:
4.	Is the following statement a tautology? ~($x > y$) \leftrightarrow (~ $x > y$)
	 Yes No Not enough information was given. None of the above.
	RESULTS BOX:
5.	Is the following statement a tautology? a ~a Yes No Not enough information was given None of the above
	RESULTS BOX: